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Editorial

164. Problem; Ulam
Let a finite number of points, including 0 and 1, be given on the interval
(0, 1); a number ǫ > 0, and a transformation of this finite set into itself;
T , with the following property: for every point p, |p, T (p)| > ǫ. Let us
call a “permissible step" passing from the point p to T (p) or one of the
two neighbors (points nearest from the left and from the right side) of
the point T (p).
Question: Does there exist a universal constant k such that there exists
a point p0 from which, in a number of allowed steps E(k

ǫ ) one can reach
a point q which is distant from p0 by at least 1

3?

Stanislaw Ulam1

The book offers a unique collection of papers presented at the Automata-2008
workshop held in Bristol, June 12-14, 2008. The event was supported by the
Engineering and Physical Sciences Research Council (EPSRC), the UK Govern-
ment’s leading funding agency for research and training in engineering and the
physical sciences.

Automata 2008 is the 14th workshop in a series of AUTOMATA workshops
established in 1995 by members of the Working Group 1.5 (Cellular Automata
and Machines) subordinated to Technical Committee 1 (Foundations of Com-
puter Science) of the International Federation for Information Processing (IFIP).
The main goal of AUTOMATA workshops is to maintain a permanent, inter-
national and multidisciplinary forum for the collaboration of researchers in the
fields of Cellular Automata (CA) and Discrete Complex Systems (DCS). Previ-
ous workshops took place in Toronto, Canada (2007); Hiroshima, Japan (2006);
Gdansk, Poland (2005); Karlsruhe, Germany (2004); Leuwen, Belgium (2003);
Prague, Czech Republic (2002); Giens, France (2001); Osaka, Japan (2000);
Lyon, France (1999); Santiago de Chile (1998); Gargnano, Italy (1997); Giessen,
Germany (1996); Dagstuhl, Germany (1995).

Automata-2008 is the international workshop on cellular automata, an in-
terdisciplinary field, whose general goal might be summarised as the quest for
theoretical constructs, computational solutions and practical implementations
of novel and powerful models of discrete world. This workshop brought together
work that focuses on advanced theoretical constructions, experimental proto-
types and implementations of cellular-automaton models, computing devices and
paradigms.

1 English typescript of “The Scottish Book" from the Archive of the Library of Math-
ematics Faculty of Wrocław University. In: Stefan Banach Portal http://banach.
univ.gda.pl/e-scottish-book.html
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The book presents results of cutting edge research in cellular automata frame-
work of digital physics and modelling of spatially extended non-linear systems;
massive-parallel computing, language acceptance, and computability; reversibil-
ity of computation, graph-theoretic analysis and logic; chaos and undecidability;
evolution, learning and cryptography.

The book will enable researchers, academics and students to get a sense of
novel results, concepts and paradigms of cellular automaton theory, delivered by
world-leading experts, attract attention of researchers from natural sciences to
cost-efficient techniques of cellular-automaton modelling, and beacon industri-
alists in appreciating high-potential of cellular-automaton computing architec-
tures.

Suppose one has an infinite regular system of lattice points in En, each
capable of existing in various states S1, · · · , Sk. Each lattice point has a
well defined system of m neighbors, and it is assumed that the state of
each point at time t + 1 is uniquely determined by the states of all its
neighbors at time t. Assuming that at time t only a finite set of points
are active, one wants to know how the activation will spread.

Stanislaw Ulam2

Andrew Adamatzky, Ramon Alonso-Sanz, Anna Lawniczak,
Genaro Juares Martinez, Kenichi Morita, Thomas Worsch

The Conference Organizers
May 2008

Bristol (UK), Madrid (Spain), Guelph (Canada),
Mexico DC (Mexico), Hiroshima (Japan), Karlsruhe (Germany)

2 Ulam S. M. A Collection of Mathematical Problems (New York: Interscience, 1960),
p. 30
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Investigations of Game of Life cellular automata

rules on Penrose Tilings: lifetime and ash
statistics

Nick Owens1 and Susan Stepney2

1 Department of Electronics, University of York, UK
2 Department of Computer Science, University of York, UK

Abstract. Conway’s Game of Life rules can be applied to Cellular Au-
tomata (CAs) running on aperiodic grids, namely Penrose tilings. Here
we investigate the result of running such CAs from random initial con-
ditions. This requires development of a Penrose tiling algorithm suitable
for CA experiments, in particular, a tiling that can be lazily expanded
as CA activity reaches an edge. We describe such an algorithm, our ex-
perimental setup, and demonstrate that the Penorse kite and dart tiling
has significantly different statistical behaviour from the Penrose rhomb
tiling.

1 Introduction

John Horton Conway’s Game of Life [3][8] is a simple two-dimensional, two
state cellular automaton (CA), remarkable for its complex behaviour [3][16].
That behaviour is known to be very sensitive to a change in the CA rules. Here
we continue our investigations [11] into its sensitivity to changes in the lattice,
by the use of an aperiodic Penrose tiling lattice [9][14].

Section 2 reviews Penrose tilings, and section 3 describes algorithms to gen-
erate them, including one that permits ‘lazy extension’ of the tiling. Section 4
generalises the concepts of neighbourhood and totalistic CA rules to aperiodic
lattices. Section 5 describes the experimental setup for running the Game of
Life rules on aperiodic lattices; section 6 reports the statistics of lifetimes, ash
densities, and growth of the region of activity.

2 Penrose tilings

2.1 Kites and darts, and rhombs

Grünbaum & Shephard [10, chapter 10] provide a good introduction to aperiodic
tilings, including Penrose tilings. The two variants of Penrose tiling we consider
here are ‘kites and darts’, and ‘rhombs’.
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Fig. 1. Penrose tiles (a) the dart (grey) and kite (white) tiles: the long and short
sides are in the ratio φ : 1, where the golden ratio φ = (1 +

√
5)/2 = 2 cos(π/5);

(b) the thick (white) and thin (grey) rhomb tiles

Fig. 2. Kite and dart matching rules (a) vertex markings (b) Ammann bars

The kite and dart tile pair are shown in Fig. 1a; a large patch of kite and
dart tiling is shown in Fig. 19. The thick and thin rhomb tile pair are shown in
Fig. 1b; a large patch of rhomb tiling is shown in Fig. 21. [21] shows that the
number of thick to thin rhombs in a Penrose tiling is in the ratio φ : 1.

2.2 Matching rules and Ammann bars

To avoid a kite and dart being joined to form a rhombus (Fig. 7), and hence a
periodic tiling, there are additional ‘matching rules’: as well as edges of the same
length being put together, certain vertices (given by the dots in Fig. 2a) must
also be matched [9][10]. Another matching scheme uses Ammann bars (Fig. 2b),
which must be joined in straight lines across tiles [10]. (Completed Ammann
bars highlight the underlying structure, and can be used to construct tilings; see
section 3.5.)

To avoid rhomb tiles being used to form a periodic tiling, there are additional
‘matching rules’: as well as edges of the same length being put together, the edge
orientations (given by the arrows and dots in Fig. 3a) must also be matched [5].
Another matching scheme uses Ammann bars (Fig. 3b), which must be joined
in straight lines across tiles.

2.3 Valid vertex configurations

There are many ways to put the tiles together, even with the restriction of the
matching rules. However, in a true Penrose tiling (one that can be extended to
infinity), not all of these configurations can exist.

There are only seven valid ways to surround any vertex in a kite and dart
tiling [9] (Fig. 4).

There are only eight valid vertices in a rhomb tiling [5] (Fig. 5). The names of
these vertices come from the names of the corresponding kite and dart vertices
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Fig. 3. Rhomb matching rules (a) vertex marking and edge orientations plus
vertex angle numbering, where interior angles are π/5 times the vertex angle
number (note that vertices labelled 2, and labelled 4, come in two kinds, due to
the matching rules: these are distinguished by overbars) (b) Ammann bars

 sun (S1)            star (S2)            ace (A)            deuce (D)

jack (J)               queen (Q)              king (K) 

Fig. 4. The seven valid vertex configurations of a kite and dart tiling [9]

from which they can be derived [5]. Each vertex can be associated with a list of
vertex angle numbers (after [17, fig.6.8], augmented here with overbars, Fig. 3a),
corresponding to the vertex angles of the tiles forming the central vertex. These
are useful for determining how to complete forced vertices (see section 3.3). Note
that there are two distinct occurrences of the 3,3 vertex configurations (in the J
and D); see Fig. 6.

If a patch of tiling exhibits any other vertex configuration, it is not a true
Penrose tiling: it will not be possible to extend it to infinity. We use these valid
vertex configurations to analyse valid neighbourhood configurations later.
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S4 = (1,1,2,2,2,2) S5 = (2,2,2,2,2) Q = (2,4,4) 

S3 = (1,1,2,1,1,2,2)  J = (1,2,1,3,3) K = (2,2,2,4)  D = (3,3,4) 

 S =  (2,2,2,2,2) 

Fig. 5. The eight valid vertex configurations of a rhomb tiling [5]

Fig. 6. Disambiguating the 3,3 vertices: the two distinct ways a 3,3 vertex can
appear in a valid rhomb vertex configuration (in the J and D, see Fig. 5). This
is a context dependent marking [21].

3 Penrose tiler construction

3.1 Requirements

There are several different algorithms for constructing valid Penrose tilings of
arbitrary size. Here our aim is to experiment with CA rules on a Penrose tiling.
We need to decide what to do as activity approaches the edge of the current
grid. One common solution to this is to implement a ‘lazy’ grid, which expands
as necessary. This provides requirements for a Penrose tiling algorithm suitable
for investigating CAs:

1. The lazy tiler shall tile an arbitrarily sized rectangular region with a valid
Penrose tiling (supporting both kites and darts, and rhombs)
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Fig. 7. Relationship between (marked) rhomb tiles and kites and darts: a thick
rhomb comprises a dart and two half-kites; a thin rhomb comprises two half-kites

Fig. 8. One iteration of deflating a dart tile and a kite tile, via intermediate
rhomb tiles (after [10, Figure 10.3.19]). The ratio of the original and final kite
and dart tile sizes is the golden ratio φ.

2. Given any point on the plane outside the tiled region, the tiler shall ap-
propriately expand the tiled region to a larger rectangle that includes this
point

3. During such expansion, the tiler shall not extend tiling unnecessarily (neither
in directions away from the expansion point, nor beyond it)

4. The tiler shall determine the neighbourhood of each tile, for use as a CA
lattice

5. The tiler shall determine when CA activity reaches the edges of the currently
defined lattice, and trigger suitable grid expansion

Our pentagrid lazy tiling algorithm meets these requirements. We describe
it here in some detail, because previous descriptions of pentagrid tiling algo-
rithms are somewhat obscure (and not tuned for CA experiments), and the lazy
extension algorithm has not been described before.

3.2 Deflation

The relationship of the rhomb tiles to the kite and dart tiles is shown in Fig. 7.
The deflation tiling method involves recursively breaking tiles into sub-tiles
(Fig. 8). This is one of the best known method of creating a valid Penrose
tiling, and derives from methods used in [14].

Ramachandrarao et al [15] describe a related decomposition process that
produces a valid rhomb tiling starting from a single thick rhomb, where the
decomposition processes are “akin to normal crystallographic operations”.
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(a) (b) (c)

Fig. 9. Example of Onoda et al [13] rhomb tiling algorithm. (a) Start from an S
vertex initial seed cluster; each concave vertex on the tiling edge is (3̄, 3̄), so is a
forced D vertex. Apply R1 to completed each with a thin rhomb. (b) The result
is a regular decagon, with no further forced vertices. The underlying Amman
bars intersect at 108◦ (bold lines). R2 requires a thick tile consistent with the
vertex rules to be added “to either side” (that is, to one side or the other) of the
corresponding tiling vertex, which here has (partial) vertex number list (1,2,1)
(c) Both S3 and J have a partial vertex list of (1,2,1), but extension with a thick
tile implies extension with a 2, 3 or 3̄ vertex. The only way this can be done
consistently is to complete it as a J vertex, (1,2,1,3,3).

The deflation approach was taken in [11]; as noted there it is not a suitable
process for a lazy tiler, since the generation n grid does not clearly appear
as a subpart of the larger generation n + 1 grid. So although it is possible to
create arbitrarily large tilings (requirement 1), it is not possible to do so ‘lazily’
(requirement 2); this size must be set at the start.

3.3 Onoda’s rhomb tiling algorithm

Onoda et al [13] describe an algorithm for generating rhomb tilings. Start from
any valid ‘seed cluster’ tiling (for example, a single tile, or one of the eight valid
vertex tilings in Fig. 5). “R1: If one or more vertices are forced, choose a forced
vertex and add a forced tile to it.” A forced vertex is one that can be completed
in only one way to give a valid vertex. (Without loss of generality, we can add
the entire set of tiles needed to complete the forced vertex.) “R2: If there are no
forced vertices, add a thick tile (consistent with the vertex rules) to either side
of any 108◦ corner.” The 108◦ corner referred to in this rule is not (necessarily)
a 3-vertex of a thick rhomb: it is rather the underlying corner defined by the
edges of the completed forced patch of tiling “when viewed macroscopically”.
These macroscopic edges are traced out by the underlying Amman bars in the
matching rules (Fig. 9). Again, without loss of generality, we can add the entire
set of tiles needed to complete the chosen vertex.

This process results in a steadily growing patch of tiling (requirements 1 and
2). However, it is not suitable for a lazy tiler, since the direction that the tiling
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grows is not under programmatic control: it has to grow in the direction of forced
vertices first, then 108◦ corners (so does not satisfy requirement 3).

3.4 Ammann bars

The underlying Ammann bars of a Penrose tiling form five grids of lines, each
grid rotated by a multiple of 2π/5 (Fig. 9). Given such a grid, the underlying
tiling can be reconstructed.

A lazy tiler based on Ammann bars could satisfy requirement 3, as new grid
lines could be laid down only in the required direction. However, these grid
lines are not evenly spaced: they form a Fibonacci sequence [21]. The lazy tiling
extension (R2), which involves laying down new grid lines, would be possible,
but slightly tricky. Since there is a similar approach, but based on a regularly-
spaced pentagrid (see next section), the Ammann bar approach is not considered
further here. ([21] shows that if one starts with a rhomb tiling reconstructed from
Ammann bars, and deflates it, then the resulting rhomb tiling is one that can
be reconstructed from a regular pentagrid.)

3.5 Pentagrid

A multigrid comprises sets of evenly spaced parallel lines all at appropriate
rotations of each other. de Bruijn [6] shows that a multigrid is the dual of a
tiling. (The dual tiling of a grid associates a tile with every intersection of the
grid, and a vertex of the tile with every open area of the grid.) A special case of
the multigrid is the pentagrid, and its dual is a Penrose rhomb tiling [5].

The description of how to extract the dual rhomb tiling from a pentagrid
given in this section is adapted and simplified from [5] [21]. de Bruijn [5] provides
the original pentagrid definitions and theorems. His formulation is in terms of
complex numbers (rather than vectors), and has no diagrams, which can make
it hard to understand the approach in algorithmic terms. Socolar & Steinhardt
[21] recast the approach in terms of vectors, but also generalise to multigrids and
three dimensions, which again can obscure the components of a tiling algorithm.
Austin [1] provides a good overview of the technique.

A grid (Fig. 10a) is a sequence of regularly spaced parallel lines, labelled with
the integers. A unit vector e normal to the lines defined the direction of the grid.
A number γ defines the distance of the line labelled zero from the origin. So the
grid line labelled N is defined by

x.e = N + γ (1)

where N is the line label.
A point x′ not on a grid line is assigned an index value equal to the higher

label of the adjacent grid lines:

Nx′ = ⌈x′.e− γ⌉ (2)
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20

1

N =

'
0

12

3

4

Fig. 10. (a) A grid defined by unit vector e and offset γ (b) Five unit vectors,
with angles 2kπ/5 = k × 72◦, defining a pentagrid. Note that e0 and e1 form
two edges of a thick rhomb, and e0 and e2 form two edges of a thin rhomb. Note
also that |e0 + e1 + e2| = φ.

Fig. 11. A regular pentagrid. Each polygon formed by the grid lines is rep-
resented by the 5-tuple of grid labels (i, j, k, m, n): a = (2, 2, 1, 2, 1); b =
(2, 2, 1, 2, 2); c = (2, 2, 2, 2, 2); d = (2, 2, 1, 2, 2). Note that adjacent polygons
differ in only one label value (corresponding to the grid containing the grid line
forming their common edge).
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A pentagrid is a set of five grids, defined by five equally spaced direction
vectors (Fig. 10b), and five offsets γ0, . . . , γ4. de Bruijn [5] defines a regular
pentagrid to be one where at most two grid lines cross at any one point (Fig. 11),
achieved by suitable choice of offsets. (A sufficient condition for regularity is
where all the offsets −1 < γi < 1, all are different, γ0 = 0, and neither γ1 + γ4

nor γ2 + γ3 is an integer.)
Then, under the condition that

4∑

i=0

γi = 0 (3)

de Bruijn [5] proves that the pentagrid is the dual of a Penrose rhombus tiling:
a tile is defined at every intersection of grid lines, and a tile vertex at every open
polygonal region surrounded by grid lines; the condition that no more than two
lines intersect ensures a unique tiling. ([21] extends some of these definitions
and results to grids with irregular spacings of grid lines, including Ammann bar
grids, and to 3D grids.)

Consider a pentagrid with each of its open regions labelled with a 5-tuple of
integers (k0, k1, k2, k3, k4), calculated according to equation 2 (see Fig. 11). Each
such region corresponds to the vertex of a rhomb, with coordinates [5, eqn 5.2]
[21, eqn 4(−1)]

v =
4∑

i=0

kiei (4)

de Bruijn [5, eqn 5.4] defines

I =

4∑

i=0

ki mod 5 (5)

to be the index of the rhomb vertex, and shows that it is never 0.
The regularity constraint ensures that precisely four regions surround any

intersection of pentagrid lines. These four regions differ in only two of their five
grid labels (corresponding to grids containing the two intersecting grid lines they
surround), and the values of these labels differ by at most one (Fig. 11). From
equation 4 and Fig. 10b, we can therefore see that any such four adjacent regions
correspond to the vertices of a thick rhomb (if the grid lines intersect at an angle
of 2π/5) or a thin rhomb (if the grid lines intersect at an angle of 4π/5).

The fact that the rhombs so defined form a valid Penrose tiling is the basis
of the pentagrid tiling algorithm.

3.6 Pentagrid lazy tiler algorithm

The pentagrid approach satisfies our requirements for a lazy tiler.
Requirement 1: Given a rectangular region to be tiled, T , we can lay a pen-

tagrid over it, and extend the lines of the pentagrid to calculate all intersections
that lie within T .
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Requirement 2: Given a point p /∈ T , we can extend the region to be tiled to
T ′, the smallest rectangular region that includes both T and p, and then extend
the pentagrid to calculate the new intersections that lie within the extended
region T ′ − T .

This also satisfies requirement 3, that the tiling is not unnecessarily extended
during this process.

Requirement 4: The algorithm calculates the vertices of rhombs before it
calculates the rhombs themselves. These vertices are also vertices of neighbouring
rhombs, so the neighbourhood can be built up as the tiles are calculated.

Requirement 5 can be satisfied as follows. Consider some further region def-
initions. The neighbourhood of a tile t, N(t), is the set of all tiles close to t in
some way (different kinds of Penrose tiling neighbourhoods suitable for defining
CAs are given in section 4.1). Let C be the ‘complete neighbourhood’ region:
all tiles t in T whose neighbourhood is ‘complete’ (that is, also in T ) for some
neighbourhood definition N(t).

C = { t ∈ T | N(t) ⊆ T } (6)

Clearly C ⊆ T , and unless the neighbourhood is trivial, C ⊂ T . Let A be the
region where we allow cellular automaton activity to exist. We require

A ⊆ C ⊂ T (7)

The extension of A is dictated by development of cellular automaton activity.
This can be triggered when there is activity, a change in state, of a tile t ∈ A
where N(t) 6⊆ A, so there are members of the neighbourhood of t outside A
(although they will be in T if the requirement of equation 7 holds before this
activity step). We extend A to include all the neighbourhood of t. In order to
ensure that A ⊆ C still holds, this may require extension of C, and hence of T .

It would be possible to calculate this extension exactly; however it is far
cheaper in terms of computational complexity to extend the tiling such that
the distance between the boundary of T and A is always greater than a dis-
tance d that ensures that the condition A ⊆ C holds. (This does slightly violate
requirement 2, that the extension not go beyond p, but not to any significant
degree.)

For a generalised Moore neighbourhood (suitable for Game of Life CA rules)
the value of d is determined by examining the valid vertex configurations in
Figs. 4 and 5. For kites and darts, the largest is the queen (Q) vertex (Fig. 4),
with a maximum diameter of twice the width of a dart, or 4 sin(2π/5) times the
length of a short edge. For rhombs, the largest is the S3 vertex (Fig. 5), with a
maximum diameter of twice the long diagonal of the thin rhomb, or 4 sin(2π/5)
times the length of an edge.

The original treatment [6] uses the pentagrid approach to produce a rhomb
tiling; here we outline how it is used in an algorithm for a lazily extending tiling,
of rhombs, and of kites and darts.
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T ′

E1

E2

E3

E4 T

Fig. 12. Initial tiling T extends to tiling T ′ with extension regions E1, E2, E3, E4

0

12

3

4

01

2 3

Fig. 13. An arbitrary rectangle R to be tiled, with corners v0,v1,v2,v3, and
diagonals shown with dashed lines. For each ei, the diagonal with direction closer
to that of ei gives the two opposite corners between which grid lines should be
calculated. So v0 and v2 are used to define the extent of grid lines for e1 and
e3; v1 and v3 for e2 and e4 either pairs of opposite corners may be used for e0.

Choosing the offsets. First, choose suitable offsets γi that ensure a regular
pentagrid and that obey equation 3. A sufficient such choice is (0, γ,−γ, 2γ,−2γ),
governed by the single parameter γ, where 0 < γ < 0.5.

In all the results reported here, we used the offsets (0.2,−0.2,−0.1, 0.4,−0.3).
This violates the γ0 = 0 condition, but does create regular pentagrid.

Tiling a region. We consider only the tiling of a rectangular region. The
problem of tiling an initial region and then extending the tiling can be reduced
to tiling arbitrary rectangles. For example, Fig. 12 shows the extension of tiling
T to tiling T ′ with four rectangular extension regions E1, E2, E3, E4.

To tile an arbitrary rectangle R we must ensure that all grid intersections
that lie within the rectangle are calculated. For each of the five grids, every
one of its lines that intersects the rectangle must be considered. We do this by
observing that the maximum extent of the grid that needs to be considered is
defined by the rectangle’s diagonal that is closer to the direction of the grid, e
(Fig. 13). So, for example, grid 1 has the set of grid values N1 given by (using
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Fig. 14. Marking a rhombus depending on its vertex indices. These are the
only combinations of vertex indices that are generated from a pentagrid. (Note:
these vertex index numbers are unrelated to the ‘vertex angle numbers’ shown
in Fig. 3a.)

equation 2)
⌈v2.e1 − γ1⌉ < N1 < ⌈v0.e1 − γ1⌉ (8)

All pairs drawn from N0×N1×N2×N3×N4 calculated in this way contain
all the grid intersections in the rectangle R (plus more outside).

Converting grid intersections to tile vertices. To calculate the vertices of
a tile we must discover the 5-tuples defining the four open regions around an
intersection. The 5-tuples corresponding to each intersection index are calculated
using equation 2 (to get the other three indices of the intersection 5-tuple) and
Fig. 11 (to get the four vertex 5-tuples). The coordinates of the corresponding
vertex are given by equation 4.

Iterating over intersections naively would result in each vertex being calcu-
lated 4 times: to ensure the each vertex is calculated only once, we store the
vertex information in a hashtable indexed by its 5-tuple. At each vertex we also
maintain a list of all tiles that share the vertex: this aids subsequent neighbour-
hood calculations.

Conversion from rhomb to kite and dart tiling. The pentagrid approach
yields a rhomb tiling. This can subsequently be converted to a kite and dart
tiling using the mapping shown in Fig 7.

First, the rhombs need to be “marked”, in a way that depends on the vertex
index (equation 5). de Bruijn [5] shows that the only combinations of vertex
indices formed by a pentagrid are (1, 2, 2, 3) or (2, 3, 3, 4); the marked vertex is
the one with vertex index 1 or 4 (Fig. 14).

Each thick rhomb is broken into a dart and two half-kites, each thin rhomb is
broken into two half-kites (Fig. 7), taking the rhomb marking into account. The
half-kites are then suitably joined to produce a complete kite and dart tiling.

Precision issues. We have the condition that only two grid lines cross at
any intersection point. de Bruijn [7] gives the condition for a singular pentagrid
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Fig. 15. (a) von Neumann neighbourhood (b) Moore neighbourhood, or box
neighbourhood of radius r = 1 (c) box neighbourhood of radius r = 2

(where more than two lines intersect at some point) to be for grid i ∈ {0, 1, 2, 3, 4}
and an integer k if

(k − γi)φ + γi−1 + γi+1 ∈ Z (9)

Choosing grid 1 = 0, γ0 = 0, this gives

kφ + γ1 + γ4 ∈ Z (10)

Assuming non-extreme choices of γ1 and γ4 (that is, choosing γ1+γ4 = O(1)),
and given φ = O(1), this condition could occur in a computation by rounding
error, if there were an error of one unit in the last place of k.

Our implementation uses Java doubles, which are implemented using double-
precision 64-bit IEEE 754 floating point, which have a 53-bit mantissa, corre-
sponding to approximately 16 decimal digits. So the algorithm does not lose
accuracy (no grid singularity occurs) below N = O(1016) grid lines, or O(1032)
tiles. If larger tilings than this are required, higher precision arithmetic should be
used. (This is only an order of magnitude argument, but since our tiling investi-
gations are significantly below this limit, with O(105) tiles, we can be confident
that there is no loss of accuracy affecting our results.)

4 Cellular automata on aperiodic lattices

Classic cellular automata are defined on regular lattices. The update rule depends
on the state of each cell’s full neighbourhood (the surrounding cells, and the
updating cell itself)3, and the structure of that neighbourhood is invariant: all
places in the lattice look the same, and the update rule can be applied uniformly
across the lattice. Typical neighbourhoods for 2D cellular automata are shown
in Fig. 15. These neighbourhoods can be formally defined in terms of metrics
on the lattice. However, we define them (later) in an equivalent manner that
permits easy generalisation to aperiodic lattices.

3 The standard definition of CA neighbourhood includes both the surrounding cells
and the updating cell. Throughout this paper we use slightly different terminol-
ogy (because we are nearly always referring to outer totalistic CA rules, see later):
by neighbourhood we mean only the surrounding cells. If we want to include the
updating cell, we refer to the full neighbourhood.
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Fig. 16. The generalised von Neumann neighbourhoods of a kite and dart Pen-
rose tiling.

Fig. 17. The generalised von Neumann neighbourhoods of a rhomb Penrose
tiling.

In general, the update rule depends on the particular state of each separate
neighbour. For totalistic CA rules, however, the next state of a cell depends only
on the number of full neighbourhood cells in certain states. For outer totalistic
CA rules, the next state of a cell depends only on its current state, and the
number of neighbourhood cells in certain states.

For example, in Conway’s Game of Life outer totalistic CA, the neighbour-
hood of each cell comprises the 8 nearest cells of the regular Moore neighbour-
hood (Fig. 15b). Each cell has two states, ‘dead’ and ‘alive’. If a cell is alive at
time t, then it stays alive iff it has 2 or 3 live neighbours (otherwise it dies of
‘loneliness’ or ‘overcrowding’). If a cell is dead at time t, then it becomes alive
(is ‘born’) iff it has exactly 3 live neighbours.

For aperiodic lattices such as a Penrose tiling, the detailed structure of the
neighbourhood varies at different locations in the lattice. Totalistic and outer
totalistic rules can be given an interpretation in these aperiodic tiling neighbour-
hoods.

4.1 Generalised von Neumann neighbourhood

We define the generalised von Neumann neighbourhood of a cell to be all the
cells with which it shares an edge (or, equivalently, two distinct vertices). Hence
the size of the neighbourhood equals the number of edges of the central cell.
Figures 16 and 17 show the range of distinct generalised von Neumann neigh-
bourhoods which form valid vertices (rotations and mirror images of these neigh-
bourhoods are not considered to be distinct).

de Bruijn [7] identifies the same rhomb neighbourhoods (but considers mir-
ror images separately), and shows that a valid Penrose rhomb tiling can be
constructed by considering just these neighbourhoods, without the need to use
the rhomb matching rules of Fig. 3.
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a0

a1 a2

a3 a4 a5

a6 a7

Fig. 18. The generalised Moore neighbourhoods on a kite and dart Penrose
tiling, with neighbourhood sizes.

In the rectangular lattice (Fig. 15a), none of the four von Neumann neigh-
bourhood cells themselves share an edge. So if A is a neighbour of B, and B
is a neighbour of C, then A is not a neighbour of C: neighbouring von Neu-
mann neighbourhoods do not overlap (recall that we do not treat the central
site as a member of the neighbourhood for the purposes of this paper). In the
Penrose lattice, this is no longer the case: cells in a generalised von Neumann
neighbourhood can share an edge, so neighbouring generalised von Neumann
neighbourhoods can overlap. This may affect the communication paths through
the Penrose CA.

4.2 Generalised Moore neighbourhood

We define the generalised Moore neighbourhood of a cell to be all the cells with
which it share a vertex.

Not only do cells have irregular shaped neighbourhoods, with the generalised
Moore neighbourhood not all cells have the same number of neighbours. The
range of neighbourhood sizes and configurations is limited.

Fig. 18 shows the eight distinct generalised Moore neighbourhoods in a kite
and dart tiling: there are no other valid ways to surround a kite or a dart (this
can be established by exhaustive consideration of the valid vertex configurations
shown in Fig. 4). So there is one neighbourhood configuration of size 8 around a
kite, and two around a dart; three of size 9 around a kite, and one around a dart;
and one of size 10, around a dart. ([11] incorrectly states that kite and dart tilings
have neighbourhoods of size 8 and 9 only.) Figure reffigure:moorekitenbrhood
show an area of kite and dart tilings with colouring to highlight the size of cells’
neighbourhoods.

Similarly, Fig. 20 shows the 11 distinct generalised Moore neighbourhoods in
a rhomb tiling. There is a larger range of distinct neighbourhood configurations
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Fig. 19. A kite and dart tiling shaded by neighbourhood type. The neighbour-
hood shading is uniformly distributed between white and black such that a0 is
white and a7 black.

for rhomb tilings. Figure 19 show an area of rhomb tilings with colouring to
highlight the size of cells’ neighbourhoods.

As can be seen from Figs. 19 and 21, not all sizes of neighbourhoods appear
with the same frequency. Figure 22 shows the distribution of neighbourhood
sizes in a kite and dart tiling and in a rhomb tiling.

4.3 Generalised box neighbourhood

The Moore neighbourhood is a special case of a box neighbourhood, with radius
r = 1. Let N(c) be the generalised Moore neighbourhood of cell c. We define
recursively a generalised box neighbourhood of radius r > 1. Let N(c, r) be the
box neighbourhood of cell c, of radius r. Then define

N(c, 1) = N(c) (11)

N(c, r) =
⋃

n∈N(c)

N(n, r − 1) (12)

See Figs. 23 and 24.
The frequency distribution of neighbourhood sizes for r = 2 neighbourhoods

is shown in Fig. 25 for kites and darts, and for rhombs. Again, the rhomb tilings
have larger neighbourhoods, and a larger spread of neighbourhood sizes.

4.4 Penrose Life rules

Using our definition of the generalised Moore neighbourhood, the definition of
the Game of Life as given in section 4 can be used unchanged on a Penrose
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b0 b1 b2 b3

b4 b5 b6

b7 b8

b9 b10

Fig. 20. The generalised Moore neighbourhoods on a rhomb Penrose tiling, with
neighbourhood sizes.

Fig. 21. A rhomb tiling shaded by neighbourhood type. The neighbourhood
shading is uniformly distributed between white and black such that b0 is white
and b10 black.
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kite/dart rhomb
size type cells % type cells %
7 b0 2831 9.1

2831 9.1
8 a0 4994 14.7 b1 4576 14.6

a1 4248 12.5
a2 1890 5.6

11132 32.7 4576 14.6
9 a3 6116 18.0 b2 2134 6.8

a4 6125 18.0 b3 2842 9.1
a5 3762 11.1
a6 3774 11.1

19777 58.2 4976 15.9
10 a7 3083 9.1 b4 2370 7.6

b5 1735 5.6
b6 2133 6.8
b7 3475 11.1
b8 3501 11.2

3083 9.1 13214 42.3
11 b9 3522 11.3

b10 2136 6.8
5658 18.1

0%

20%

40%

60%

7 8 9 10 11

Fig. 22. Generalised Moore neighbourhood statistics, on a 33992 cell kite and dart
tiling (black bars, median size = 9), and a 31255 cell rhomb tiling (grey bars, median
size = 10)

Fig. 23. Examples of box radius r = 2 aperiodic neighbourhoods on kite and
dart Penrose tilings, and on rhomb Penrose tilings
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Fig. 24. An example of a box radius r = 5 aperiodic neighbourhood on a kite
and dart Penrose tiling, and on a rhomb Penrose tiling

size kite/dart rhomb
cells % cells %

25 4248 12.5
26 4994 14.7 1597 5.1
27 4204 12.4 829 2.7
28 11330 33.3 1912 6.1
29 2351 6.9 1092 3.5
30 3782 11.1 1977 6.3
31 1441 4.2 1314 4.2
32 1642 4.8 2588 8.3
33 493 1.6
34 4609 14.7
35 1075 3.4
36 4622 14.8
37 3489 11.2
38 828 2.6
39 4830 15.5

0%

10%

20%

30%

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Fig. 25. Neighbourhood statistics r = 2 neighbourhood, on a 33992 cell kite and dart
tiling (black bars, median size = 28), and a 31255 cell rhomb tiling (grey bars, median
size = 34)
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lattice. Some early investigations are reported in [11]; further investigations are
reported later in this paper.

In our investigations, we use some typical GoL terminology, defined here.
(The quoted definitions are from [19].)

soup “A random initial pattern, often assumed to cover the whole Life universe.”
Here we consider only finite soup extents, but allow subsequent activity
outside the initial soup patch.

quiescence Eventual periodic CA activity. Once the CA has entered a quiescent
state, its future activity is periodic, and hence predictable.

ash “The (stable or oscillating) debris left by a random reaction.” Hence an ash
is the quiescent state left by a soup.

5 Experimenting with Life

In [11] we report that the Game of Life has different quantitative behaviour on a
regular lattice and on a Penrose kite and dart lattice: on the Penrose lattice the
lifetime to quiescence is much shorter, and the ash density is lower. This section
investigates if there are similar differences between the behaviour of the rules
running on kite and dart and on rhomb lattices.

Null Hypothesis: The Game of Life run on kites and darts has identical
statistical behaviour to the Game of Life run on rhombs.

To test this hypothesis, we investigate three statistics: lifetime to quiescence,
ash density, and growth of the active area.

5.1 Experimental setup

To test the hypothesis we vary the density D of soups of similar sizes S on rhomb
and kite and dart tilings, run the cellular automaton to quiescence, and record
the lifetime to quiescence tq, ash density ρ (measured over the soup box), and
soup growth g.

Lifetime tq: The lifetime, or the time to quiescence, is defined to be the
number of timesteps from the soup state (t = 1) until the pattern of live cells
(measured over the whole timing G) first repeats (at t = tq). Each timestep, the
CA’s current state is stored, along with the number of live cells. To check for
quiescence, the current state is compared to all previous states with the same
number of live cells. The period p is the number of timesteps since the state was
previously seen: p = tq − tprev.

Ash density ρ: The proportion of live cells in the ash at t = tq, measured
over the soup tiles.

Soup growth g: The number of cells in the maximum active area divided by
the number of cells in the soup: g = A/S. measured over the soup tiles (Fig. 26).

Tiling grid: We use a lazily expanding tiling for both kites and darts, and
rhombs. We use an initial tiling of size G = 23194 for the kite and dart experi-
ments, and of size G = 23123 for the rhomb experiments. It is difficult to produce
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Fig. 26. The initial tiling grid G, the central soup area S, the maximum activity
area during the run A, and the possibly extended tiling grid Gq (dashed box) to
accomodate the activity.

Fig. 27. The three central soup areas, to scale with the initial grid area.

identical sized tilings: these are deemed close enough for fair comparison. These
differences in tile numbers are of similar scale to the differences in tile numbers
between regular and kite and dart tilings used in [11] (and are about twice the
size of the largest grid explored there).

Soup area: Three initial soup areas S, covering the central 25%, 50%, 75%
of the area of the tiling. See Fig. 27 and 28.

Soup density: 100 soup densities D, in the range [0.01, 1.0] with increments
of 0.01. Each cell in the soup area S is initially alive with probability D; all other
cells in G are initially dead. See Fig. 29.

Runs: Each of the 100 soup densities D across the three soup sizes S is run
to quiescence 1000 times.

5.2 Statistical analysis

We want to test whether certain distributions are statistically the same or dif-
ferent: the commonly-used tests assume an underlying normal distribution. Are
the distributions here (sufficiently) normal?

Figures 31 and 32 show the histograms of lifetime and ash density results
over the 1000 runs for one particular soup size and soup density. The lifetime
distributions, at least, do not look normal.

We investigate further the distribution of lifetimes and ash densities for these
examples. We calculate the median, mean, standard deviation, skew and kurtosis
of these distributions (using the MS-Excel functions median, average, stdev,
skew, and kurt respectively), for the lifetimes (Fig. 33) and the ash densities
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25% 50% 75% G

kite and dart 5842 11670 17527 23194
rhomb 5815 11611 17405 23123

Fig. 28. Number of tiles involved in the experiments, soup sizes S = 25%, 50% and
75%, and full initial grid size G

30% 70%

Fig. 29. Typical soups at two densities, for kite and dart (top) and rhomb (bot-
tom) tilings

Fig. 30. The ashes resulting from the 30% soups of Fig. 29. Note the extended
areas of activity.
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0

10

20

0 50 100 150 200 250

Fig. 31. The distribution of lifetimes to quiescence on the kite and dart tiling
(top) and rhomb tiling (bottom), for 1000 runs with soup size S = 25% and
soup density D = 0.8; with comparison normal distributions of the same mean
and standard deviation.

0

50

100

0.0% 0.1% 0.2% 0.3% 0.4%

0

50

100

0.0% 0.1% 0.2% 0.3% 0.4%

Fig. 32. The distribution of ash densities on the kite and dart tiling (top) and
rhomb tiling (bottom), for 1000 runs with soup size S = 25% and soup density
D = 0.8; with comparison normal distributions of the same mean and standard
deviation.
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D = 0.4 D = 0.8
soup k&d rhomb k&d rhomb
25% m 96 158 37 57.5

µ 99.4 163.0 41.9 65.1
σ 19.6 37.0 18.6 37.3
s 1.1 0.9 1.2 1.5
k 2.0 1.2 2.1 3.9

50% m 108 179 40 60
µ 111 185.1 44.7 66.6
σ 19.6 37.2 18.5 33.7
s 0.7 0.8 1.2 1.2
k 0.9 0.5 2.0 2.1

75% m 116 190 44 67
µ 118.6 198.1 47.1 74.1
σ 20.0 40.4 17.9 35.9
s 0.9 1.2 1.3 1.2
k 1.1 2.8 4.3 4.3

Fig. 33. Statistics for the lifetime distributions (median m, mean µ, standard deviation
σ, skew s, kurtosis k) for soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and
75%

D = 0.4 D = 0.8
soup k&d rhomb k&d rhomb
25% µ 0.0044 0.0034 0.0018 0.0011

σ 0.0008 0.0008 0.0005 0.0004
s 0.2 0.3 0.4 0.5
k 0.2 −0.0 0.2 0.1

50% µ 0.0084 0.0022 0.0063 0.0015
σ 0.0011 0.0006 0.0010 0.0005
s −0.1 0.2 0.1 0.3
k 0.1 −0.1 −0.0 0.0

75% µ 0.0123 0.0091 0.0029 0.0023
σ 0.0027 0.0013 0.0007 0.0006
s −0.1 0.2 0.2 0.1
k −0.1 −0.1 0.0 −0.1

Fig. 34. Statistics for the ash densities (mean µ, standard deviation σ, skew s, kurtosis
k) for soup densities D = 0.4 and 0.8; soup sizes S = 25%, 50% and 75%
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kites rhombs
# > 45 349 (= A) 650 (= B)
# ≤ 45 651 (= C) 350 (= D)

Fig. 35. The number of measurements above, and not above, the joint median
value of 45, for soup size S = 25%, density D = 0.8

(Fig. 34: we do not show medians here, since they are indistinguishable from the
means).

For large samples (N > 150) drawn from a normal population, the skewness
statistic is approximately normally distributed with mean 0 and standard devi-
ation ss =

√

6/N [20, §5.13]; for very large samples (N > 1000) drawn from a
normal population, the kurtosis statistic is approximately normally distributed
with mean 0 and standard deviation sk =

√

24/N [20, §5.14]. Hence skew values
beyond two standard errors of skewness, or kurtosis values beyond two stan-
dard errors of kurtosis, indicate that the distribution is not normal at the 95%
confidence level.

For N = 1000 (just valid for the kurtosis test), 2ss = 0.5 and 2sk = 1.0.
Both these values are lower than those calculated for the lifetimes (Fig. 33), so
the lifetime distributions are not normal at the 95% confidence level. Normality
of the ash densities has not been ruled out by this test (Fig. 34).

Given this non-normality of the lifetimes, we calculate the non-parametric
median and quartile statistics of the runs, for the range of soup densities (Figs. 37
and 39). These results are in qualitative agreement with those in [11]: low life-
times and ash densities at extreme soup densities; a ‘plateau’ in the behaviours
for soup densities ∼ 0.2− 0.6; lifetimes ∼ 100− 200; ash densities ∼ 1− 2%. We
now, however, have better statistics, and new results for rhomb tilings.

Since the lifetime distributions are not normal, we use the non-parametric
median test, to test whether the distributions have statistically significantly dif-
ferent medians [18, pp.111–115]. (In practice, our sample sizes are probably large
enough that assuming normality and using a t-test is probably valid. However,
the certainly valid, if somewhat weaker, non-parametric test is adequate in this
case.)

Null Hypothesis T: for soup size S = 25%, density D = 0.8, there is no
difference between the median lifetimes for kites and darts, and for rhombs.

The calculation involves splitting the measurements into four groups: those
above, and not above, the joint median of the measurements. The relevant num-
bers for our test case are given in Fig. 35). Then we calculate the value of χ2

from [18, eqn(6.4)]:

χ2 =
N (|AD −BC| −N/2)2

(A + B)(C + D)(A + C)(B + D)
= 90.3 (13)

The probability of occurrence under Null Hypothesis T for χ2 ≥ 90.3 with
one degree of freedom is p < 1

2 chidist(90.3,1) = 10−21 for a one-tailed test.
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Therefore we can reject Null Hypothesis T, with an extremely high degree of
statistical confidence.

In fact, the difference in the medians in this test case is statistically significant
to an almost ludicrous degree. This extreme level of statistical confidence is due
mostly to the large number of samples, N = 1000. (Such large samples are
much more typical in computer science than, say, medicine, because computer
experiments are relatively cheap, and have no ethical considerations.) As Bakan
says ([2, ch.1, p.7], as quoted in [12]): “there is really no good reason to expect
the null hypothesis to be true in any population”. A sufficiently large sample
size will always be able to refute a null hypothesis: the smaller the effect, the
larger the sample required to detect it. For normally-distributed populations
with means and standard deviations similar to those of Fig. 34, sample sizes in
the low tens would be sufficient to establish a statistically significant difference
of their means at the 99% confidence level.

Because of this, we also perform a test of the effect size. We use Cohen’s
effect size d-test [4, §2.5]. (Strictly speaking, we should not use this statistic,
because the distributions are not normal. But if we get a sufficiently large value
of the d-statistic, we can still be confident in the importance of the difference.)
For samples with different variances but the same sample size, we use

d =
m1 −m2

√

(s2
1 + s2

2)/2
(14)

where the mi are the two sample means, and the si are the two sample variances.
So d measures the difference in the means compared to the spread of the data.

Cohen’s criterion is that d = 0.2 indicates a small effect, d = 0.5 a medium
effect, and d = 0.8 a large effect. For soup size S = 25%, density D = 0.8, we
have d = 0.8 indicating a large effect from the change in the tiling.

So, for all the results that follow, we do not present the statistical significance:
the differences are all extremely significant. We present the skew and kurtosis
normality tests, median and quartiles, means, and the effect size, demonstrating
that all the statistics chosen exhibit a large effect with the change in the tiling.

6 Lifetime, ash, growth results

6.1 Lifetimes

Null Hypothesis 1: The Game of Life run on kites and darts has identical lifetime
statistics to the Game of Life run on rhombs.

See Figs. 36, 37. The skew and kurtosis tests show that the distributions
are significantly non-normal. The lifetime distributions for the two tilings are
different, with a large effect size, refuting Null Hypothesis 1. The Game of Life
on the rhomb tiling has significantly longer lifetimes than it does on the kite and
dart tiling. From [11], we can say that they both have shorter lifetimes than Life
on a regular lattice.
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skew test kurtosis test
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Fig. 36. Lifetime to quiescence tq: normality tests (soup sizes 25% top, 50%
middle, 75% bottom)
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medians/quartiles Cohen’s d test, means
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Fig. 37. Lifetime to quiescence tq: medians and effect size (soup sizes 25% top,
50% middle, 75% bottom)
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skew test kurtosis test
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Fig. 38. Ash density ρ: normality tests (soup sizes 25% top, 50% middle, 75%
bottom)

6.2 Ash densities

Null Hypothesis 2: The Game of Life run on kites and darts has identical ash
density statistics to the Game of Life run on rhombs.

See Figs. 38, 39. The skew and kurtosis tests show that the distributions are
consistent with being normal, except for large soup densities. The ash density
distributions for the two tilings are different, with a large effect size, refuting
Null Hypothesis 2. The Game of Life on the rhomb tiling has significantly lower
ash densities than it does on the kite and dart tiling. From [11], we can say that
they both have lower ash densities than Life on a regular lattice.
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medians/quartiles Cohen’s d test, means
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Fig. 39. Ash density ρ: medians and effect size (soup sizes 25% top, 50% middle,
75% bottom)
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skew test kurtosis test
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Fig. 40. Soup growth g: normality tests (soup sizes 25% top, 50% middle, 75%
bottom)

6.3 Soup growth

Null Hypothesis 3: The Game of Life run on kites and darts has identical growth
of soup to the Game of Life run on rhombs.

See Figs. 40, 41 for statistics on the growth of the area of soup. The skew
and kurtosis tests show that the distributions are significantly non-normal. The
growths of the two tilings are different, with a large effect size, refuting Null
Hypothesis 3. The Game of Life on the rhomb tiling has significantly more growth
from soup than it does on the kite and dart tiling.
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medians/quartiles Cohen’s d test, means
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Fig. 41. Soup growth g: median and effect size (soup sizes 25% top, 50% middle,
75% bottom)
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7 Conclusions

We have presented a Penrose lazy tiling algorithm, suitable for statistical exper-
iments of CA rules. We have used it to perform experiments with Game of Life
rules, and demonstrate that the Game of Life on the rhomb tiling is significantly
different from that on the kite and dart tiling: it has longer lifetimes, lower ash
densities, and higher soup growth.

Work is underway to investigate and classify the oscillators left in the ash.
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Abstract. In this paper, we significantly improve a result of the first
author, see [1]. In the quoted paper, published in 2003, the authors show
the existence of a weakly universal cellular automaton on the pentagrid
with 22 states. The simulation used in [1] uses a railway circuit which
simulates a register machine. In this paper, using the same simulation
tool, we lower the number of states for a weakly universal cellular au-
tomaton down to 9.

1 Introduction

As indicated in the abstract, this paper significantly improves a previous result.
The result published in [1] was indeed the first universal cellular automaton

devised in a hyperbolic space. The simulation was performed on the pentagrid
and, as mentioned in the abstract, it uses a simulation of a register machine
through a railway circuit. The simulation of [1] requires 22 states.

We refer the reader to [3, 1] for the simulation of a register machine by a
railway circuit. In order to help the reader to better understand the paper, here
we sketch out the main lines of this simulation. First, we indicate the guidelines of
the general simulation, and then we turn to the implementation in the pentagrid.

2 The railway circuit

As initially devised in [8] already mentioned in [3, 1], the circuit uses tracks
represented by lines and quarters of circles and switches. There are three kinds of
switch: the fixed, the memory and the flip-flop switches. They are represented
by the schemes given in Fig. 1.

Note that a switch is an oriented structure: on one side, it has a single track u
and, on the the other side, it has two tracks a and b. This defines two ways of
crossing a switch. Call the way from u to a or b active. Call the other way, from a
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Fig. 1. The three kinds of switches. From left to right: fixed, flip-flop and memory
switches.

or b to u passive. The names comes from the fact that in a passive way, the
switch plays no role on the trajectory of the locomotive. On the contrary, in an
active crossing, the switch indicates which track between a and b will be followed
by the locomotive after running on u: the new track is called the selected track.

As indicated by its name, the fixed switch is left unchanged by the passage
of the locomotive. It always remains in the same position: when actively crossed
by the locomotive, the switch always sends it onto the same track. The flip-flop
switch is assumed to be crossed only actively. Now, after each crossing by the
locomotive, it changes the selected track. The memory switch can be crossed by
the locomotive actively and passively. In active passage, the locomotive is sent
on the selected track. Now, the selected track is defined by the track of the last
passive crossing by the locomotive. Of course, at initial time, the selected track
is fixed.

In [3], an infinite circuit is described which allows to simulate the working
of a register machine. The global structure of the circuit contains the following
parts. Two infinite periodic parts implement the two registers of the simulated
machine M . Then, a finite part of the circuit implements a sequencer which con-
trols the switching from an instruction of the programme of M to the next one.
Now, in order to guarantee the return of the locomotive to the right instruction
after an operation on one register, there is a selector in between the sequencer
and the entry to the registers.

It is not needed to give further details on the implementation of [3] which is
performed in the Euclidean plane.

3 Implementation in the hyperbolic plane

Hyperbolic geometry appeared in the first half of the 19th century, in the last
attempts to prove the famous parallel axiom of Euclid’s Elements from the re-
maining ones. Independently, Lobachevsky and Bolyai discovered a new geome-
try by assuming that in the plane, from a point out of a given line, there are at
least two lines which are parallel to the given line. Later, models were found, in
particular Poincaré’s model, which is the frame of all this study.

In this model, the hyperbolic plane is the set of points which lie in the open
unit disc of the Euclidean plane whose border is the unit circle. The lines of the
hyperbolic plane in Poincaré’s disc model are either the trace of diametral lines
or the trace of circles which are orthogonal to the unit circle, see Fig. 2. We say
that the considered lines or circles support the hyperbolic line, h-line for short
and, most often, simply line when there is no ambiguity.
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A

p

P

Q

l

q

m

s

Fig. 2. The lines p and q are parallel to the line ℓ, with points at infinity P
and Q, on the border of the unit disc. The h-line m is non-secant with ℓ.

The angle between two h-lines are defined as the Euclidean angle between the
tangents to their support. This is one reason for choosing this model: hyperbolic
angles between h-lines are, in a natural way, the Euclidean angle between the
corresponding supports. In particular, orthogonal circles support perpendicular
h-lines.

As illustrated by Fig. 2, in the hyperbolic plane, by a point A out of a line ℓ,
there are exactly two lines which pass through A and out of a line ℓ, there are
exactly two lines which pass through A and which are parallel to ℓ: they meet
on the border of the unit disc only, the set of points at infinity which do not
belong to the hyperbolic plane. There are also infinitely many ones which pass
through A but which do not cut ℓ, neither in the unit disc nor outside it. Such
lines are said non-secant with ℓ.

A striking property of this geometry is that there is no rectangle. From this,
one can prove that two lines of the hyperbolic plane are non-secant if and only
if they have a common perpendicular.

3.1 The pentagrid

Contrary to the Euclidean plane were there are only three kinds of tilings based
on the recursive replication of a regular polygon by reflection in its sides and of
the images in their sides, here there are infinitely many such tilings. In one of
them, the regular polygon is a pentagon with right angles. This tiling is called
the pentagrid, see Fig. 3 and 4 for an illustrative representation. Here, we give
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a rough explanation of these objects, referring to [5] and to [4] for more details
and for more references.

Figure 3 sketchily remembers that the tiling is spanned by a generating tree.
Now, as indicated in Fig. 4, five quarters around a central tile allows us to exactly
cover the hyperbolic plane with the pentagrid which is the tessellation obtained
from the regular pentagon with right angles.

(a) (b)

Fig. 3. (a) the tiling; (b) on the right: the underlying tree which spans the tiling.

1

2
3

4

5

6

7
8

9

10
11

12

13

14
15

1617

18
19

20
2122

2324
25

26
27

2829
30

31
32

33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29
30

31

32
33 12

3 4

5

6
7

8 9
10

11 12

13

14

15

16

17 18

19
20

2122 23
2425

26
27

28
2930

31 3233

1

2

3

4

5
6

7
8

9

10

11

12

13
14

15 16

17

18

19

20
21

22

23
24
25

26

27

28

29
30

31

32

33

1

2

3

4

5

6

7

8

9
10

11
12

13

14

15

16

17

18

19

20

21
22

23

24
2526

27
28

29
3031

3233

(a)

1

0

1

0

0

1

0

1

1

0

0

0

1

0

0

1

0

1

0

1

0

0

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

01

0 1 0 0 1

1

0

0

0

0

1

0

0

0

1

0

0

1

0

0

1

0

0

0

1

0

1

0

0

1

0

0

1

0

1

0

0

0

1

1

0

1

0

1

0

0

1

1

0

1

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

2 3 4

5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1

1 1

1

1 1

1

1

1

1 1

0 1

1 1 1

1

1 1

1

(b)

Fig. 4. (a) five quarters around a central tile; (b) on the right: the representations
of the numbers attached to the nodes of the Fibonacci tree.

In the right-hand side picture of Fig. 4, we remember the basic process which
defines the coordinates in a quarter of the pentagrid, see [5]. We number the
nodes of the tree, starting from the root and going on, level by level and, on
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each level, from the left to the right. Then, we represent each number in the
basis defined by the Fibonacci sequence with f1 = 1, f2 = 2, taking the maximal
representation, see[2, 5].

The main reason of this system of coordinates is that from any cell, we can
find out the coordinates of its neighbours in linear time with respect to the
coordinate of the cell. Also in linear time from the coordinate of the cell, we can
compute the path which goes from the central cell to the cell.

Now, as the system coordinate is fixed, we can turn to the application to the
implementation of cellular automata on the pentagrid.

3.2 Cellular automata on the pentagrid

A cellular automaton on the pentagrid is defined by a local transition function
which can be put in form of a table. Each row of the table defines a rule and the
table has seven columns numbered from 0 to 6, each entry of the table containing
a state of the automaton. On each row, column 0 contains the state of the cell to
which the rule applies. The rule applies because columns 1 to 5 contain the states
of the neighbours of the cell defined in the following way. For the central cell, its
neighbour 1 is fixed once and for all. Then, the others are numbered increasingly
while counter-clockwise turning around the cell. For another cell, its neighbour 1
is its father and the other neighbours are also increasingly numbered from 2 to 5
while counter-clockwise turning around the cell.

The representation mentioned in Subsect. 3.1 allows to find the coordinates
of the neighbours from that of the cell fast: in linear time from the coordinate.
The list of states on a row, from column 0 to 5 is called the context of a rule.
It is required that two different rules have different contexts. We say that the
cellular automaton is deterministic. As there is a single row to which a rule
can be applied to a given cell, the state of column 6 defines the new state of the
cell. The local transition function is the function which transforms the state of
a cell into its new one, also depending on the states of the neighbours as just
mentioned.

An important case in the study of cellular automata is what are called rota-
tion invariant cellular automata. To define this notion, we consider the follow-
ing transformation on the rules. Say that the context of a rule is the rotated
image of another one if and only if both contexts have the same state in column 0
and if one context is obtained from the other by a circular permutation on the
contents of columns 1 to 5. Now, a cellular automaton is rotation invariant if
and only if its table of transition T possesses the following properties:

– for each row ρ of T , T also contains four rules exactly whose contexts are
the rotated image of that of ρ;

– if ρ1 and ρ2 are two rules of T whose contexts are the rotated image of each
other, then their column 6 contain the same state.

The name of rotation invariance comes from the fact that a rotation around
a tile T leaving the pentagrid globally invariant is characterized by a circular
permutation on the neighbours of T defined as above.



Universal cellular automaton on the pentagrid 41

Note that the universal cellular automaton devised in [1] is rotation invariant
while the one o [7] is not. For the question of rotation invariance for cellular
automata on the pentagrid, we refer the reader to [6].

Now, we can turn to the simulation of the railway circuit by a cellular au-
tomaton.

3.3 The implementation of the railway circuit

In [1], the various elements of the circuit mentioned in [3] are implemented. In
fact, the paper does not give an exact description of the implementation: it only
gives the guidelines, but with enough details, so that an exact implementation is
useless. In this paper, we take the same implementation exactly. This is why we
do not repeat it in this paper and we refer the reader to [1] for further details.

Here, we just mention the general principle of motion of the locomotive which
is again taken in the new setting which we define in the next sub-section.

The tracks are implemented by portions of paths between two switches. Such
a portion consists in a finite sequence of tiles which are called blue ones. We
require that each blue tile which is not in contact with a switch has two blue
neighbours exactly, where a neighbour of a tile T is another tile sharing an edge
with T .

From now on, we call tiles cells. Most cells are in a quiescent state which
we represent by the white colour. In the following figures of the paper, this cell
is represented by a light blue colour and it is not marked by a letter, contrary
to the cells which are under another state. The state of the cells which are
on a blue tile is also blue, unless the locomotive is present on the cell. The
locomotive is represented by two contiguous cells on a path. One cell is green,
also represented by the letter G in the figures, the other is red, represented by
the letter R. Imagine that the green cell represents the front of the locomotive
and that the red cell represents its rear.

Now, the motion of the locomotive on a track is represented by Fig. 5. The
easy rules can be found in [1].

Figure 5 is a space-time diagram of the evolution of the states of the cells
which are along a track.

In the pentagrid, the rules become a bit more complex. We shall require that
in any situation where a blue cell has two blue neighbours and three white ones
exactly, it remains blue. If the cell has one green neighbour, a blue one and again
three white ones, it becomes green. If a green cell has a red neighbour, a blue
one and three white ones it becomes red. If a red cell has a green neighbour, a
blue one and three white ones, it becomes blue. At last, a blue cell which has
one red neighbour, a blue one and three white ones remains blue. Any configu-
ration which respects these constraints defines a rule of the cellular automaton
accordingly. We call these rules the rules of the basic motion.

The switches organize the meeting of tracks according to the principles de-
fined in the previous section. By definition, four paths meet at a crossing and
three ones meet at a switch. In [1], such a meeting is implemented by giving a
special role to a cell which is the centre of meeting. This cell has exactly one
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Fig. 5. The motion of the locomotive on its tracks: first approximation.

neighbour on each track: four ones in a crossing and three ones in a switch. In [1],
each meeting was characterized by a special colour attached to its centre. Also,
an additional tile, neighbouring the two passive tracks of a switch is also used.

In this paper, we have a different implementation which allows to reduce the
number of states.

4 A new cellular automaton

In this section, we prove the following:

Theorem 1 − There is a cellular automaton on the pentagrid which is universal
and which has nine states. Moreover, the rules of the cellular automaton are
rotation invariant and the cellular automaton has an infinite initial configuration
which is ultimately periodic along two different rays r1 and r2 of the pentagrid
and finite in the complement of the parts attached to r1 and r2.

The idea of our implementation is to keep as much as possible to the basic
motion also during the passing of a crossing or of a switch.

The configurations at a crossing and at the different kinds of switches are
given in Fig. 6, 7, 8, 9 and 10. Say that such a configuration is stable if the
locomotive is not near its centre. The stable configurations are given by the
picture (g) of these figures when restricting it to the first three levels of the
Fibonacci tree spanning each quarter. And so, contrarily to what was done in [1],
the centre of a stable configuration is always a blue cell. Moreover, we shall stick
as much as possible to the rules of the basic motion when the locomotive crosses
the configuration.

We shall see that the rules which we shall devise will lead us to tune a bit
the basic motion along a simple track. We shall see this later.
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First, we shall look at the crossings, then at the switches in the following
order: fixed, memory and flip-flop switches.

4.1 The crossings

We define the crossing as the configuration which is represented by the picture (g)
of Fig. 6 or 7. These pictures introduce another simplification with respect to [1]:
we assume that the paths come to the centre along the rightmost branch of a
quarter spanned by a Fibonacci tree, considering that these Fibonacci trees are
dispatched around the centre of the configuration. To fix things, we consider that
quarter 1 is lead by the blue cell B of the stable configuration which is above
the centre. There is such a leading cell, also blue and marked with B below the
centre: it leads quarter 3.
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Fig. 6. The locomotive goes through a crossing: here from quarter 1 to quarter 3.

At the crossing, two paths meet. One of them goes from quarter 1 to quarter 3
along the tiles:

33(1), 12(1), 4(1), 1(1), 0, 1(3), 4(3), 12(3), 33(3)

and the others goes from quarter 5 to quarter 2 along the tiles:

33(5), 12(5), 4(5), 1(5), 0, 1(2), 4(2), 12(2), 33(2)

where a cell is indicated by its address of the form ν(s), ν being the number of
the cell in its quarter and s being the number of the quarter.

Note that on the second path, from quarter 5 to 2, there are two cells with a
dark blue colour marked by B2. The role of these cells is to identify the second
path.

Without loss of generality, we may assume that all crossings are rotated im-
ages of the configuration described by pictures (g) of Fig. 6 and 7. Note that



44 Margenstern and Song

B B

B

B 

  

B
B

B

R

G

B2

B2

B
B    

0

B B

B

B 

  

B
B

B

B

R

G 

B2

B
B    

a

B B

B

G2

X2

B
B

B

B

B

R 

B2

B
B    

b

B B

B

R2

  

B
B

B

B

B

B2

G 

B
B    

c

B B

B

X2

  

B
B

B

B

B

B2

R 

G
B X2  

d

B B

B

B 

  

B
B

B

B

B

B2

B2

R
G    

e

B B

B

B 

  

B
B

B

B

B

B2

B2

B
R    

f

B B

B

B 

  

B
B

B

B

B

B2

B2

B
B    

g

Fig. 7. The locomotive goes through a crossing: here from quarter 5 to quarter 2.

we only require the above coordinates until the third level of the Fibonacci tree
spanning the corresponding quarters. On the complement of a ball of radius 4
around the centre of the crossing, the four paths may be very different. In par-
ticular, from the assumption of rotation invariance of the configurations, we may
always number the quarters by counter-clockwise turning around the centre in
such a way that the paths marked by B2 are in quarters 5 and 2.

Note that the motion along the path without B2 is simpler than the other.
The basic motion rules are extended in such a way that the same colours are
used by the locomotive during the crossing as the regular succession indicated
by Fig. 5.

4.2 The switches

All switches are built according a similar pattern. Three tracks meet at a centre,
the central cell of Fig. 8, 9 and 10. Here also, the track arriving to the switch goes
along the rightmost branch of the Fibonacci tree spanning the corresponding
quarter, passing through cells 33, 13, 4 and 1. Moreover, the unique arriving
track is in quarter 3, and the two tracks emanating from the switch are in
quarters 1 and 5. On the figures, the selected path is in quarter 1. Of course,
symmetric figures where the selected paths is in quarter 5 are also possible. Now,
any switch can be considered as a rotated image of the switches represented in
Fig. 8, 9 and 10 and their symmetrical counterparts. Now, for all switches, cell
1(3) has two neighbours permanently in the state R2: 2(3) and 2(4). Now, cell
2(1) characterizes the switch: it is W for the fixed switch, B2 for the memory
and the flip-flop switches.

Fixed switch The fixed switch uses the rules of the crossings too. When the
locomotive arrives from track 1 or track 3, the same rules as for passing through
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a crossing from track 1 to track 3. It is the same in the reverse direction. Note
that here, the state B2 placed in cell 1(5) forces the locomotive to go to cell 1(1).

Figure 8 illustrates a crossing of the switch when the locomotive arrives
through track 5. It is the track which is not selected by the switch. However, as
passive crossings are permitted for fixed switch, the locomotive must be given
the passage. Now, there is a problem: whatever the state chosen to represent
the front of the locomotive in cell 0, the blue cells 1(1) and 1(3) both attract
the locomotive. And so, one passage must be forbidden while the other must be
forced. Note that the dark red signals at cells 2(3) and 2(4) solve the problem
for attracting the locomotive to cell 1(3), but they cannot prevent it to also
go to cell 1(1). This means that if nothing is decided, the switch gives rives to
an additional locomotive. As the simulation requires a single one, this must be
avoided. This is why when the front of the locomotive arrives at cell 1(5), it
triggers a change of state in cell 2(1) which prevents the application of the basic
motion rule at cell 1(1). As cell 1(1) is a neighbour of cell 2(1), it can see the
new state and then understand that another rule has to be applied, forbidding
the front of the locomotive to pass.
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Fig. 8. The locomotive crosses a fixed switch from the non-selected track, here
in quarter 5.

Now, as the same rules are considered at every cell, this changes a bit what
was planned for the crossing and, the same signal as for the fixed switch occurs
when the front of the locomotive comes to the crossing from track 5. This is
what can be checked on Fig. 7; see picture a and b of the figure. Now, note that
the same signal occurs also on picture d, because the configuration of cells 1(2)
and 1(3) in picture c is the same as the configuration of cells 1(5) and 1(1)
respectively in picture a.

This is an important point: it shows that rules devised for a certain goal may
have side effects which have to be controlled.
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Memory switch The memory switch is the most complicate item among the
three kinds of switches.

The crossing from track 1 or 3 is not very difficult and it mainly uses the
rules of a fixed switch. However, specific rules are also in use due to the state B2

which is permanently present in cell 2(1).
Note that the memory switch is characterized by the configuration defined

by cells 1(1), 2(1) and 1(5). One of cells 1(1) and 1(5) has the same state as
cell (1): it is the first cell on the track which is not selected by the switch. It
constitutes a mark which changes after the visit of the locomotive from this
track.

Figure 9 illustrates the working of the switch when the locomotive comes
from the non-selected track, here track 5. As the colours of the illustrations have
been placed on the pentagrid from the execution of the cellular automaton by
a computer program, the representation is exact. We can see that the mark is
changed. The change occurs from picture c to picture d of the figure. It can take
place when the rear of the locomotive is at the centre of the switch. At this
moment, both cells 1(1) and 1(5) can see this state in cell 0 at the same time
which allows the mark to switch from one side to the other. Note that another
cell, 4(5), is temporary affected by the visit of the locomotive.
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Fig. 9. The locomotive crosses a memory switch from the non-selected track,
here in quarter 5. Note the change of the selected track when the rear of the
locomotive leaves the switch.

Flip-flop switch With the flip-flop switch, we have a similar example of com-
plex working. This is mainly due to the side effects of previous rules.

Here, the switch is again recognized by the configuration of cells 1(1), 2(1)
and 1(5). Cell 2(1) is still in the state B2, at least in the stable configuration.
Now, cell 1(5), forbidding the access to the non-selected track, here track 5, is
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Fig. 10. The locomotive crosses a flip-flop switch, necessarily actively, here from
quarter 3. Note the change of the selected track when the rear of the locomotive
leaves the switch.

in the state X2. This association of states B2 and X2 constitutes the mark of
the flip-flop switch. When the switch changes the selected track to the other
side, the mark is also changed: the state X2 goes to the cell which is on the new
non-selected track.

On Fig. 10, we can see how the change of marks occurs. We can also see
that the state X2 is used to mark the rear of the locomotive for one step of
the computation. We also can see that cell 2(1) changes the state B2 to the
state R2 for two steps. This allows to control the restoration of the red rear
of the locomotive and the change of the selected track. We can notice that in
picture d, cell 1(1) is in the state X2 while cell 1(5) is in the state B2 in place
of the state B. This is why the state R2 is maintained in cell 2(1), in order to
allow the restoration of the state B in cell 1(5).

Coming back to the tracks Now, the mechanism which is used in the fixed
switch has also a consequence on the tracks, on the part of them in between
successive switches. Indeed, it may happen that the track has points at which
there is a right angle. This means that there are three tiles sharing a vertex. We
have seen that if the tiles are in the configuration of cells 1(1), 2(1) and 1(5), if
the front of the locomotive is in cell 1(5), then, at the next time, cell 2(1) takes
the state X2 which blocks the advance of the locomotive. In this case, the front
of the locomotive is replaced by its rear which vanishes at the next step.

A solution consists in requiring that if three cells of the track share a ver-
tex V , then the fourth cell of the pentagrid also sharing V takes the state R2

permanently. This allows to devise new rules in which the basic motion occurs,
regardless of other possible neighbours of the cell.
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Fig. 11. The locomotive on a single track: from the right to the left.

The implementation of this solution is illustrated in Fig. 11 and 12. We may
notice that both figures illustrate the same track but that the motion of the
locomotive is opposite to the one of the other figure. Then, as we can see, the
basic motion can be proceeded without problem.
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Fig. 12. The locomotive on a single track: from the left to the right.

5 The rules

As we require a rotation invariant table for our cellular automaton, it is enough
to test the rules on the configurations defined by Fig. 6 to 10 of the paper and a
few ones obtained by considering the switches where the selected track is track 5.
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The rules of the automaton where computed by a program written in ADA.
The program runs in an interactive way. A file in simple text contains rules
to be tested. Initially, it is enough to contain the rule for the quiescent cell:
W W W W W W W, where the states are given in the order of the table,
from columns 0 to 6.

The program contains the initial configuration of the crossings and of the
switches in a table 0. It contains a copy of table with no state in the cells which
we call table 1. Then, we run the program. It reads the file of the rules. Starting
from the central cell the program scans the quarters one after the other and in
each one, from the root to the last level, level by level. For each scanned cell c,
the program takes the context κ of c in table 0. Then, it compares κ with the
contexts of the rules of the file. If it finds a match, it copies the state of the
rule at the address of c in table 1. If it does not find a match, it asks for a new
rule which the user writes into the file. Then the program is run again and the
program looks at the new rule ρ: it compares it with the previous ones. If the
context of ρ is different from the already stored rules, it accepts the rule. If the
context matches an existing context, it looks whether the last state is the same
in ρ and the matching rule. If yes, it does not accepts the rule: it already contains
it. If not, then there is a contradiction and the, it displays the rule and indicates
that it is contradictory with a rule of the file. In both cases, the program asks a
new rule.

This process is in action until a satisfactory set of rules is obtained which
runs without error starting from the initial configuration and for the time initially
indicated by the user.

The program also contributes to check that the rules are rotation invariant.
For this, it extracts the reduced form of the rules. The reduced form of a
rule ρ is a word whose letters are exactly the states of ρ, given in a once and
for all fixed order and with the number of occurrences of the state in ρ as an
exponent, when the number is bigger than 1. Then, the rules are classified by
the lexicographic order of the reduced forms. In each class, it is enough to look
at the rules themselves. We first look at the rules with the same state 0. If for
two such rules states 6 also coincide, the rotated rules can be appended. If they
do not coincide, we have to look closer. In this case, the two contexts can be
derived from each other by a permutation. If it is not a circular permutation,
then again, the rotated rules can be appended. If the permutation is a circular
permutation then, as states 0 are the same but not states 6, this sub-set of rules
is not rotation invariant.

Thanks to the program, we have checked that the rules are rotation invariant.
Table 1 gives the list of the rules. As there are 299 of them, we have given them
in their encoded form as a word in {1..9}7, these numbers being those given by
the program to the states of the automaton. According to this order, the states
are B, W , B2, G, R, G2, X2, R2 and G1.

This completes the proof of theorem 1.
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6 Conclusion

It is for sure possible to do better. However, it will require additional work to
reduce the number of states by one or two of them. To go further would probably
require another model of simulation.
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Table 1 Table of the codes of the rules. The rules are encoded as follows:

1 2 3 4 5 6 7 8 9
B W B2 G R G2 X2 R2 G1

For the switches, L indicates the case when the non-selected track is on the left-hand
side.

Rules for the crossing:

track 1

1 : 2222222

2 : 1131231

3 : 1122121

4 : 2132222

5 : 2122222

6 : 1122424

7 : 2212222

8 : 4122525

9 : 5422121

10 : 2422222

11 : 3122123

12 : 2312222

13 : 2322222

14 : 1322121

15 : 2242222

16 : 2522222

17 : 1522121

18 : 2252222

19 : 3122223

20 : 1431234

21 : 2432222

22 : 2342222

23 : 4531235

24 : 2532222

25 : 3422123

26 : 2352222

27 : 1422124

28 : 5134231

29 : 3522123

30 : 4522125

31 : 1135231

track 5

32 : 5122421

33 : 1122521

34 : 1322424

35 : 3122424

36 : 4322525

37 : 1131246

38 : 2142227

39 : 6131258

40 : 1672121

41 : 7152222

42 : 2712222

43 : 2722222

44 : 2272222

45 : 3622124

46 : 1622121

47 : 2622222

48 : 5622173

49 : 8141237

50 : 1822121

51 : 4822125

52 : 2412222

53 : 2822222

54 : 3822123

55 : 7151231

56 : 1722121

57 : 5722473

58 : 2512222

59 : 1772121

60 : 2742222

61 : 3722123

62 : 3122523
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Rules for the crossing (continuation):

track 3

63 : 5322421

64 : 1322521

65 : 1134234

66 : 4135235

track 2

67 : 5431231

68 : 1531231

69 : 1141236

70 : 6151238

Rules for the fixed switches:

track 1

71 : 8131247

72 : 7131251

73 : 1121231

74 : 2122282

75 : 1182181

76 : 8122228

77 : 2282222

78 : 2182222

79 : 8212228

80 : 2812222

81 : 1421234

82 : 4521235

83 : 2422282

84 : 1482184

85 : 2482222

86 : 5124231

87 : 2522282

88 : 4582185

89 : 8422228

90 : 2582222

91 : 8242228

92 : 1125231

93 : 5182481

94 : 8522228

95 : 8252228

96 : 2842222

track 5

97 : 1182581

98 : 2852222

99 : 1121244

100 : 4121255

track 3

101 : 1472121

102 : 5422173

103 : 1182484

104 : 1124234

105 : 4182585

106 : 4125235

107 : 5482181

108 : 5421231

track 5, L

109 : 1582181

110 : 1521231

111 : 1321211

112 : 2232222

113 : 1321244

114 : 4321255

track 3, L

115 : 5324211

116 : 1325211

117 : 1324214

118 : 4325215

track 1, L

119 : 5321241

120 : 1321251

121 : 1421216

122 : 6521218

123 : 5622123

124 : 2622282

125 : 1682184

126 : 2682222

127 : 8324211

128 : 2822282

129 : 4882185

Rules for the memory switches:

track 1

130 : 2882222

131 : 1132121

132 : 3132223

133 : 3122133

134 : 1132424

135 : 4132525

136 : 3432223

137 : 5432121

138 : 3532223

139 : 3422133

140 : 1532121

track 5

141 : 3522133

142 : 3122436

143 : 1121266

144 : 3162223

145 : 6122538

146 : 6121288

147 : 1632121

148 : 3182223

149 : 2332222

150 : 8622333

151 : 8124231

152 : 1832123

153 : 3822331

154 : 3322121

155 : 3132123

156 : 3312223

track 3
157 : 1122131

158 : 1432124

track 5, L
159 : 4532125

160 : 5132421

161 : 1132521

162 : 1122434

163 : 3342223

164 : 4122535

165 : 3432123

166 : 3352223

167 : 5422131

168 : 3532123

track 1, L
169 : 1522131

170 : 3132426

171 : 1621216

172 : 6132528

173 : 3612223

174 : 2262222

175 : 6821218

176 : 8632323

177 : 3812223

178 : 1622131

179 : 3832321

track 3, L
180 : 1822133

181 : 1422134

182 : 4522135

183 : 5122431
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Rules for the flip-flop switches:

184 : 1122531

185 : 1121271

186 : 3172223

187 : 7122137

188 : 1124279

189 : 9125278

190 : 1932129

191 : 2922282

192 : 5982181

193 : 2982222

194 : 7922131

195 : 8921211

196 : 9832127

197 : 3912228

198 : 2922222

199 : 1922124

200 : 2292222

201 : 1882181

202 : 1721231

203 : 7182427

204 : 8732228

205 : 4722125

206 : 3122181

207 : 1721211

208 : 7182527

209 : 8712223

210 : 5722421

211 : 1122181

212 : 7132127

213 : 3712223

L

214 : 1722521

215 : 1724219

216 : 9725218

217 : 7932121

218 : 1922139

219 : 8121291

220 : 3192228

221 : 9822137

222 : 1321271

223 : 3182121

224 : 8372228

225 : 7122487

226 : 1182121

227 : 8172223

Rules for the tracks:

228 : 7122587

229 : 1182811

230 : 8112228

231 : 8122218

232 : 1811821

233 : 1182211

234 : 1812121

235 : 2822242

236 : 2222252

237 : 1112281

238 : 1184224

239 : 4125225

240 : 5421221

241 : 2222212

242 : 8122248

243 : 2822252

244 : 1142284

245 : 4185225

246 : 1521221

247 : 1182844

248 : 8142228

249 : 8122258

250 : 2822212

251 : 4152285

252 : 5481221

253 : 1121221

254 : 4182855

255 : 1482814

256 : 8152228

257 : 8412228

258 : 8422218

259 : 5412281

260 : 1581221

261 : 5482811

262 : 4582815

263 : 8512228

264 : 1841824

265 : 8522218

266 : 1512281

267 : 1181221

268 : 1582811

269 : 5182841

270 : 4851825

271 : 1482214

272 : 1182851

273 : 5814821

274 : 4582215

275 : 1842124

276 : 1815821

277 : 5182241

278 : 4852125

the other
direction:
279 : 1814824

280 : 4182255

281 : 5842121

282 : 4815825

283 : 5482211

284 : 1852121

285 : 5841821

286 : 1582211

287 : 1851821

288 : 1412284

289 : 4512285

290 : 1481224

291 : 5142281

292 : 4581225

293 : 1421224

294 : 1152281

295 : 5184221

296 : 4521225

297 : 2222242

298 : 1185221

299 : 5124221
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Abstract. A cellular automaton (CA) is a discrete dynamical system,
and the transition graph is a representation of the CA’s phase space.
Automorphisms of the transition graph correspond to symmetries of the
phase space; studying how the total number of automorphisms varies
with the number of cells on which the CA operates yields a (partial)
classification of the space of CA rules according to their dynamical be-
haviour.
In the general case, to find the number of automorphisms we must iterate
over the entire transition graph; thus the time complexity is exponential
with respect to the number of cells. However, if the CA is linear, the tran-
sition graph has properties which allow the number of automorphisms
to be computed much more efficiently. In this paper, we investigate the
numbers of automorphisms for a particular linear CA, elementary rule
90. We observe a relationship between the number of automorphisms and
a number theoretical function, the suborder function.

1 Introduction

A cellular automaton (CA) consists of a finite nonempty set of states, a discrete
lattice of cells, and a local update rule which maps deterministically the state
of a cell and its neighbours at time t to the state of that cell at time t + 1. A
configuration of a CA is an assignment of a state to each cell. The local update
rule extends to a global map, a function from configurations to configurations,
in the natural way.

The transition graph of a CA is a directed graph whose vertices are the
configurations of the CA, and whose edges are determined by the global map.
There is an edge from vertex r to vertex s if and only if the global map sends
configuration r to configuration s. The transition graph is a representation of the
overall structure of the phase space of the CA: in particular, the automorphisms
(self-isomorphisms or “symmetries”) of the transition graph are, in a sense, the
symmetries of the CA’s dynamics [1]. Examples of transition graphs are shown
in Figs. 1 and 2.

In [1], we investigate how numbers of automorphisms vary with the number
N of cells on which the CA operates (Fig. 3). For the majority of CA rules, there
seems to be a linear relationship between the number of automorphisms and eeN

.
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33 copies 1 copy

Fig. 1. Transition graph for rule 90 on 11 cells.

60 copies 4 copies 6 copies

Fig. 2. Transition graph for rule 90 on 12 cells.

However, we identify two classes of CAs for which this linear correspondence does
not seem to hold. One of these classes consists almost entirely of linear CAs (CAs
whose local update rule is a linear function), and is characterised by the “zig-zag”
pattern depicted in Fig. 4 (a). In this paper, we investigate this pattern more
closely.

As is the case with many other classes of system, linear CAs submit much
more readily to analysis than their non-linear counterparts. Indeed, the oper-
ation of a linear CA is simply repeated convolution of a configuration with a
fixed sequence corresponding to the rule, which in turn is equivalent to repeated
multiplication in a finite ring of polynomials. Martin et al [2] use this fact to
study linear CAs, and succeed in proving several results about one linear CA
in particular (elementary rule 90, in Wolfram’s terminology [3]). We use these
results to derive an algorithm, dramatically more efficient than the general al-
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Fig. 3. Plot of log10 log10 A(f, N) (where A(f, N) is the number of automor-
phisms) against N , for 6 ≤ N ≤ 16 and for all 88 essentially different ECA
rules. From [1].

gorithm described in [1], for computing the number of automorphisms for the
transition graphs of rule 90.

We argue, but do not prove, that the “zig-zag” oscillations in the number of
automorphisms for rule 90 on N cells correspond to the oscillations of a number
theoretical function known as the suborder function.

2 Linear CAs and polynomials

We restrict our attention to finite one-dimensional CAs, i.e. we take the lattice
to be ZN (the cyclic group of integers modulo N). This lattice has periodic
boundary condition, in that we consider cell N − 1 to be adjacent to cell 0. The
neighbourhood is specified in terms of its radius r, so that the neighbours of
cell i are cells i − r, . . . , i + r. We further restrict our attention to CAs whose
state set is also a cyclic group, say Zk. Thus the local update rule is a function
f : Z

2r+1
k → Zk, which extends to a global map F : Z

N
k → Z

N
k .

Such a CA is said to be linear if the local update rule is a linear function;
that is, if there exist constants λ−r, . . . , λr such that

f(x−r, . . . , xr) = λ−rx−r + · · ·+ λrxr , (1)

where the operations of addition and multiplication are the usual operations of
modular arithmetic.

Martin et al [2] study linear CAs by means of polynomials. Denote by RN
k

the set of polynomials with coefficients over Zk of degree at most N − 1. We
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Fig. 4. As Fig. 3, but for 6 ≤ N ≤ 17, and showing the two classes of ECAs
which do not exhibit a linear relationship between numbers of automorphisms
and eeN

. From [1].

can define addition and multiplication in RN
k similarly to the usual arithmetic

of polynomials, but setting xN = 1 (so in effect, powers are computed modulo
N). Under these operations, RN

k is a ring.
Let f be a local update rule of the form of Equation 1. We associate with f

the polynomial Tf in RN
k defined by

Tf(x) = λ−rx
r + · · ·+ λrx

−r . (2)

Furthermore, we associate with a configuration s = a0a1 . . . aN−1 ∈ Z
N
k the

polynomial
As(x) = a0 + a1x + · · ·+ aN−1x

N−1 . (3)

Then the polynomial associated with the configuration F (s) is simply Tf(x)As(x).
In other words, repeated application of the global map F corresponds to repeated
multiplication by the polynomial Tf(x).

2.1 Rule 90

Let r = 1 and k = 2, and consider f : Z
3
2 → Z2 defined by

f(x−1, x0, x1) = x−1 + x1 . (4)

Since r = 1 and k = 2, this is an example of an elementary cellular automaton.
According to Wolfram’s numbering scheme [3], f is rule 90. The polynomial
corresponding to f is

Tf (x) = x + x−1 . (5)
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Remark 2.1. Let F be the global map for rule 90 on N cells. Choose an initial
configuration s0, and let

st = F ◦ · · · ◦ F
︸ ︷︷ ︸

t occurrences

(s0) . (6)

Then at most O(log t) polynomial multiplications are required to compute st.

Proof. It suffices to show that the polynomial (Tf (x))
t can be written as a prod-

uct of at most O(log t) polynomials, where each term in this product is either
known or computable in constant time.

Since we are working with coefficients over Z2, we have

(
x + x−1

)2k

= x2k

+ x−2k

(7)

for all nonnegative integers k. Thus if t is a power of 2, st can be computed by
multiplication with xt + x−t.

If t is not a power of 2, it can nevertheless be written as a sum of ⌈log2 t⌉ or
fewer powers of 2 (i.e. in binary notation). If

t = 2i1 + · · ·+ 2il , (8)

then
(
x + x−1

)t
=
(
x + x−1

)2i1

. . .
(
x + x−1

)2il

. (9)

The product on the right-hand side involves no more than ⌈log2 t⌉ terms, each
of which can be determined in constant time via Equation 7. ⊓⊔

2.2 Cycle lengths and the suborder function

For positive integers n and k, the (multiplicative) suborder function sordn(k) is
defined [2] by

sordn(k) =

{

min
{
j > 0 : kj ≡ ±1 mod n

}
if such a j exists

0 otherwise .
(10)

Note that sordn(k) 6= 0 if and only if n and k are relatively prime. In particular,
if k = 2 then sordn(2) is nonzero if n is odd and zero if n is even. The suborder
function sordn(2) is plotted in Fig. 5.

If n is odd, then we have

log2 n ≤ sordn(2) ≤ n− 1

2
. (11)

The set of values of n for which the upper bound is achieved is a subset of the
primes.

Let ΠN denote the length of the cycle reached by rule 90 from an initial
configuration which assigns state 1 to a single cell and state 0 to the remainder.



60 Powley and Stepney

Fig. 5. Plot of the suborder function sordn(2) against n, for 3 ≤ n ≤ 200.

Due to rule 90’s linearity, all cycle lengths must be factors of ΠN . Furthermore,
Martin et al [2] show that

ΠN =







1 if N is a power of 2
2ΠN/2 if N is even but not a power of 2
a factor of 2sordN (2) − 1 if N is odd .

(12)

3 Counting automorphisms of transition graphs

Definition 3.1. Consider a CA whose set of configurations is C and whose
global map is F . The transition graph for this CA is the directed graph with
vertex set C and edge set

{(s, F (s)) : s ∈ C} . (13)

Every vertex in a transition graph has out-degree 1. This forces the graph
to have a “circles of trees” topology: the graph consists of a number of disjoint
cycles, with a (possibly single-vertex) tree rooted at each vertex in each cycle.

The basins of the transition graph are its disjoint components: each basin
consists of exactly one cycle, along with the trees rooted on that cycle.

Examples of transition graphs are shown in Figs. 1 and 2.

Definition 3.2. Consider a directed graph with vertex set V and edge set E.
An automorphism on this graph is an isomorphism from the graph to itself; in
other words, a bijection α : V → V such that

(x, y) ∈ E ⇐⇒ (α(x), α(y)) ∈ E . (14)
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Denote by A(f, N) the number of automorphisms in the transition graph for
the CA with local rule f on N cells.

In [1] we describe an algorithm for computing the number of automorphisms
for a transition graph. This algorithm works by exploiting the recursive structure
of the transition graph. For instance, consider a tree, rooted at vertex r, such that
the “children” of r are vertices c1, . . . , ck. Then the number of automorphisms in
the tree is the product of the numbers of automorphisms for each subtree rooted
at a ci, multiplied with the number of permutations of c1, . . . , ck which preserve
the isomorphism classes of the subtrees.

Transition graphs for linear CAs have further structure to be exploited:

Lemma 3.1 ([2, Lemma 3.3]). In a transition graph for a linear CA, the trees
rooted at the vertices in the cycles form a single isomorphism class.

Thus two basins are isomorphic if and only if their cycles have the same
length. Cycles of different lengths can occur within a transition graph, so the
basins do not necessarily form a single isomorphism class. To find the isomor-
phism classes, it is necessary (and sufficient) to find the lengths and multiplicities
of the cycles. Martin et al [2] give an algorithm for this in rule 90, and it seems
reasonable to expect that similar algorithms exist for other linear CAs.

The following results characterise the structure of the trees themselves for
rule 90 on N cells:

Theorem 3.1 ([2, Theorem 3.3]). If N is odd, all trees in the transition graph
consist of a single edge.

Theorem 3.2 ([2, Theorem 3.4]). If N is even, all trees in the transition
graph have the following properties:

1. The distance from the root vertex to every leaf vertex is

1

2
max

{
2j : 2j|N

}
; (15)

2. The root vertex has in-degree 3;
3. Every non-root non-leaf vertex has in-degree 4.

These theorems are illustrated in Figs. 1 and 2.
If N is odd, clearly the only automorphism on each tree is the identity. How

many automorphisms does each tree possess if N is even? The following result
is an application of [1, Lemma 1].

Lemma 3.2. Consider a tree of depth D > 1, whose root vertex v has in-degree
3 and with all other vertices having in-degree 4. The number of automorphisms
for this tree is

A(v) = 2422(D−1)

/4 . (16)

Proof. See Appendix 7. ⊓⊔
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The following theorem is our main result, and follows directly from Lemma 3.2
above and Lemma 2 and Theorem 2 in [1].

Theorem 3.3. Suppose that, for some value of N , the distinct cycle lengths in
rule 90 are l1, . . . , lk, and there are mi cycles of length li. Let

AT =

{

1 if N is odd

242N−2

/42N−D2(N)

if N is even ,
(17)

where
D2(N) = max

{
2j : 2j|N

}
. (18)

Then

A(90, N) =

(
k∏

i=1

mi! · lmi

i

)

·AT . (19)

Proof. See Appendix 7. ⊓⊔

Thus if the lis and mis are known, the number of automorphisms can easily
be calculated. The following corollary illustrates a particularly straightforward
special case:

Corollary 3.1. If N is a power of 2, then

A(90, N) = 242N−2

/4 . (20)

Proof. See Appendix 7. ⊓⊔

4 Computational results

Martin et al [2] provide cycle lengths and multiplicities for 3 ≤ N ≤ 40, as
well as an algorithm for computing the lengths and multiplicities for larger N .
Using these in conjunction with Theorem 3.3, we are able to compute values of
A(90, N) for N much larger than by the general method described in [1]. Some
results are shown in Fig. 6.

Compare Fig. 6 with the suborder function sordN (2) plotted in Fig. 5. In
particular, observe that peaks in one seem to correspond with troughs in the
other. Indeed, it can be verified numerically that we have an approximate linear
relationship:

log10 log10 A(90, N) ≈ 0.30N − 0.28 sordN (2)− 0.04 . (21)

Figure 7 plots the two sides of Equation 21, and Fig. 8 plots the difference
between them against N . Although the correlation is not exact, note that there
are no outliers. Also note that the difference between the two sides, and hence
the error in this approximation, seems to increase (albeit slowly) with N .
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Fig. 6. Plot of log10 log10 A(90, N) (lower line) against N , for 3 ≤ N ≤ 185. For
comparison, log10 log10 A(204, N) = 2N ! is also plotted (upper line).

Fig. 7. Plot of the two sides of Equation 21. The diagonal “y = x” line is plotted
for comparison.
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Fig. 8. Plot of the difference between the two sides of Equation 21 against N .

5 Conclusion

Previously [1] we computed numbers of automorphisms for all 88 essentially
different ECAs. Implementing the “brute force” method described therein on a
current desktop PC, we find that N = 17 is the practical limit of what can be
computed in a reasonable length of time. Furthermore, the exponential complex-
ity of the computation means that an increase in computational resources would
not significantly increase this limit. In contrast, rule 90 has properties which
allow for a much more efficient algorithm. On the same desktop PC, we are
able to count automorphisms for N ≤ 185, and for many (though increasingly
uncommon) cases beyond, with ease.

However, it seems plausible that there exists an even simpler expression
for the number of automorphisms in rule 90, and that the suborder function
sordN (2) dominates this expression. The suborder function relates to rule 90
since, if N is odd, all cycle lengths must divide 2sordN (2) − 1. It is not clear why
the expression

∏

i

mi! · lmi

i , (22)

where the lis are the cycle lengths and the mis are their respective multiplicities,
should be so strongly correlated with this common multiple of the lis. We plan to
investigate this further, and to determine whether this approximate correlation
does indeed indicate the existence of a simpler exact expression for A(90, N).

It is reasonable to expect that other linear rules admit a similar approach to
that applied here. Indeed, Martin et al [2] generalise some (but not all) of their
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results beyond rule 90. We intend to use these more general results to extend
our methods to the other linear ECAs, and to other linear CAs in general.

However, these methods almost certainly do not apply to nonlinear CAs:
the analogy with finite rings of polynomials is crucial to this work, but this
analogy only holds for linear CAs. Thus this work demonstrates (if yet another
demonstration were needed!) the ease of analysis and computation for linear CAs
as compared to their nonlinear counterparts.
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6 Appendix

7 Proofs

7.1 Proof of Lemma 3.2

Let ui be any vertex at depth i in the tree, so v = u0 and uD is a leaf. Then by
[1, Lemma 1], noting that the children of ui form a single isomorphism class, we
have

A(v) = A(u0) = 3!A(u1)
3 (23)

A(u1) = 4!A(u2)
4 (24)

...

A(uD−1) = 4!A(uD)4 (25)

A(uD) = 1 . (26)

Thus

A(v) = 3! (4!(4!(. . . (1)4 . . . )4)4)3
︸ ︷︷ ︸

D−1 occurrences of 4!

(27)

= 3!× 4!3 × 4!3×4 × · · · × 4!3×4D−2

(28)

= 3!× 4!3
∑

D−2

i=0
4i

. (29)

It can be shown that, for any positive integers n and k,

n∑

i=0

ki =
kn+1 − 1

k − 1
. (30)
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Thus

A(v) = 3!× 4!3
∑

D−2

i=0
4i

(31)

= 3!× 4!3×(4D−1−1)/3 (32)

=
3!

4!
× 4!4

D−1

(33)

= 2422(D−1)

/4 (34)

as required. ⊓⊔

7.2 Proof of Theorem 3.3

[1, Theorem 2] states that

A(90, N) =




∏

I∈{Bi}/∼=

|I|!









k∏

i=1

A(Bi)
mi



 . (35)

By [2, Lemma 3.3], all of the trees rooted at vertices in cycles are isomorphic.
Thus two basins are isomorphic if and only if they have the same cycle length,
and so we have

∏

I∈{Bi}/∼=

|I|! =

k∏

i=1

mi! . (36)

Now let A(Bi) be the number of automorphisms for a basin whose cycle length
is li. By [1, Lemma 2], we have

A(Bi) =
li
q

li∏

j=1

A(vj) . (37)

But all of the trees are isomorphic, so q = 1 and thus

A(Bi) = liA(v)li , (38)

where A(v) is the number of automorphisms in a tree. Substituting into Equa-
tion 35 we have

A(90, N) =

(
k∏

i=1

mi!

)(
k∏

i=1

(liA(v)li )mi

)

(39)

=

k∏

i=1

(
mi! · lmi

i · A(v)limi
)

(40)

=

(
k∏

i=1

mi! · lmi

i

)

·A(v)
∑

k

i=1
limi . (41)
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It now suffices to show that

A(v)
∑

k

i=1
limi = AT (42)

with AT as defined in Equation 17.
If N is odd, [2, Theorem 3.3] states that all trees consist of a single edge.

Thus A(v) = 1, and so A(v)
∑

k

i=1
limi = 1 = AT , regardless of the values of limi.

Suppose that N is even. By [2, Theorem 3.4], all trees are of the form de-
scribed in Lemma 3.2, with D = D2(N)/2. Thus we have

A(v) = 242D2(N)−2

/4 . (43)

Now,
∑k

i=1 limi is simply the number of configurations which occur in cycles,
and thus, by a corollary to [2, Theorem 3.4], is given by

k∑

i=1

limi = 2N−D2(N) . (44)

Hence

A(v)
∑

k

i=1
limi = 242D2(N)−2×2N−D2(N)

/42N−D2(N)

(45)

= 242D2(N)−2+N−D2(N)

/42N−D2(N)

(46)

= 242N−2

/42N−D2(N)

(47)

= AT (48)

as required. ⊓⊔

7.3 Proof of Corollary 3.1

If N is a power of 2 then D2(N) = N , so

AT = 242N−2

/4 (49)

Furthermore, by [2, Lemmas 3.4 and 3.5], the only possible cycle length is 1; by
[2, Lemma 3.7], there is only one such cycle. Thus

A(90, N) =
(
1! · 11

)
· AT (50)

= AT (51)

= 242N−2

/4 (52)

as required. ⊓⊔
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The baker transformation, or Bernoulli shift is defined for a continuous dy-
namical system f : [0, 1] → [0, 1] by f(x) = 2x mod (1). In recent papers
a discrete version of this transformation has been defined, acting on strings
(a0, . . . , an−1) where the ai are contained in {0, . . . , p− 1} with p prime. These
strings define additive cellular automata acting on a cylinder of size n. (More
generally, this discrete transformation is defined acting on d-dimensional arrays
of numbers representing additive cellular automata on a d-dimensional torus but
only dimension one is considered here.) In [1] the discrete baker transformation
was used to obtain a number of results on the behavior of additive cellular au-
tomata, including strong estimates of tree heights and cycle lengths in state
transition diagrams. In [2], non-singular transformations of additive cellular au-
tomata yielding rules with isomorphic state transition diagrams are considered
and shown to be combinations of shifts and powers of the baker transformation.
In [3] cycle properties of the discrete baker transformation itself are considered.
In this paper properties of the discrete baker transformation are discussed and its
use in studies of additive cellular automata is illustrated. In addition, extension
to non-linear cellular automata is considered.
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Abstract. In standard Cellular Automata (CA) the new state of a cell
depends upon the neighborhood configuration only at the preceding time
step. The effect of implementing memory capabilities in cells of coupled
elementary CA with homologous cells interacting is studied in this article.

1 Cellular automata with memory

Cellular Automata (CA) are discrete, spatially explicit extended dynamic sys-
tems. A CA system is composed of adjacent cells or sites arranged as a regular
lattice, which evolves in discrete time steps. Each cell is characterized by an
internal state whose value belongs to a finite set. The updating of these states
is made simultaneously according to a common local transition rule involving
only the neighborhood of each cell [14, 21]. Thus, if σ

(T )
i is taken to denote the

value of cell i at time step T , the site values evolve by iteration of the mapping :
σ

(T+1)
i = φ

(
{σ(T )

j } ∈ Ni

)
, where Ni is the set of cells in the neighborhood

of i and φ is an arbitrary function which specifies the cellular automaton rule
operating on Ni.

This article deals with two possible state values at each site: σ ∈ {0, 1}. As
an example, the left spatio-temporal pattern in Fig. 1 shows the evolution of
the conventional parity rule with three inputs (nearest neighbors arranged in
a one-dimensional lattice plus self-interaction) : σ

(T+1)
i = σ

(T )
i−1 ⊕ σ

(T )
i ⊕ σ

(T )
i+1 ,

starting from a single live cell. Despite its formal simplicity, the parity rule may
exhibit complex behaviour [16].

In standard CA the transition function depends on the neighborhood con-
figuration of the cells only at the preceding time step. Historic memory can be
embedded in the CA dynamics by featuring every cell by a mapping of its states
in the previous time steps. Thus, what is here proposed is to maintain the tran-
sition rules φ unaltered, but make them act on the cells featured by a function
of their previous states: σ

(T+1)
i = φ

(
{s(T )

j } ∈ Nj

)
, s

(T )
j being a state function of

the series of states of the cell j up to time-step T .
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Fig. 1. The ahistoric parity rule (left) and this rule with memory of the majority
of the last three states (center).

The central pattern in Fig. 1 shows the effect of endowing cells with memory
of the most frequent of their three last states (reference to the last three states
will be often shorted as τ=3) will be often on the parity rule with three neighbors.
Thus, in the automaton with memory in Fig. 1, σ

(T+1)
i = s

(T )
i−1 ⊕ s

(T )
i ⊕ s

(T )
i+1 ,

it is : s
(T )
i = mode

(
σ

(T )
i ,σ(T−1)

i , σ
(T−2)
i

)
. Memory alters the ahistoric evolution

in Fig. 1 already at T = 4, because at T = 3, the actual pattern : , differs
from that of the featured cells (patterns headed s) : , in which the outer live
cells in the actual pattern (once alive, twice dead) are featured as dead. So the
pattern at T = 4 is with memory : , instead of the wider ahistoric pattern :

. As a result, memory truncates the expansive evolution of the parity
rule.

This kind of majority memory exerts a characteristic inertial effect. The effect
of memory on CA has been studied in previous work [2, 1].

2 Coupled Cellular Automata

Many systems of interest may be viewed as consisting of multiple networks, each
with their own internal structure and coupling structure to their external world
partners. Examples include economic markets, social networks, ecologies, and
within organisms such as neuron-glia networks.

An easy way of coupling two networks of the same size is that of connect-
ing their homologous cells. This is so in the one-dimensional networks of the
subsequent figures.

Thus, the parity rule in Fig. 2 remains acting on cells with three inputs : their
nearest neighbors in their own layer and their homologous cell in the partner
layer. Noting σ and [σ] the current state values and s and [s] the trait states in
left and right layers respectively, in the formulation of the parity rule in Fig. 2 it
is : σ

(T+1)
i = σ

(T )
i−1⊕ [σ

(T )
i ]⊕σ

(T )
i+1 , [σ

(T+1)
i ] = [σ

(T )
i−1]⊕σ

(T )
i ⊕ [σ

(T )
i+1] , whereas with

memory : σ
(T+1)
i = s

(T )
i−1 ⊕ [s

(T )
i ] ⊕ s

(T )
i+1 , [σ

(T+1)
i ] = [s

(T )
i−1] ⊕ s

(T )
i ⊕ [s

(T )
i+1] , with

s
(T )
i = mode

(
σ

(T )
i ,σ(T−1)

i , σ
(T−2)
i

)
, [s

(T )
i ] = mode

(
[σ

(T )
i ],[σ(T−1)

i ],[σ
(T−2)
i ]

)
,

and initial assignations s
(1)
i = σ

(1)
i , s(2)

i = σ
(2)
i , [s

(1)
i ] = [σ

(1)
i ], [s(2)

i ] = [σ
(2)
i ] .

Initially only the central cell of the left layer is active in Fig. 2 , in which
evolution is shown up to T=30 . The restraining effect of the short-range memory
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Fig. 2. The ahistoric coupled parity rule (left) and this rule with memory of the
majority of the last three states (center). The trait states are shown in the right
spatio-temporal patterns.

of the majority of the last three states becomes apparent also in the context of
coupled automata.

Stochastically coupled CA and Boolean Networks have been implemented to
study synchronization of coupled chaotic systems [13, 15, 17, 18] . The reduction
induced by memory in the perturbation from a single live cell means a reduction
in their differences of the spatio-temporal patterns of coupled CA. That might be
an indicator of a higher synchrony in the dynamics of coupled CA with memory
in general. But this is not necessarily so. At least not in the case of the vivid
parity rule, as indicated in Fig. 3 by the differences in the patterns of coupled
CA starting from the same random initial configurations and periodic boundary
conditions imposed on the border cells.

Fig. 3. Coupled parity CA starting at random. Ahistoric model, and models
with τ=3 and unlimited majority memories. The last column of graphics shows
the differences in the patterns of the two coupled layers.

Cells with unlimited majority memory in Fig. 3 are featured as,

s
(T )
i = mode

(
σ

(T )
i , σ

(T−1)
i , . . . , σ

(1)
i

)
,

[s
(T )
i ] = mode

(
[σ

(T )
i ], [σ

(T−1)
i ], . . . , [σ

(1)
i ]
)
.
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As a rule, increasing the length of the majority memory produces an increasing
inertial effect, so that in the unlimited trailing majority memory scenario, oscil-
lators or quasi-oscillators, tend to be generated, most of them of short length.
This effect can be envisaged in Fig. 3, but becomes apparent starting for a single
seed, as shown in the patterns under α=1 in Fig. 24 which actually corresponds
to this scenario.

A preliminary study of the effect of memory on coupled CA, mainly of radio
two, was made in [4].

In can be noted that an extension of the Java based CA system JCAsim [10]
supports coupled CA simulation [7] .

3 Perturbations

Two coupled CA with identical transition rules, wiring scheme and initial state
configuration will, of course, evolve identically. In the case of the inter-wiring
scheme being that considered here, i.e., connection of homologous cells, the evo-
lution of two K=2+1 coupled networks is that of a K=3 one-layer CA with
self-interaction of the kind in Fig. 1.

Fig. 4. Coupled parity rule with the central cell of the left network without
connection with its homologous cell. Ahistoric (left), τ=3 (center) and unlimited
trailing memory (right) models. Both central cells are initially at state 1.

In Fig. 4 both networks are initiated with an active central cell. But the
ahistoric and τ=3 memory patterns in Fig. 4 are not those of Fig. 1 because
there is a default in the coupling: the central cell of the left network does not
receive the input from its homologous cell in the right one. Because of that it is
not active at T=2 in the left layer. This simple default in wiring notably alters
the patterns compared to that in Fig. 1.

Figures 5 and 6 show the evolving patterns in coupled twin layers of size 122
up to T=20, from the same random initial configuration. The common spatio-
temporal pattern is shown in Figs. 5 and 6 with the active cells in grey tone.
Darker cells show the damage (rather perturbation [20]) induced by two different
causes : i) the just described lack in the inter-connection of the central cell
of left network in Fig. 5, and ii) the reversion of the state value of this cell.
Qualitatively speaking, the restraining effect of memory on the control of both
types of perturbation spreading is similar. In fact much of the characteristics
observed starting from a single seed may be extrapolated to the general damage
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spreading scenario: starting from a single site is a limit case of damage in fully
quiescent automata.

Fig. 5. Effect of the lack of inter-connection of the central cell of the left layer.
Parity rule acting on twin layers.

4 Coupled automata with elementary rules

Elementary rules operate on nearest neighbors : σ
(T+1)
i = φi

(
σ

(T )
i−1, σ

(T )
i , σ

(T )
i+1

)
.

These rules are characterized by a sequence of binary values (β) associated with
each of the eight possible triplets

(
σ

(T )
i−1, σ

(T )
i , σ

(T )
i+1

)
:

111 &; 110 &; 101 &; 100 &; 011 &; 010 &; 001 &; 000 &;
β1 &; β2 &; β3 &; β4 &; β5 &; β6 &; β7 &; β8x

.

The rule number of elementary CA , R =

8∑

i=1

βi2
8−i , ranges from 0 to

255. Legal rules are reflection symmetric (so that 100 and 001 as well as 110 and
011 yield identical values), and quiescent (β8 = 0) . These restrictions leave 32
possible legal rules of the form: β1β2β3β4β2β6β40 .

The far right column of patterns in Fig. 7 shows the effect of τ=3 majority
memory in the legal rules significantly affected by memory when starting form a
single site seed. The overall effect of memory is that of restraining the expansion
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Fig. 6. Effect of reversing the state value of the central cell of the left layer in
the scenario of Fig. 5.

of the spatio-temporal patterns, with particular incidence in rules 18, 90, 146,
and 218 which extinguish as soon as T=4 .

Coupled elementary rules evolve as :

σ
(T+1)
i = φ

(
σ

(T )
i−1, [σ

(T )
i ], σ

(T )
i+1

)
, [σ

(T+1)
i ] = φ

(
[σ

(T )
i−1], σ

(T )
i , [σ

(T )
i+1]

)
.

Automata with transition rules with no self-interaction in their one-layer
formulation, i.e., σ

(T+1)
i = φ

(
σ

(T )
i−1, σ

(T )
i+1

)
3, are unaltered if coupled in the simple

way considered here. Examples are the left and right shift rules 170 and 240
(
σ

(T+1)
i =σ

(T )
i+1 , σ

(T+1)
i =σ

(T )
i−1

)
and rule 90 : σ

(T+1)
i = σ

(T )
i−1⊕σ

(T )
i+1 , which evolves

in Fig. 7 isolated as in the one-layer scenario.
Rules with β6=β8=0, i.e., those which do not generate active cells when

the neighbors are not active (regardless of the state of the cell itself) in the
one-layer scenario, do not transmit activity to an initially fully inactive layer
when coupled. Among the 64 elementary rules with β6=β8=0, are the legal rules
18,90,146,218, 50,122,178,250 reported in Fig. 7, and the majority rule 232.
Also are neighbor-quiescent the asymmetric shift rules 170 and 240 (equivalent
under the reflection transformation), and rules 226 and 184 (equivalent under
the negative transformation) .

Figure 7 shows under the heading -coupled- the evolving patterns of coupled
legal elementary rules significantly affected by memory when starting from a
3 Some authors refer to these rules as rules without memory.
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Fig. 7. Coupled and one-layer elementary legal CA starting from a single active
cell in the left lattice. Ahistoric and mode of the last three state memory models.

single seed in one layer (the left one in Fig. 7). In this context, memory kills as
in the ahistoric model, the evolution of the group of rules 18, 90, 146, and 218,
and also that of rules 22, 54, 94, and 126. Memory notably narrows the evolution
of the parity rule 150 (as advanced in Fig. 2), and also very much alters that of
rules 182, 222, and 254.

The ahistoric patterns of rules 22, 54, 94, 126, 150, 182, 222, and 254 become
split in two complementary ones in their coupled evolution in Fig. 7. This split-
ting effect in the ahistoric model affects to every quiescent rule when starting
from a single active cell, so that the mere superposition (OR operation without
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the need of the XOR) of the patterns in the coupled formulation generates the
ahistoric ones.

Let us point here that the split of the one-layer pattern starting from a single
cell when coupling is not a particular property of elementary rules, but of the
simple way of coupling adopted here. Thus for example it holds with the parity
rule with five inputs as shown in Fig. 8 .

Fig. 8. The parity rule with five inputs. Coupled (overlined left) and one-layer
(right) ahistoric models .

Starting at random from a sole layer, only the linear rules 60 (00111100) ,
σ

(T+1)
i = σ

(T )
i ⊕ σ

(T )
i−1 , and its reflected rule 102 (01100110), σ

(T+1)
i = σ

(T )
i ⊕

σ
(T )
i+1, together with rules 150 and 204 , retain this superposition property in

the ahistoric context. In Fig. 9 only the left layer starts with live cells, thus
σ

(2)
i =σ

(1)
i−1 ⊕ σ

(1)
i+1, and [σ

(2)
i ]=σ

(1)
i , so that the initial configuration is transmit-

ted to the right layer after the first iteration. Then, at T=3, [σ
(3)
i ]=σ

(1)
i−1 ⊕

(σ
(1)
i−1⊕σ

(1)
i+1)⊕σ

(1)
i+1 = 0, and consequently, [σ

(4)
i ]=σ

(3)
i . The left layer is at T=3,

σ
(3)
i =(σ(1)

i−2⊕σ
(1)
i )⊕σ

(1)
i ⊕σ

(1)
i ⊕σ

(1)
i+2), =σ

(1)
i−2⊕σ

(1)
i ⊕σ

(1)
i ⊕σ

(1)
i+2, i.e., the same

state value as in the one-layer configuration. The ulterior dynamic generalizes
these initial results, so that the initially empty layer is empty at odd time-steps
and copies that of the partner layer at even time-steps, whereas the configura-
tion of the initially active layer at odd time-steps is the same as in the one-layer
model. Qualitatively, the same dynamic is followed in rules 60 and 102, as seen
in Fig. 9 .

Unlike in Fig. 7, starting at random as in Fig. 9 to get the one-layer patterns
from those in the coupled formulation addition is necessarily to be done modulo
two with the linear rules 60, 102 and 150 .

With τ=3 majority memory, no rule, except the identity rule 204, σ
(T+1)
i =

σ
(T )
i , verify this superposition property. Thus, as an example, the patterns of

the coupled partner layers in Fig. 10 do not add the one-layer ones shown also in
the figure. The identity rule 204 is unaffected by memory, so that in the coupled
formulation the initial pattern appears at odd time steps in the left layer and at
the even ones in the right layer, generating by direct superposition the one-layer
lattice as shown in Fig. 9 .

Linear rules are additive, i.e., any initial pattern can be decomposed into the
superposition of patterns from a single site seed. Each of these configurations
can be evolved independently and the results superposed (module two) to obtain
the final complete pattern. Mathematically, the distributive property holds for
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Fig. 9. Coupled elementary legal CA starting at random in the left lattice (over-
lined left) which generate via superposition the one-layer evolution (right) .

every pair of initial configurations u and v : φ(u⊕v) = φ(u)⊕φ(v) . The upper
group of spatio-temporal patterns in Fig. 11 shows an example.

Linear rules remain linear when cells are endowed with linear memory rules.
Thus, endowing the parity rule of the three last states as memory in cells upon
the coupled elementary linear rule 150 yields:

σ
(T+1)
i = s

(T )
i−1 ⊕ [s

(T )
i ]⊕ s

(T )
i+1 , [σ

(T+1)
i ] = [s

(T )
i−1]⊕ s

(T )
i ⊕ [s

(T )
i+1] ,

with, s
(T )
i+1 = σ

(T )
i+1 ⊕ σ

(T−1)
i+1 ⊕ σ

(T−2)
i+1 , s

(T )
i = σ

(T )
i ⊕ σ

(T−1)
i ⊕ σ

(T−2)
i , s

(T )
i−1 =

σ
(T )
i−1 ⊕ σ

(T−1)
i−1 ⊕ σ

(T−2)
i−1 , and, [s

(T )
i+1] = [σ

(T )
i+1]⊕ [σ

(T−1)
i+1 ]⊕ [σ

(T−2)
i+1 ] ,

[s
(T )
i ] = [σ

(T )
i ]⊕ [σ

(T−1)
i ]⊕ [σ

(T−2)
i ] , [s

(T )
i−1] = [σ

(T )
i−1]⊕ [σ

(T−1)
i−1 ]⊕ [σ

(T−2)
i−1 ] .

Consequently, linear rules remain additive when endowed with linear mem-
ory rules. Thus in the lower group of spatio-temporal patterns in Fig. 11 , the
evolution patterns starting from the left layer (upper row), and from the right
one (central row), if added modulo two generate the evolving pattern starting
from both layers active (bottom row).
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Fig. 10. Coupled elementary CA rules starting at random in the left lattice
(overlined left), and one-layer (right) evolution with τ=3 majority memory.

5 Number conserving rules

The only non-trivial elementary rules conserving the number of active sites are
the traffic rule 184 (10111000) and its reflected rule 226 (11001000) [6, 8] . These
rules when coupled to an empty layer evolve as a left and right shift respec-
tively 4, thus still conserving the total number of live cells. Starting from dif-
ferent random configurations in both layers, both rules 184 and 226 lose their
characteristic number conserving property, in respect to the individual layers,
but not considering the two layers as a whole, albeit presenting very different
spatio-temporal patterns, as shown in Fig. 12 for rule 226 in a lattice of size 400
up to T=100.

When implementing majority memory, rules 184 and 226 lose the number
conserving property, so that the pattern drifts to a fixed point of all 1s or all 0s
depending upon whether within the configuration the number of 1s was superior
to that of 0s or the contrary. The variation in the number of live cells in Fig. 13 is
low (less than ten cells) because the initial density is fairly close to the watershed
0.5, so that only by T=1000, the pattern full blackens. The cases of low and high
initial densities in Fig. 14 show that the rule 226 with τ=3 majority memory
readily relaxes in both cases to a fixed point of all 0s or all 1s, correctly classifying

4 101 100 001 000
1 1 0 0

, equivalent to σ
(T+1)
i =σ

(T )
i−1 , and 101 100 001 000

1 0 1 0
, equivalent to

σ
(T+1)
i =σ

(T )
i+1 .
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Ahistoric model

τ=3 parity memory

Fig. 11. Additivity of the linear rule 150 in the coupled (overlined left) and
in the one-layer (right) scenarios. Ahistoric (upper group of patterns) and τ=3
parity (lower group of patterns) memories.

the initial configuration. This is not so when coupling the two halves of the one-
layer scenario due to the presence of permanent solitons of the alternative state
value. The relaxation of the criterion by which the rules 184 and 226 recognizes
majority density [8] must bounce back when these rules are coupled.
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Fig. 12. Elementary rule 226 starting at random. One layer (upper) and coupled
half (lower) layers.

Fig. 13. Elementary rule 226 in the scenario of Fig. 12 with τ=3 mode memory.

The majority rule 232 together with the equivalent rules 184 and 226 has
proved to be particularly effective among elementary rules in dealing with the
density problem [9, 19] : to decide whether an arbitrary initial configuration con-
tains a density of 1s above or below a given value σc, particularly when σc=0.5 .
As with synchronization, the density task comprises a non-trivial computation
for small-radius CA : density is a global property of a configuration, where small-
radius CA rely solely on local interactions. starting to investigate this issue with
the help of evolutionary based searching tools.
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ρ0 = 0.25

ρ0 = 0.75

Fig. 14. The scenario of Fig. 13 from initial densities 0.25 and 0.75 .

So far, we expect that rules endowed with memory in cells in the form of the
mode of the three last states acting in the temporal domain will produce good
results in classifying density, as suggested here with respect to the elementary
rules 184 and 226 . In the case of rule 226 by means of the examples of the
evolution of the spatio-temporal patterns in Fig. 13 and in the case of rule 184
by the dynamics of the density shown in Fig. 15. It becomes apparent from
Fig. 15 that rule 184 with τ=3 very soon relaxes to the correct fixed point if
the initial density is either ρ≥0.6 or ρ≤0.4. In the [0.4, 0.6] interval the drift
of density is much slower, but tending to the steady state that marks correct
classification. This is so even for the particular cases that appear stabilized up
to T=300, as shown also in Fig. 15. Only one of the plots that finally evolve
upwards in the lower graph of Fig. 15 corresponds to an initial density under
0.5, albeit very close to this limit value. Increasing the length of the trailing
memory up to T=5 does not imply increasing the performance in the solution of
the classification task. Beyond this trailing length, inertial effects opposite the
drift to the all 1s or all 0s intended in the density classification. It seems that
τ=3 as length of the majority memory is a good (and simple) choice regarding
the density task.

Non-uniform or hybrid CA have been shown to be a good tool to solve the
density task [19]. The CA with memory here may be also considered hybrid
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Fig. 15. Evolution of density under rule 184 up to T=300. Further evolution of
the instances stable up to T=300 are shown below.

(or composite), but in space and time, implementing in the time context the
most successful density task solver rule : the majority rule. It is expected that a
synergetic effect will emerge, so that rules in the standard context that poorly
deal with the density task problem, when combined with the majority memory
become good density solvers.

The evolution of rule 262 with memory in Fig. 13 (and that of rule 184 shown
in [4]) resembles that of the r=3 Gacs-Kurdyumov-Levin (GKL [11, 12]) rule 5,
whose evolution in the one-layer and coupled models is shown in Fig. 16 starting
from the same initial configuration as in Fig. 12.

Both GKL and rules with τ=3 mode memory have in common the presence
of the mode operation and produce excellent results in the density task.

Eventually number-conserving (ENC) CA reach limit sets, after a number of
time steps of order of the automaton size, having a constant number of active
sizes [5]. Some ENC rules emulate proper number-conserving rules, albeit this
is not a necessary condition. Among the ENC which emulate NC stand the
number-nonincreasing rule 176, which emulates both rules 184 and 240, and the
not monotone rule 99 which emulates rule 226, shown in Fig. 19 . When coupled,
these rules also evolve as ENC rules, reaching a plateau after a fairly short
transition period (see Figs. 17 and 18) . The numbers reached in the steady

5

σ
(T+1)
i =







mode
(
σ

(T )
i , σ

(T )
i−1, σ

(T )
i−3

)
amp; if amp;σ

(T )
i = 0

mode
(
σ

(T )
i , σ

(T )
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i+3

)
amp; if amp;σ

(T )
i = 1
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Fig. 16. The GKL rule starting at random. One layer (upper) and coupled half
(lower) layers.

regime in other layer and coupled contexts are not exactly the same, albeit they
use to be fairly close.

None of these rules with memory seem to solve the density task as rules 184
and 226 do, because the implementation of memory seems not to discriminate
among the different levels of initial density. Thus, the evolution of density is
altered in a similar way regardless of ρo, either depleting it as happens with
rule 176 in Fig. 17, or ii) leaving it fairly unaltered as in the case of rule 99
in Fig. 18 6 . This is so regardless of the dramatic change that may suffer the
spatio-temporal patterns, as shown in Fig. 19 . The dynamics under rule 99 has
been also checked endowing cells with memory of the parity of their three last
states. Even in this scenario rule 99 shows a notable resilience to abandon the
tendency to stabilize the density close to 0.5 . The effect of memory on ENC
rules that do not emulate NC rules, e.g. the not monotone rules 74 and 88 is
similar to that just described.

6 Asymmetric memory

Figure 20 corresponds to an asymmetric scenario in which respect memory as
only one of the layers (the right one in Fig. 20) has cells endowed with memory,
whereas the cells of its partner layer are featured by their last state. Both coupled
layers have its central cell active initially.

In both scenarios, short-range (τ=3) and unlimited majority memory, mem-
ory soon kills the dynamic in the layer with memory in the group of rules
6 Under rule 99, the density departing from the highest values plummets initially in

such a way that its change is hidden in the y-axis. Conversely, the variation from the
smallest initial densities is hidden in the y-axis due to its initial dramatic increase.
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Fig. 17. The evolution of density under rule 176 .
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Fig. 18. The evolution of density under rule 99 .
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Fig. 19. The rule 99. One layer (upper) and coupled half (lower) layers.
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Right layer with τ=3 majority memory

Right layer with unlimited majority memory

Fig. 20. Coupled legal rules with only the right layer endowed with memory.

18,90,146,218, and excerpts the characteristic restraining effect in the case of
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rules 50,122,178, and 250. But the remaining rules, rule 150 in particular, do not
evolve in a restrained form, so that the ahistoric networks seem to drive the pro-
cess. This evolution is rather unexpected, particularly in the case of unlimited
majority memory, a memory implementation very much tending to freeze any
dynamical system.

7 Elementary rules as memory

Any Boolean function of previous state values, other than parity or major-
ity, may act as memory rule. Elementary rules in particular, so that : s(T )

i =

φ
(
σ

(T1)
i , σ

(T )
i , σ

(T−2)
i

)
, [s

(T )
i ] = φ

(
[σ

(T1)
i ], [σ

(T )
i ], [σ

(T−2)
i ]

)
.

Fig. 21. Effect legal rules as memory on rule 150 .

Figure 21 shows the effect of legal rules as memory on rule 150 , and Fig. 22
reports the effect of quiescent asymmetric rules of low number as memory also
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Fig. 21. (Continued).

on rule 150 . Initially s
(1)
i = σ

(1)
i , s(2)

i = σ
(2)
i , [s

(1)
i ] = [σ

(1)
i ], [s(2)

i ] = [σ
(2)
i ] in

these figures. In the fairly endless patchwork of patterns generated as a result
of the composition of the spatial rule 150 with the elementary rules acting of
memory, the original aspect of the rule 150 is not always traceable.

8 Average memories

The historic memory of every cell i can be weighted by applying a geometric
discounting process based on the memory factor α lying in the [0,1] interval, so
that :

m
(T )
i (σ

(1)
i , . . . , σ

(T )
i ) =

σ
(T )
i +

T−1∑

t=1

αT−tσ
(t)
i

1 +

T−1∑

t=1

αT−t

≡ ω
(T )
i

Ω(T )
.



92 Alonso-Sanz and Bull

Fig. 22. Effect of quiescent asymmetric rules as memory on rule 150 .
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Fig. 22. (Continued).

This well known mechanism fully takes into account the last round, and tends to
forget the older rounds. The trait state (s) will be obtained by comparing the not
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rounded weighted mean memory charge m to the landmark 0.5 (if σ ∈ {0, 1}),
assigning the last state in case of an equality to this value. Thus :

s
(T )
i = H(m

(T )
i ) =







1 if m
(T )
i > 0.5

σ
(T )
i if m

(T )
i = 0.5

0 if m
(T )
i < 0.5.

The choice of the memory factor α simulates the long-term or remnant mem-
ory effect: the limit case α = 1 corresponds to a memory with equally weighted
records (full memory, equivalent to the mode if k = 2), whereas α ≪ 1 inten-
sifies the contribution of the most recent states and diminishes the contribution
of the more remote states (short-term working memory). The choice α = 0 leads
to the ahistoric model.

In the most unbalanced scenario, σ
(1)
i = ... = σ

(T−1)
i 6= σ

(T )
i , it holds that :

m = 0.5⇒ αT
T −2αT +1 = 0 7. At T = 3, it is α3

3−2α3 +1 = 0⇒ α3 = 0.61805,
and at T = 4, it is α4 = 0.5437. When T →∞, the effectivity equation becomes :
−2α∞ + 1 = 0, thus, due to the rounding operation H, in the k = 2 scenario,
α-memory is not effective if α ≤ 0.5 .

Figure 23 shows the restraining effect of increasing values of the memory
factor α on rule 150 from a single site seed up to T=30 . As stated, α-memory
is not effective at T=3, altering the pattern at T=3, unless α ≥α3 = 0.61805,
so in Fig. 23 for the values α ≥0.7 . Memory is effective at T=4 in the interval
[0.55, 0.6], i.e., with α ≥ α4 = 0.5437 .

Fig. 23. Effect of α-memory on rule 150 from a single cell.

Figure 24 shows the effect of increasing α-memory in the coupled automata
scenario. The lower values of α approach the τ=3 majority memory effect,
but higher values very much confine the perturbation. Frequently, full memory
(α=1.0) tends to generate oscillators as in Figure 24 .

7
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It is remarkable that this memory mechanism is not holistic but cumulative
in its demand for knowledge of past history: the whole

{
σ

(t)
i

}
series needs not

be known to calculate the term ω
(T )
i of the memory charge m

(T )
i , while to (se-

quentially) calculate ω
(T )
i one can resort to the already calculated ω

(T−1)
i and

compute: ω
(T )
i = αω

(T−1)
i + σ

(T )
i .

Fig. 24. Effect of α-memory in the scenario of Fig. 2 .

Another memory mechanism, similar to that used in the context of con-
nection weights adjustments in neural networks, is one in which the distance
between the state value and the actual one is adjusted with the so called learn-
ing rate δ. In the Widrow-Hoff like scheme implemented here, the trait state s
is obtained by rounding the average m incremented by the pondered discrep-
ancy between the expected average value m and the current state σ : s

(T )
i =

H
(
m

(T )
i +δ(σ

(T )
i −m

(T )
i )

)
. Thus, δ=1 leads to the ahistoric model, whereas δ=0

leads to the memory model based on the average m Figure 25 shows the effect
of such kind of memory in the scenario of Fig. 1 , with m being the unweighted

average: m
(T )
i =

1

T

T∑

t=1

σ
(t)
i .

Fig. 25. Effect of δ-memory on rule 150 from a single cell. T=30 .
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In the most unbalanced scenario, in the δ-memory mechanism it holds that :

m = 0.5 ⇒ δT =
1

2

T−2

T−1
8. It is, δ3=1/4, thus in Fig. 25 the pattern at T=4

differs from the ahistoric one (as in Fig. 1) only for δ ≤0.2 and 0.1 . It is δ4=1/3 ,
thus the pattern at T=5 in Fig. 25 is the ahistoric one when δ=0.35 but is altered

under δ=0.30 . When T → ∞, it is : δ∞ =
1

2
, thus δ-memory is not effective if

δ ≥ 0.5 .

Fig. 26. Effect of δ-memory in the scenario of Fig. 2 .

Figure 26 shows the effect of decreasing values of δ-memory in the coupled
CA context of Fig. 2 . Evolution under the higher δ values approaches to that
of τ=3 majority memory, whereas δ=0.1 approaches that of the unlimited full
trailing memory.

9 Conclusion

Embedding memory in cells of coupled cellular automata notably alters the
dynamics compared to the conventional ahistoric one. As a general rule, memory
of average kind, such as majority memory, tends to inhibit complexity, inhibition
that can be modulated by varying the depth of memory, but non-average type
memory, such as parity memory, opens a notable new perspective in CA.

A major impediment in modeling with CA stems from the difficulty of uti-
lizing their complex behavior to exhibit a particular behavior or perform a par-
ticular function. CA with memory in cells broadens the spectrum of CA as a
tool for modeling, in a fairly natural way for easy computer implementation. It
is likely that in some contexts, a transition rule with memory could match the

8







m(0, 0, . . . , 0, 1) =
1

T
+ δ

(
1 −

1

T

)
=

1

2

m(1, 1, . . . , 1, 0) =
T − 1

T
+ δ
(
0 −

T − 1

T

)
=

1

2







⇒ δT =
1

2

T−2

T−1
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correct behavior of the CA system of a given complex system. This could mean a
potential advantage for CA with memory (CAM) over standard CA as a tool for
modeling. Anyway, besides their potential applications, CAM have an aesthetic
and mathematical interest on their own. A further modification as explored here,
is to couple CAM thereby opening the possibility of other new dynamics which
may be suitable for modeling various systems.

The study of the effect of memory on coupled disordered CA and Boolean
Networks [3] is planned as a forthcoming work.
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Abstract. It has been shown earlier by Durand, Formenti and Varouchas
that equicontinuity and sensitivity are undecidable properties for one-
dimensional cellular automata. It has been shown by Kari and Ollinger
that equicontinuity is undecidable for reversible cellular automata also.
In this paper it is shown that sensitivity is undecidable for reversible
cellular automata.

1 Introduction

Cellular automata are a simple formal model for the study of phenomena caused
by local interaction of finite objects. A cellular automaton consists of a regular
lattice of cells. Each cell has a state which is updated on every time step according
to some local rule which is the same for all the cells in the lattice. The locally
used update rule is simply called a local rule. On every time step the next state of
the cell is determined according to the its own previous state and the previous
states of a finite number of its neighbors. The state information of the entire
lattice at any time step is called a configuration of the cellular automaton.

The cellular automata were introduced by von Neumann to study biologi-
cally motivated computation and self-replication [8]. The mathematical study of
cellular automata in symbolic dynamics was initiated by Hedlund [3]. Although
cellular automata may seem a simple model for computation, they can exhibit
very complex behavior. A well-known example of such complex behavior is the
Game-of-Life. Even though the rule according to which the lattice is updated
is quite simple in the Game-of-Life, some state patterns interact in a somewhat
complex manner. In fact, the Game-of-Life has been shown to be computation-
ally universal. In particular, any Turing machine can be simulated with some
cellular automaton in a natural way.
⋆ This research has been supported by the Fund of Yrjö, Vilho and Kalle Väisälä.
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Cellular automata have been studied very extensively also as discrete time
dynamical systems. Injectivity, surjectivity, nilpotency, topological transitivity,
topological mixing and different variants expansivity are among widely studied
properties of cellular automata. In this paper some aspects of the equicontinuity
classification (due to Kurka [6]) of one-dimensional cellular automata are re-
viewed. It is already known that equicontinuity and sensitivity are undecidable
properties for irreversible cellular automata [2]. It has been recently shown by
Kari and Ollinger that equicontinuity is undecidable even for reversible cellular
automata [5]. It is known that regularity (i.e. regularity of the column subshifts
as a formal language) is undecidable among irreversible cellular automata [7].

In this paper it is shown that sensitivity (i.e. lack of equicontinuity points)
is undecidable for reversible cellular automata. Also, from the result of Kari
and Ollinger it follows that regularity is undecidable even for reversible cellular
automata.

2 Cellular automata

Cellular automata are dynamical systems which update the variables on an in-
finite d-dimensional lattice according to some function with a finite number of
arguments. Formally, a cellular automaton is a 4-tuple A = (d, A, N, f), where d
is the dimension, A is the state set, N = (−→x1, . . . ,

−→xn) is the neighborhood vector
consisting of vectors in Z

d and f : An → A is the local rule. A configuration
c ∈ AZ

d

is a mapping which assigns a unique state for each cell location in Z
d.

The cells in locations −→x +−→xi are called neighbors of the cell in location −→x .
At every time step the new configuration c′ is determined by

c′(−→x ) = f(c(−→x +−→x1), . . . , c(
−→x +−→xn)), (1)

that is, the new state of cell in location −→x is computed by applying the local rule
to its neighbors. The global rule F : AZ

d → AZ
d

is defined by setting F (c) = c′

in the sense of equation 1.
A cellular automaton is said to be reversible if the global rule F has an

inverse mapping F−1. It can be shown that if the inverse mapping F−1 exists,
it is a global rule of a cellular automaton, that is, it is defined by a local rule. It
is also known that F is reversible if, and only if, it is injective. Furthermore, in
the case of cellular automata injectivity of the global rule implies surjectivity of
the global rule [4].

The distance between two different configurations c and e can be defined to
be

d(c, e) =

(
1

2

)min{‖−→x ‖∞ | c(
−→x ) 6=e(−→x )}

,

where ‖ · ‖∞ is the max-norm. Function d(·, ·) is also a metric thus making the set
of configurations a metric space. The balls in the metric are called cylinders and
they form a basis for the topology. Radius r cylinder centered at configuration
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c is the set

Cyl(c, r) =
{

e ∈ AZ
d | c(−→x ) = e(−→x ) when ‖−→x ‖∞ ≤ r

}

For every radius r there are only finitely many cylinders and these cylinders
are by definition disjoint. Therefore, radius r cylinders form a partition of the
space of configurations. Hence, every cylinder is clopen because the complement
of every cylinder is a union of other cylinders with the same radius. In the
one-dimensional case, one can define cylinders as sets

Cyl(w, k) =
{
c ∈ AZ | c(i + k) = w(i) when i ≤ |w| − 1

}

where w ∈ A∗ is a finite word and w(i− 1) denotes the ith letter of the word.
Pair (X, F ) is a dynamical system if X is a compact metric space and F :

X → X is a continuous mapping. In particular, d-dimensional cellular automata
are dynamical systems of the form (AZ

d

, F ).
A point x ∈ X is an equicontinuity point of mapping F if for any ε > 0 there

exists such δ > 0 that for any point y ∈ X and integer n ∈ N,

d(x, y) < δ =⇒ d(Fn(x), Fn(y)) < ε.

A dynamical system (X, F ) is equicontinuous if every point x ∈ X is an equicon-
tinuity point.

A word w ∈ A∗ is said to be blocking if there exists such a sequence of words
(wn)∞n=0 that Fn(Cyl(w, i)) ⊆ Cyl(wn, 0) for some integer i and any n ∈ N and
word length |wn| is equal to the radius r of the local rule for any n ∈ N. Set

Σk(F ) =
{

x ∈
(
Ak
)N | ∃y ∈ AZ : ∀i ∈ N : F i(y) ∈ Cyl(x(i), 0)

}

is called the column subshift of the one-dimensional cellular automaton (AZ, F ).
A cellular automaton is regular if for any positive integer k the finite words
(i.e. words over alphabet Ak) appearing in the sequences of Σk(F ) as factors
form together a regular language. Equivalently, cellular automaton is regular if
Σk(F ) is sofic for every k. It should be noted that sometimes also the denseness
of periodic points is referred to as regularity [2]. However, here regularity means
the property of the column subshifts according to Kurka [6].

A dynamical system (X, F ) is sensitive to initial conditions (or sensitive) if
there exists such ε > 0 that for any x ∈ X and δ > 0 there exists such a point
y ∈ X that

0 < d(x, y) < δ and d(Fn(x), Fn(y)) ≥ ε

for some integer n ∈ N. If the constant ε exists, it is known as the sensitivity
constant. For one-dimensional cellular automata sensitivity is equivalent to the
nonexistence of equicontinuity points.

A dynamical system (X, F ) is periodic if there exists such an integer p that
F p+i = F i for every i ∈ N. It is ultimately periodic if there exists such integers
p0 and p that F p0+p+i = F p0+i for every i ∈ N.
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Theorem 2.1 ([1]). A cellular automaton is equicontinuous if, and only if, it
is ultimately periodic.

Theorem 2.2 ([1]). Any equicontinuity point has an occurrence of a blocking
word. Conversely, any point with infinitely many occurrences of blocking words
to the left and right of the origin is an equicontinuity point.

3 Undecidability results

Theorem 3.1 ([5]). It is undecidable whether a given one-dimensional reversible
cellular automaton is equicontinuous, that is, all configurations are equicontinu-
ity points.

Using the method of Di Lena [7] with the undecidability of equicontinuity [5],
one can show that regularity is an undecidable property even for reversible one-
dimensional cellular automata.

Corollary 3.1. It is undecidable whether a given one-dimensional reversible cel-
lular automaton is regular.

Proof (sketch). Assume that regularity is a decidable property among reversible
cellular automata. A reversible cellular automaton is equicontinuous if, and only
if, it is periodic. Every periodic cellular automaton is regular because the lan-
guage of a column subshift consists of powers of a finite number of words and
all their subwords.

Periodicity is a decidable property among regular cellular automata be-
cause the graph presentation can be constructed algorithmically for regular au-
tomata [7]. This contradicts the undecidability of periodicity. ⊓⊔

Theorem 3.2. It is undecidable whether a given one-dimensional reversible cel-
lular automaton is sensitive, that is, it has no equicontinuity points.

Proof (sketch). Using the Turing machine simulation method given by Kari and
Ollinger [5], a cellular automaton can be constructed which always has equicon-
tinuity points. This cellular automaton can be further modified so that an addi-
tional set of states can pass through the already existing blocking word sequences
if, and only if, the blocking word sequence does not contain a halting Turing ma-
chine simulation started on an empty tape. ⊓⊔
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Abstract. We study the problem of finding a simple one-dimensional
reversible cellular automaton (RCA) that have computation-universality.
So far, a 30-state universal RCA that works on infinite (ultimately pe-
riodic) configurations has been given by Morita. Here, we improve this
result, and show there is a 24-state universal RCA that also works on
infinite configurations. Similar to the case of the 30-state RCA, the 24-
state RCA simulates any cyclic tag system, which is a universal string
rewriting system proposed by Cook.

1 Introduction

Since the early stage of the history of cellular automata (CAs), computation-
universality has been studied as one of the important problems in CAs. As
it is well known, von Neumann [13] designed a 29-state 2-D CA that is both
computation- and construction-universal. Codd [3] improved the results, by giv-
ing a 8-state model. In these CAs, Turing machines can be realized as finite
configurations. (Note that a “finite configuration" is a one such that the num-
ber of cells in non-quiescent state is finite.) Later, Banks [1] showed a 2-state
Neumann-neighbor 2-D CA in which any Turing machine can be embedded as an
ultimately periodic infinite configuration. On the other hand, it has bee shown
that the Game of Life, a 2-state Moore-neighbor 2-D CA, is universal, where any
2-counter machine can be realized as a finite configuration [2].

In the case of 1-D CAs, Cook [4] proved that the elementary (i.e., 2-state 3-
neighbor) CA of rule 110 with infinite configurations is computation-universal.
As for 1-D universal CA with finite configurations, we can obtain a 7-state 3-
neighbor model by slightly modifying the CA given by Lindgren and Nordahl [6].
An intrinsically universal 1-D CA, which can simulate any 1-D CA in infinite
configurations, was studied by Ollinger and Richard [14], and they gave a 4-state
3-neighbor model.

As for “reversible" CAs (RCAs), Toffoli [15] first showed the existence of a
computation-universal 2-D RCA. Later, Morita and Harao [8] showed that the
class of 1-D RCAs is also computation-universal. In the case of 2-D RCA, vari-
ous simple universal RCAs have been presented until now. Margolus [7] proposed
an interesting 2-state 2-D RCA with Margolus-neighbor that can simulate the
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Billiard-Ball Model of computation by which the Fredkin gate, a universal re-
versible logic gate, can be realized. Morita and Ueno [9] used the framework of
partitioned CA (PCA), a subclass of conventional CAs, and gave two models of
16-state Neumann-neighbor universal 2-D reversible PCAs. Imai and Morita [5]
showed a 8-state universal reversible triangular PCA that has an extremely sim-
ple local function. All the above universal 2-D RCAs need infinite configurations.
Morita et al. [10] showed a 81-state universal 2-D reversible PCA in which any
reversible 2-counter machine can be realized as a finite configuration.

Here, we investigate how simple 1-D universal RCAs can be. In [11] (also
presented at AUTOMATA 2005) Morita proposed two such universal reversible
PCAs. The first one is a 36-state model on infinite configurations, and the second
one is a 98-state model on finite configurations. These models can simulate any
cyclic tag system (CTAG), which is a kind of string rewriting system having
universality proposed by Cook [4]. Later, the number of states of the former
model was reduced, i.e., a 30-state universal reversible PCA was given in [12]
(and in AUTOMATA 2006). In this paper, we further improve this result by
showing a 24-state universal reversible PCA that works on infinite configurations.

2 Preliminaries

In this paper, we use the framework of partitioned cellular automata (PCAs)
rather than that of conventional CAs, because the former makes it easy to design
an RCA with a desired property.

Definition 2.1. A deterministic one-dimensional three-neighbor partitioned cel-
lular automaton (PCA) is defined by

P = (Z, (L, C, R), f),

where Z is the set of all integers, L, C, and R are non-empty finite sets of states
of left, center, and right parts of each cell, and f : R×C ×L→ L×C ×R is a
local function. The next state of each cell is determined depending on the states
of the right part of the left-neighboring cell, the center part of this cell, and the
left part of the right-neighboring cell as shown in Fig. 1. Hereafter, the relation
f(r, c, l) = (l′, c′, r′) is indicated as in Fig. 2, and called a local rule of P . The
global function F : ZQ → ZQ (where Q = (L×C×R)) is defined by applying the
local function f to all the cells of P in parallel (see e.g., [8, 11] for its detail). A
PCA P is called locally reversible iff the local function f is injective, and called
globally reversible iff the global function F is injective.

In [8], it is shown that P is globally reversible iff locally reversible. Further-
more, it is easy to see that a PCA is a subclass of a conventional CA. Therefore,
to obtain a reversible CA with some desired property, it is sufficient to give a
locally reversible PCA with the property. Thus, the framework of a PCA facili-
tates to design an RCA. However, in general, the number of the states of a cell
of a PCA becomes large, since the state set of each cell is (L× C ×R).
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Fig. 1. The cellular space and a local function of a 1-D 3-neighbor PCA.

r c l - l′ c′ r′

Fig. 2. A local rule of a 1-D 3-neighbor PCA.

Definition 2.2. A cyclic tag system (CTAG) is a kind of string rewriting sys-
tem having computation-universality [4]. It is defined by

C = (k, {Y, N}, (p0, · · · , pk−1)),

where k (k = 1, 2, · · · ) is the length of a cycle (i.e., period), {Y, N} is the (fixed)
alphabet, and (p0, · · · , pk−1) ∈ ({Y, N}∗)k is a k-tuple of production rules. A pair
(v, m) is called an instantaneous description (ID) of C, where v ∈ {Y, N}∗ and
m ∈ {0, · · · , k−1}. m is called a phase of the ID. A transition relation ⇒ on the
set of IDs is defined as follows. For any (v, m), (v′, m′) ∈ {Y, N}∗×{0, · · · , k−1},

(Y v, m)⇒ (v′, m′) iff [m′ = m + 1 modk] ∧ [v′ = vpm],
(Nv, m)⇒ (v′, m′) iff [m′ = m + 1 modk] ∧ [v′ = v].

A sequence of IDs (v0, m0), (v1, m1), · · · is called a computation starting from
v ∈ {Y, N}∗ iff (v0, m0) = (v, 0) and (vi, mi)⇒ (vi+1, mi+1) (i = 0, 1, · · · ), and
is denoted by (v0, m0)⇒ (v1, m1)⇒ · · · .

A CTAG is a system where production rules (p0, · · · , pk−1) are used cyclically,
i.e., pm is used when the phase is m (m = 0, · · · , k− 1). If the head symbol of a
rewritten string is N , then the symbol N is simply removed. On the other hand,
if the head symbol is Y , then it is removed and pm is attached at the end of the
rewritten string.

Example 2.1. The following is a simple example of a CTAG.

C0 = (3, {Y, N}, (Y, NN, Y N)).

If we give NY Y to C0 as an initial string, then

(NY Y, 0)⇒ (Y Y, 1)⇒ (Y NN, 2)⇒

⇒ (NNY N, 0)⇒ (NY N, 1)⇒ (Y N, 2)⇒ · · ·
is a computation starting from NY Y .
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3 A 24-state universal reversible PCA P24

The proposed model is a 24-state reversible PCA P24 that operates on ultimately
periodic infinite configurations. It is defined as follows.

P24 = (Z, ({#}, {Y, N, +,−}, {y, n, +,−, ∗, /}), f24).

The state set of each cell is {#}× {Y, N, +,−}× {y, n, +,−, ∗, /}, and thus P24

has 24 states. Note that P24 is actually a two-neighbor (hence, one-way) PCA,
since the state set of the left part is {#}.

The local function f24 consists of the 24 local rules shown in Fig. 3. We can
see there is no pair of distinct local rules whose right-hand sides are the same.
Hence, f24 is injective, and thus P24 is an RCA.r  # - #  r r 2 fy; n;+;�; =g;  2 fY;Ng� Y # - # + =� N # - # � =r � # - # � r r 2 fy; n; �gr  # - # r  r 2 f+;�g;  2 f+;�gy + # - # Y �n + # - # N �= + # - # + y= � # - # + n� + # - # + �
Fig. 3. 24 local rules of the reversible PCA P24, represented by the 10 rule
schemes.

We now explain how P24 can simulate a CTAG by using the previous ex-
ample C0 with an initial string NY Y . The initial configuration of P24 is set
as follows (see the first row of Fig. 4). The string NY Y is given in the cen-
ter parts of some three consecutive cells. The right-part states of these three
cells are set to −. The states of the cells right to the three cells are set to
(#,−,−), (#, Y,−), (#, Y,−), · · · . The production rules (Y, NN, Y N) is given
by a sequence of the right-part states y, n, ∗, and − in a reverse order, where the
sequence −∗ is used as a delimiter indicating the beginning of a rule. Thus, one
cycle of the rules (Y, NN, Y N) is represented by the sequence ny−∗nn−∗ y−∗.
We should give infinite copies of the sequence ny − ∗nn − ∗ y − ∗, since these
rules are applied cyclically. The center-part states of all these cells are set to −.



110 Morita�n �y �� �� �n �n �� �� �y �� �� N� Y� Y� �� Y� Y� Y� Y� Y��� �n �y �� �� �n �n �� �� �y �� �= Y� Y� �� Y� Y� Y� Y� Y��� �� �n �y �� �� �n �n �� �� �y �� Y = Y� �� Y� Y� Y� Y� Y��y �� �� �n �y �� �� �n �n �� �� �y Y� Y = �� Y� Y� Y� Y� Y��� �y �� �� �n �y �� �� �n �n �� �� Y y Y� +n Y� Y� Y� Y� Y��� �� �y �� �� �n �y �� �� �n �n �� += Y y �+ Y n Y� Y� Y� Y��n �� �� �y �� �� �n �y �� �� �n �n �+ Y = �y Y+ Y n Y� Y� Y��n �n �� �� �y �� �� �n �y �� �� �n �n Y+ +n Y y Y+ Y n Y� Y��� �n �n �� �� �y �� �� �n �y �� �� �n Y n ++ Y n Y y Y+ Y n Y��� �� �n �n �� �� �y �� �� �n �y �� �� Y n N � Y+ Y n Y y Y+ Y n�y �� �� �n �n �� �� �y �� �� �n �y �� += Nn += Y+ Y n Y y Y+�n �y �� �� �n �n �� �� �y �� �� �n �y �+ N= N� Y = Y+ Y n Y y�� �n �y �� �� �n �n �� �� �y �� �� �n �y N+ N= += Y = Y+ Y n�� �� �n �y �� �� �n �n �� �� �y �� �� �n Ny N+ +y Y = Y = Y+�y �� �� �n �y �� �� �n �n �� �� �y �� �� Nn Ny ++ Y y Y = Y =�� �y �� �� �n �y �� �� �n �n �� �� �y �� �= Nn Y � Y+ Y y Y =�� �� �y �� �� �n �y �� �� �n �n �� �� �y �� N= Y n += Y+ Y y�n �� �� �y �� �� �n �y �� �� �n �n �� �� �y N� Y = N � Y = Y+�n �n �� �� �y �� �� �n �y �� �� �n �n �� �� Ny Y� N= += Y =�� �n �n �� �� �y �� �� �n �y �� �� �n �n �� �= Y y N� +y Y =�� �� �n �n �� �� �y �� �� �n �y �� �� �n �n �� Y = Ny �+ Y y�y �� �� �n �n �� �� �y �� �� �n �y �� �� �n �n Y� N= �y Y+�n �y �� �� �n �n �� �� �y �� �� �n �y �� �� �n Y n N� +n Y y�� �n �y �� �� �n �n �� �� �y �� �� �n �y �� �� Y n Nn �+ Y n
Fig. 4. Simulating a CTAG C0 with an initial string NY Y (in Example 1) by
the reversible PCA P24 (the state # is indicated by a blank).

We can see the right-part states y, n, ∗, and − act as right-moving signals until
they reach the first symbol of a rewritten string.

A rewriting process of C0 is simulated as below. If the signal ∗meets the state
Y (or N , respectively), which is the head symbol of a rewritten string, then the
signal changes Y (N) to the state + (−), and the signal itself becomes / that is
sent rightward as a used (garbage) signal. At the next time step, the center-part
state + (−) meets the signal −, and the former becomes a right-moving signal
+ (−), and the latter (i.e., −) is fixed as a center-part state at this position. The
right-moving signal + (−) travels through the rewritten string consisting of Y ’s
and N ’s, and when it meets the center-part state + or −, then it is fixed as a
new center-part state, which indicates the last head symbol is Y (N). Note that
the old center-part state + (−) is sent rightward as a used signal.

Signals y and n go rightward through the rewritten string consisting Y ’s
and N ’s until it meets + or −. If y (n, respectively) meets +, then the signal
becomes Y (N) and is fixed at this position (since the last head symbol is Y ),
and + is shifted to the right by one cell. If y or n meets −, then the signal simply
continues to travel rightward without being fixed (since the last head symbol is
N). Note that all the used and unused informations are sent rightward as garbage
signals, because they cannot be deleted by the constraint of reversibility. By the
above method, the rewriting process is correctly simulated. Fig. 4 shows how a
computation of C0 is performed in P24. It is easily seen that any CTAG can be
simulated in this way.
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4 Concluding remarks

In this paper, we proposed a 24-state computation-universal 1-D RCA P24 that
simulates an arbitrary CTAG on infinite configurations. The basic idea to simu-
late CTAGs is similar to those in [11, 12]. But here, some states of P24 (especially,
the center states Y, +, and −) are designed to play multiple roles of the previous
models. By this, the number of states was reduced.

P24 was constructed by using the framework of PCAs. An advantage of using
a PCA, besides the fact it facilitates to design RCAs, is that the total number
of local rules is exactly the same as the number of states, and hence it is much
smaller than that of a conventional CA. In fact, P24 has a simple local function
given by only 10 rule schemes shown in Fig. 3. On the other hand, since the state
set of each cell is the direct product of the sets of the three parts, the number
of states of a PCA cannot be very small. We have a conjecture that there is
a universal 1-D RCA of less than 10 states. However, to obtain such a small
universal 1-D RCA, some new framework for designing RCAs should be given.
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Abstract. This paper explains the properties of amalgamations and
permutations of states in the matrix representation of reversible one-
dimensional cellular automata where both evolution rules have neigh-
borhood size 2 and a Welch index equal to 1. These properties are later
used for constructing reversible automata and defining a compact nomen-
clature to identify them. Some examples are provided.

1 Introduction

Cellular automata are discrete dynamical systems characterized by simple local
interactions among their components which are able to produce complex global
behaviors, reason why they have been used to simulate natural and artificial
systems and for implementing new paradigms of unconventional computing [1]
[2]. A classical study in dynamical systems is to understand reversible properties;
in cellular automata the initial works in this sense are developed by Moore and
Myhill studying Garden-of-Eden configurations [3] [4].

The first computational search for non-trivial reversible automata is devel-
oped by Amoroso and Patt [5]; meanwhile relevant theoretical results are ob-
tained by Hedlund [6] and Nasu [7] using topological, combinatorial and graph-
ical results for characterizing the local properties of reversible one-dimensional
cellular automata.

These ones have been widely used by others for implementing algorithms
to detect and classify reversible one-dimensional cellular automata [8] [9] [10];
in particular Boykett [11] gives an exhaustive enumeration up to 10 states. On
the other hand, there is a series of novel results about the characterization of
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reversible one-dimensional cellular automata by symbolic dynamics tools, which
currently have been applied for defining a maximum bound for the inverse min-
imum mapping in these systems [12] [13] [14] [15] [16].

All the previous manuscripts are the motivation to present a procedure for
constructing reversible one-dimensional cellular automata; up to know most of
the algorithms calculate candidate evolution rules for achieving reversibility and
then they apply an extra procedure for reviewing whether the rules are reversible
or not. The original part in this paper is to take the theoretical results in the
reversible one-dimensional case with a Welch index equal to 1 in order to pro-
vide a general matrix structure for generating only reversible automata without
performing an additional revision.

This paper is organized as follows: Sect. 2 exposes the basic concepts of
reversible one-dimensional cellular automata with neighborhood size 2 in both
evolution rules and a Welch index equal to 1. Section 3 describes the characteri-
zation of the matrix representation for reversible automata using amalgamations
and permutations of states, Sect. 4 uses this characterization for explaining the
general structure of the matrix representing a reversible automaton and with
this an explicit construction of such a matrices is given. Section 5 gives ex-
amples illustrating the results of the paper and finally concluding remarks are
presented.

2 Basic concepts

A cellular automaton A = {s, n, ϕ} is composed by a finite set of states S with
|S| = s and a mapping ϕ : Sn → S where n is the neighborhood size, ϕ is
the evolution rule and every w ∈ Sn is a neighborhood in the automaton. The
definition of ϕ can be extended for larger sequences; for v ∈ Sm with m ≥ n,
ϕ(v) = w ∈ Sm−n+1 is the sequence obtained applying ϕ over all the overlapping
neighborhoods in v. With this, for every w ∈ S∗; let Λ(w) = {v : v ∈ S∗, ϕ(v) =
w} be the set of ancestors of w.

The dynamics of the automaton is discrete in time and space; initially a
finite configuration c0 : Zmc

→ S is taken with periodic boundary conditions
where c0

i is the cell at position i mod mc and γ(c0
i ) is the state in c0

i . For a
configuration ct, let η(ct

i) = γ(ct
i), γ(ct

i+1), . . . , γ(ct
i+n−1) be the neighborhood

specified starting from ct
i; hence ϕ(η(ct

i)) = ct+1
i which is placed centered below

η(ct
i). This process is applied over all the cells in ct producing a new configuration

ct+1, in this way the global dynamics of the automaton is given by the mapping
among configurations.

Several papers have shown that every one-dimensional cellular automaton
can be simulated by another with neighborhood size 2 grouping states and using
a larger set of states [12] [13] [17]. For every sequence v ∈ S2n−2 we have that
ϕ(v) = w ∈ Sn−1; let T be a new set of states such that |T | = sn−1, so a
bijection β : T → Sn−1 can be defined and with this a new evolution rule
φ = β ◦ϕ ◦ β−1 : T 2 → T is formed holding the same dynamics that ϕ and with
neighborhood size 2.
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A one-dimensional cellular automaton is reversible iff the mapping among
configurations is an automorphism; in this case the evolution rule has an inverse
ϕ−1 (commonly with different neighborhood size that ϕ) inducing the invertible
dynamics in the automaton. It is clear in the reversible case that the simulation
previously described can be applied for both evolution rules taking the largest
neighborhood size; so every reversible automaton can be simulated by another
where both evolution rules have neighborhood size 2. Saying this, in the rest of
this paper only reversible automata with these features are treated.

The evolution rule in a reversible automaton can be described by a matrix Mϕ

where row and column indices are the states in S and the entry Mϕ(a, b) = ϕ(ab).
This matrix is just representing the well-known de Bruijn diagram associated
with the evolution rule [18]. Before presenting the most relevant properties of
these systems, useful notation is introduced. For every w ∈ S∗, let:

Ωl(w) = {a : a ∈ S, there exists v ∈ S∗ such that av ∈ Λ(w)}

Ωr(w) = {a : a ∈ S, there exists v ∈ S∗ such that va ∈ Λ(w)}
(1)

Thus Ωl(w) and Ωr(w) represent respectively the leftmost and rightmost
states in the ancestors of w.

Hedlund [6] and Nasu [7] provide a complete local characterization of re-
versible one-dimensional cellular automata; relevant results from these works
are:

Property 2.1. For every w ∈ S∗, |Λ(w)| = s.

Property 2.2. For every w ∈ S∗, Ωl(w) = l and Ωr(w) = r holding that lr = s.

Property 2.3. For every pair w, v ∈ S∗, |Ωr(w) ∩Ωl(v)| = 1.

Values l and r are known as Welch indexes, and a reversible automaton is
described as A = {s, n, ϕ, l, r}.

3 Permutations, definiteness and amalgamations

As it was mentioned before, this work treats only with reversible automata of
kindA = {s, 2, ϕ, s, 1} since they have nice properties about the permutation and
amalgamation of states which facilitates the analysis; thus the results presented
in this manuscript are analogous for the case where l = 1 and r = s. For a
cellular automaton with Welch indices l = s and r = 1; in order to hold with
Properties 2.1 - 2.3, additional properties are also fulfilled:

Property 3.1. Every state in S appears in one and only one diagonal element in
Mϕ.

Property 3.2. Every row in Mϕ is a permutation of S.

Property 3.3. Every state in S appears in all the rows of Mϕ.
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Since Mϕ is a matrix representation of a de Bruijn diagram; the results
established in [7] about the definiteness of such diagrams can be applied into Mϕ.
For this, let M2

ϕ be the symbolic square of the matrix Mϕ, that is; if Mϕ(a, b) =
s1 and Mϕ(b, c) = s2 then s1s2 ∈ M2

ϕ(a, c). For a reversible automaton with
neighborhood size 2 in both evolution rules, the following property is given:

Property 3.4. Every w ∈ S2 appears in the s rows of a single column in M2
ϕ.

Property 3.4 says that, the s paths representing each sequence of two states
finish into the same node in the de Bruijn diagram. Reversible automaton can
be seen as mappings among sequence of symbols which iterations conserve the
information of the system, in this way the action of these mappings must be able
to produce every possible sequence of states, defining only one ancestor sequence
with the same size.

This is related to full shifts in symbolic dynamics, where these systems are
able to produce in a unique way any word given by a finite alphabet of sym-
bols. Classically a full shift of s symbols is graphically represented by a single
node with s loops, each labeled by a corresponding symbol of the alphabet. A
well-known result in symbolic dynamics is that given a finite alphabet, every
other labeled digraph able to yield any possible word is conjugated with the full
shift; that is, there is a transformation connecting both graphs on either sense
[19] [20] [12] [21]. This transformation is performed by splittings and amalgama-
tions, so they can be applied to convert the de Bruijn diagram (and its matrix
representation Mϕ) into the full shift in the case of a reversible automaton. For
this reason, amalgamations are defined over Mϕ as follows:

Definition 3.1 (Amalgamation over Mϕ). Let i1, . . . , im be m identical rows
in Mϕ. Hence the rows and columns with these indices are replaced by a unique
row and column respectively with index I = {i1, . . . , im} conforming a new matrix
Mϕ,1. For each entry Mϕ(i, j) the corresponding entry in Mϕ,1 is specified as
follows:

– If i /∈ I and j /∈ I then Mϕ,1(i, j) = Mϕ(i, j).
– If i /∈ I and j ∈ I then Mϕ(i, j) ∈Mϕ,1(i, I).
– If i ∈ I and j /∈ I then Mϕ(i, j) ∈Mϕ,1(I, j).
– If i ∈ I and j ∈ I then Mϕ(i, j) ∈Mϕ,1(I, I).

In this way, two rows are amalgamated if the corresponding nodes in the
de Bruijn diagram reach the same nodes with the same labeled outgoing edges.
Thus, amalgamations are directly associated with definiteness; if M2

ϕ fulfills that
all the repetitions of every sequence of states appear in a single column, hence
all the corresponding paths of length two in the de Bruijn diagram terminate at
the same node. The previous observation implies the following property:

Property 3.5. Mϕ,2 is a matrix with a single row and a single column whose
unique entry contains all the states in S.
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In fact Property 3.5 claims that a reversible automaton with neighborhood
size 2 in both evolution rules must carry out that its matrix Mϕ can be trans-
formed into the full shift after two amalgamations. Given a reversible automaton,
the states of the entries in Mϕ can be permuted and the resulting automaton
is still reversible; in fact these permutations correspond to permuting labels in
the directed edges of the de Bruijn diagram which is an isomorphism. In this
sense, applying a permutation of rows and columns over Mϕ produces another
reversible automaton; this is because this action just implies the permutation of
labels in the nodes of the de Bruijn diagram which is also an isomorphism. By
properties 3.4 and 3.5 the matrix Mϕ has α ≥ 2 equal rows; with this a final
property is established:

Property 3.6. In a reversible automaton A = {s, 2, ϕ, s, 1} , the entries, rows and
columns of Mϕ can be permuted in order to achieve that:

– Mϕ(a, a) = a for every a ∈ S.
– The final α rows of Mϕ are equal.

Thus every reversible automaton can be transformed into another one holding
with Property 3.6, therefore we only need to construct this kind of reversible
automaton to obtain the others. The previous properties are used in the next
section for constructing explicitly reversible automata A = {s, 2, ϕ, s, 1}.

4 Construction of reversible automata

Property 3.6 gives a lot of structure to the matrix Mϕ which can be used to
allow a explicit construction of reversible cellular automata; first of all there are
α identical final rows in Mϕ, hence the matrix can be divided in four submatrices
as follows:

Mϕ =

1 . . . s− α s− α + 1 . . . s

1
...

s− α

s− α + 1
...
s
















R1 R2

R3 R4
















(2)

The last α rows (defined by submatrices R3 and R4) are identical so by
Property 3.6 the submatrix R4 has the following specification:

R4 =

s− α + 1 . . . s
s− α + 1

...
s






s− α + 1 . . . s
...

. . .
...

s− α + 1 . . . s






(3)
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By the same property, rows in submatrix R3 must be identical, therefore they
are defined taking the same permutation µ : {1, . . . , s− α} → {1, . . . , s− α}. In
this way the submatrix R3 is established as follows:

R3 =

1 . . . s− α
s− α + 1

...
s






µ(1) . . . µ(s− α)
...

. . .
...

µ(1) . . . µ(s− α)






(4)

In the same sense, every row i in R1 is defined by a permutation πi :
{1, . . . , s − α} → {1, . . . , s − α}; that is, we may have different permutations
in the rows of the submatrix, thus R1 has a less restrictive structure than the
previous ones. However this structure depends on the following characteristics
by Properties 3.5 and 3.6:

– R1(i, i) = i for 1 ≤ i ≤ s− α.
– The rows in R1 must be identical to the rows in R4 in Mϕ or in Mϕ,1.

The last restriction assures that Mϕ can be amalgamated in at most two
steps. Thus the permutations in R1 depends on the features of the single per-
mutation defining the rows in R4; since the diagonal elements of R1 are fixed
and ordered, the cyclic representation of µ can be used to specify the rows in
R1. For i ≤ s, let µc = c1, . . . , ci be the decomposition in cycles of µ, where for
1 ≤ j 6= k ≤ i it is fulfilled that:

– cj ⊆ S
– ∪i

j=1cj = S
– cj ∩ ck = ∅

Thus every cycle cj indicates that the corresponding rows in R1 must be
identical; that is, they are specified by the same permutation. In this way for each
cj in µc there is a permutation πj : {1, . . . , s− α} → {1, . . . , s− α} establishing
identical rows in R1 whose indices are listed by the elements of cj .

By Property 3.6, for every i ∈ cj it is hold that R1(i, i) = i; since the
rows enumerated by cj must be identical, for every i1, i2 ∈ cj it is fulfilled
that R1(i1, i2) = R1(i2, i2). This feature fixes some of the elements in the rows
indexed by cj and the other elements described by πj can be freely assigned with
the restriction that the resultant cycles between πj and µ must be contained in
the cycles of µc. More alternatives for R1 can be achieved joining cycles in µc;
let µg be the cycles produced by grouping elements from µc such that at least
one cycle in µc remains without change and, the cycles between πj and µ are
contained in the ones of µg.

Again, every cycle in µg indicates that the corresponding rows in R1 must
be specified by the same permutation. Joining cycles in this way preserves the
amalgamation in two steps of Mϕ because the original cycles in µc are contained
in the ones from µg, therefore the latter specifies a larger number of identical
rows in R1. From here, for µ it is said that µc is its minimum cyclic representation
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and µg is equal or contains the cycles in µc, so µg shall be used in order to define
the permutations conforming the rows in R1.

For i ∈ {1, . . . , s− α}, j ≤ s such that µg = c1, . . . , cj and 1 ≤ k ≤ j, let us
define ρ(i) = k such that i ∈ ck ∈ µg, with this, the permutations conforming
the submatrix R1 can be detailed in the following way:

R1 =

1 . . . s− α
1
...

s− α






πρ(1)(1) . . . πρ(1)(s− α)
...

. . .
...

πρ(s−α)(1) . . . πρ(s−α)(s− α)






(5)

Finally, each permutation πj has associated a permutation σj : {s − α +
1, . . . , s} → {s − α + 1, . . . , s} to complete the submatrix R2; so each πj may
have different permutations σj assigned in R2. With this, the structure of this
submatrix has the following description:

R2 =

s− α + 1 . . . s
1
...

s− α






σρ(1)(s− α + 1) . . . σρ(1)(s)
...

. . .
...

σρ(s−α)(s− α + 1) . . . σρ(s−α)(s)






(6)

With the preceding structures delineating the submatrices composing Mϕ,
we can propose a way for numbering a reversible automaton A = {s, 2, ϕ, s, 1}
as (α, µ, [µg], [(π1, σ1), . . . , (πj , σj)]); where:

– α is the number of identical rows in Mϕ.
– µ is the factoradic number for the permutation defining R3.
– µg = c1, . . . , cj is the set of grouped cycles from µc.
– πk is the factoradic number for the permutation in R1 associated with ck for

1 ≤ k ≤ j.
– σk is the factoradic number for the permutation in R2 associated with πk.

5 Examples

This section applies the previous results in a reversible automatonA = {6, 2, ϕ, 6, 1};
taking α = 2 the matrix Mϕ has initially the following form.

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1
2

3
4

5 6
5 6
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For µ there are 4! possibilities, taking µ = 14 = (3214) the matrix Mϕ

changes as follows:

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1
2

3
4

3 2 1 4 5 6
3 2 1 4 5 6











In this way µc = (13)(2)(4), therefore at least rows 1, 3 must be equal in Mϕ

to conserve the amalgamation in two steps.

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1 3
2

1 3
4

3 2 1 4 5 6
3 2 1 4 5 6











Taking µg = µc we have to specify three permutations π for every cycle in µg

such that the cycle between π and µ is contained in µg. Particularly, for the cycle
(13) the unique possibility is π1 = 0 = (24), for the cycle (2) the possibilities for
π2 are 0 = (134) and 2 = (314) and for the cycle (4) the possibilities for π3 are
0 = (123) and 5 = (321). Let us assign π1 = 0, π2 = 2 and π3 = 0, with this Mϕ

acquires the next form:

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1 2 3 4
3 2 1 4
1 2 3 4
1 2 3 4
3 2 1 4 5 6
3 2 1 4 5 6











Finally for every permutation π the associated permutation σ may be 0 =
(56) and 1 = (65); thus a possible specification is σ1 = 1, σ2 = 0, σ3 = 0 and,
Mϕ is completed.

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1 2 3 4 6 5
3 2 1 4 5 6
1 2 3 4 6 5
1 2 3 4 5 6
3 2 1 4 5 6
3 2 1 4 5 6
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With this, the automaton is labeled as {2, 14, [(13)(2)(4)], [(0, 1), (2, 0),(0, 0)]}.
In order to prove that this automaton is reversible, Mϕ,2 must be identical with
the full shift; this is fulfilled making the amalgamations over Mϕ:

Mϕ,1 =

(1, 3) (2) (4) (5, 6)
(1, 3)

(2)
(4)

(5, 6)







1, 3 2 4 6, 5
3, 1 2 4 5, 6
1, 3 2 4 5, 6
3, 1 2 4 5, 6







Mϕ,2 =
(1, 3, 2, 4, 5, 6)

(1, 3, 2, 4, 5, 6)
[
1, 3, 2, 4, 6, 5

]

Let us take now µg = (13)(24), here the cycle (13) from µc is conserved
according to the specification of R1 explained in the previous section; hence the
matrix Mϕ has initially the following arrangement:

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1 3
2 4

1 3
2 4

3 2 1 4 5 6
3 2 1 4 5 6











In this way we must have two permutations π for the cycles in µg such
that every cycle between π and µ is contained in µg. For the cycle (13) the
possible permutations for π1 are 0 = (24) and 1 = (42) and for the cycle (24) the
possibilities for π2 are 0 = (13) and 1 = (31). Let us assign π1 = 1, π2 = 1; at last,
for every π the permutation σ may be 0 = (56) and 1 = (65). Let us take σ1 = 0
and σ2 = 1, with this the automaton is labeled as {2, 14, [(13)(24)], [(1, 0), (1, 1)]}
and Mϕ acquires the next form:

Mϕ =

1 2 3 4 5 6
1
2
3
4
5
6











1 4 3 2 5 6
3 2 1 4 6 5
1 4 3 2 5 6
3 2 1 4 6 5
3 2 1 4 5 6
3 2 1 4 5 6











Again, to prove that this automaton is reversible, Mϕ,2 must be identical
with the full shift; this is obtained in the next amalgamations:

Mϕ,1 =

(1, 3) (2, 4) (5, 6)
(1, 3)
(2, 4)
(5, 6)





1, 3 4, 2 5, 6
3, 1 2, 4 6, 5
3, 1 2, 4 5, 6




Mϕ,2 =

(1, 3, 2, 4, 5, 6)
(1, 3, 2, 4, 5, 6)

[
1, 3, 4, 2, 5, 6

]
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6 Conclusions

This paper has shown that reversible automata with a Welch index 1 can be com-
pletely generated by constructing the corresponding matrices Mϕ by means of
permutations of states, carrying out that an amalgamation in two steps trans-
forms the matrices into the full shift. Besides the factoradic representation of
permutations allows to have a compact nomenclature for identifying every re-
versible automaton.

These results can be used for implementing algorithms for computing re-
versible automata or for only enumerating them without an explicit construction;
in the latter case the procedure just must count all the valid grouping of cycles
for µg and in each one of them, enumerate as well all the possible right selections
for permutations π and σ. This task may be resolved using simplifications and
adaptations of Stirling numbers.

Of course, the most interesting project is to extend these results to all kind of
reversible one-dimensional cellular automata; that is, taking into account as well
the cases with both Welch indices different from one. In these ones there must be
considered amalgamations of rows and columns in the matrices Mϕ, where these
elements have their own properties but are not anymore permutations from the
set of states in the reversible automaton.

References

[1] Chopard, B., Droz, M., eds.: Cellular Automata Modeling of Physical Systems.
Cambridge University Press (1998)

[2] Adamatzky, A., ed.: Collision-Based Computing. Springer (2002)
[3] Myhill, J.: The converse of Moore’s Garden-of-Eden theorem. Proceedings of the

American Mathematical Society 14 (1963) 685–686
[4] Moore, E.F.: Machine models of self-reproduction. In: Essays on Cellular Au-

tomata. University of Illinois Press (1970)
[5] Amoroso, S., Patt, Y.: Decision procedures for surjectivity and injectivity of

parallel maps for tessellation structures. Journal of Computer and System Sciences
6 (1972) 448–464

[6] Hedlund, G.A.: Endomorphisms and automorphisms of the shift dynamical sys-
tem. Mathematical Systems Theory 3 (1969) 320–375

[7] Nasu, M.: Local maps inducing surjective global maps of one dimensional tesel-
lation automata. Mathematical Systems Theory 11 (1978) 327–351

[8] Hillman, D.: The structure of reversible one-dimensional cellular automata. Phys-
ica D 52 (1991) 277–292

[9] Moraal, H.: Graph-theoretical characterization of invertible cellular automata.
Physica D 141 (2000) 1–18

[10] Seck-Tuoh, J.C., Juárez, G., Chapa, S.V., McIntosh, H.V.: Procedures for calculat-
ing reversible one-dimensional cellular automata. Physica D 202 (2005) 134–141

[11] Boykett, T.: Efficient exhasutive enumeration of reversible one dimensional cel-
lular automata. http://verdi.algebra.uni-linz.ac.at/˜tim (1997)

[12] Seck-Tuoh, J.C., Chapa, S.V., González, M.: Extensions in reversible one-
dimensional cellular automata are equivalent with the full shift. International
Journal of Modern Physics C 14 (2003) 1143–1160



124 Seck Tuoh et al.

[13] Czeizler, E., Kari, J.: A tight linear bound on the neighborhood of inverse cellular
automata. Proceedings of ICALP, Lecture Notes in Computer Science 3580 (2005)
410–420

[14] Czeizler, E., Kari, J.: On testing the equality of sofic systems. Internal Proceedings
of XIth Mons Days Of Theoretical Computer Science (2006)

[15] Czeizler, E., Kari, J.: A tight linear bound on the synchronization delay of bijective
automata. To appear in Theoretical Computer Science (2007)

[16] Seck-Tuoh, J.C., Pérez-Lechuga, G., McIntosh, H.V., Juŕez, G., Chapa-Vergara,
S.V.: Welch diagrams and out-amalgamations in reversible one-dimensional cel-
lular automata. Submitted to Theoretical Computer Science (2008)

[17] Boykett, T., Kari, J., Taati, S.: Conservation laws in rectangular ca. To appear
in Journal of Cellular Automata (2006)

[18] McIntosh, H.V.: Linear cellular automata via de bruijn diagrams. http:// delta.
cs. cinvestav. mx/ ˜mcintosh (1991)

[19] Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, Cambridge (1995)

[20] Kitchens, B.P.: Symbolic Dynamics One-sided Two-sided and Countable Markov
Shifts. Springer-Verlag (1998)

[21] Seck-Tuoh, J.C., Juárez, G., McIntosh, H.V.: The inverse behavior of a reversible
one-dimensional cellular automaton obtained by a single welch diagram. Journal
of Cellular Automata 1 (2006) 25–39



Construction of reversible automata 125

.



Encryption using cellular automata chain-rules
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Abstract. Chain rules are maximally chaotic CA rules that can be con-
structed at random to provide a huge number of encryption keys — where
the the CA is run backwards to encrypt, forwards to decrypt. The meth-
ods are based on the reverse algorithm and the Z-parameter [5].

1 The CA reverse algorithm and basins of attraction

In the simplest cellular automata [4], each cell in a ring of cells updates its
value (0,1) as a function of the values of its k neighbours. All cells update syn-
chronously — in parallel, in discrete time-steps, moving through a deterministic
forward trajectory. Each “state” of the ring, a bit string, has one successor, but
may have multiple or zero predecessors.

A book, “The Global Dynamics of Cellular Automata” [5] published in 1992
introduced a reverse algorithm for finding the pre-images (predecessors) of states
for any finite 1d binary CA with periodic boundary conditions, which made it
possible to reveal the precise topology of “basins of attraction” for the first time
— represented by state transition graphs — states linked into trees rooted on
attractor cycles, which could be drawn automatically, as in Fig. 1. The software
was attached to the book on a floppy disk — the origin of what later became
DDLab [12].

As state-space necessarily includes every possible piece of information en-
coded within the size of its string, including excerpts from Shakespeare, copies
of the Mona Lisa, and one’s own thumb print, and given that each unique string
is linked somewhere within the graph according to a dynamical rule, this immedi-
ately suggested that a string with some relevant information could be recovered
from another string linked to it in some remote location in the graph, for ex-
ample by running backwards from string A (the information) to arrive after a
number of time steps at string B (the encryption), then running forwards from
B back to A to decrypt (or the method could be reversed) — so here was new
approach to encryption where the rule is the encryption key.

Gutowitz patented analogous methods using dynamical systems, CA in par-
ticular [2], but these are different from the methods I will describe, where its
crucial to distinguish a type of CA rule were the graph linking state-space has
the appropriate topology to allows efficient encryption/decryption.
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Fig. 1. Three basins of attraction with contrasting topology, n=15, k=3. The
direction of time flows inward towards the attractor, then clockwise. One com-
plete set of equivalent trees is shown in each case, and just the Garden-of-Eden
(leaf) states are shown as nodes. Data for each is provided as follows: attractor
period=p, volume=v, leaf density=d, longest transient=t, max in-degree=Pmax.
topleft: rule 250, Zleft=0.5, Zright=0.5, too convergent for encryption, p=1,
v=32767, d=0.859, t=14, Pmax=1364,.
topright: rule 110, Zleft=0.75, Zright=0.625, too convergent for encryption,
p=295, v=10885, d=0.55, t=39, Pmax=30,.
bottom: rule 30, a chain rule, Zleft=0.5, Zright=1, OK for encryption, p=1455,
v=30375, d=0.042, t=321, Pmax=2,
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2 The Z-parameter

Many fascinating insights emerged during the genesis of [5], among them a
refinement of Langton’s λ-parameter [3]. This “Z-parameter” arose directly from
the reverse algorithm, which computed the next unknown bit (say, from left to
the right, giving Zleft) of a partly known pre-image, or conversely from right to
left. The Z-parameter, by analysing just the lookup-table (the CA rule) gave the
probability that this next bit was uniquely determined, and being a probability
the value of Zleft ranged between 0 and 1. The converse direction gave Zright,
and the greater of the two was deemed to be the final Z-parameter.

Z did a good job of predicting the bushiness or branchiness of subtrees in
basins of attraction — their typical in-degree (or degree of pre-imaging), which
related to the density of end states without pre-images (Garden-of-Eden states)
but lets call them “leaves” for short. A branchier tree (low Z) has more leaves,
and shorter branches (transients) because all those pre-images and leaves use
up a finite state-space. Conversely, sparsely branching trees (high Z) have fewer
leaves, and longer branches.

Figure 1 gives three examples with contrasting topology.
Low Z, a low probability that the next bit was determined, meant the next

bit would probably be both 0 and 1, equally valid, so more pre-images and
branchiness, or that there was no valid next bit, more leaves. High Z, a high
probability that the next bit was determined, meant it would probably be either
0 or 1, not both, so fewer pre-images, less branchiness, but more chance of a
valid pre-image, so fewer leaves.

This nicely tied in with the behaviour of CA when run forward. Low Z,
high branchiness results in ordered dynamics. High Z, low branchiness, results
in disordered dynamics (chaos), behaviour that could be recognised subjectively,
but also by various objective measures, in particular “input entropy” [6, 7]. The
entropy stabilises for both order (at a low level) and chaos (at a high level);
entropy that does not stabilise but exhibits variance over time is a signature of
complexity, with intermediate Z.

3 Limited pre-image rules

Rules in general, even with high values of Z<1, can generate huge numbers of
pre-images from typical states, which would slow down the reverse algorithm. A
branchy (convergent) graph topology has many leaves. As strings become larger,
the leaf density increases taking up almost all of state-space, as in Fig. 2 (rule
250).

These leaf states cannot be encrypted by running backward. The alternative,
running forwards to encrypt, then backwards to decrypt, poses the problem
of selecting the correct path out of a multitude of pre-image branches at each
backward time-step. Running forward continually loses information on where
you came from; CA are dissipative dynamical systems.

But there is an solution! When Z=1, however large the size of the lattice, the
number of pre-images of any state is strictly limited. These Z=1 rules come in
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← rule 250: order

← rule 110: complexity

← rule 30: chaos: chain rule

Fig. 2. A plot of leaf (Garden-of-Eden) density with increasing system size, n=
5 to 20, for the three rules in Fig. 1. The measures are for the basin of attraction
field, so the entire state-space. For rule-space in general, leaf density increases
with greater n, but for chain rules leaf density decreases.

two types [5] as follows, (note that k is the effective-k, some rules have redundant
inputs [5]),

– “two-way limited pre-image rules”: Zleft and Zright both equal one, where
the in-degree must be either 2k−1 or zero,

– “one-way limited pre-image rules”: Zleft=1 or Zright=1, but not both, where
the in-degree must be less than 2k−1.

Limited pre-imaging (in-degree) appears to produce a promising topology on
which to implement encryption, because we would usually need a long string to
encode information, but the “two-way” Z=1 rules still suffer from some of the
same problems as rules in general, too branchy and a high proportion of leaves.

“One-way” Z=1 rules on the other hand, seem to provide the ideal graph
topology. They have an unexpected and not fully understood property: that al-
though the maximum number of pre-images (Pmax) of a state must be less than
2k−1, experiment shows that the actual number is usually much less, and de-
creases as the system size increases; consequently the leaf-density also decreases
as in Fig. 2 (rule30).

For large strings of 1000+, Pmax=1, except for very rare states where the
in-degree=2 in transients, or where transients joint the attractor cycle, which
may be extremely long. However, this branching is not a problem when running
forward to decrypt, because forward paths converge, and the original pattern
will be found. Because the vast majority of state-space occurs in long chains, I
renamed the “one-way limited pre-image rules” — “chain-rules”.

In Figs. 3 and 4, where k=7, Pmax must be less than 26=64, but the basin
of attraction field (for a chain rule constructed at random) has Pmax=5 and
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usually less, as shown in the in-degree histogram Figs. 3 (right), though there
is a small basin where Pmax=18.

As n increases Pmax decreases. In Fig. 5 where n=400, Pmax=2, but 97%
of states have an in-degree of one. As n increases further, in-degrees of 2, and
leaves, become exceedingly rare, becoming vanishingly small in the limit.

Fig. 3. left: The basin of attraction field of a chain rule, showing
all 9 basins of attraction (state transition graphs) for the k=7 rule
(hex)879ac92e2b44774b786536d1d4bb88b41d. Note there is a tiny attractor (top
left) consisting of just one state, all-0s; the last basin (bottom right) has the all-
1s point attractor. The chain rule (Zleft=0.59, Zright=1) was constructed at
random. The string length n=17, state-space=217=131072, leaf density=0.345,
Pm for each basin of the 9 basins is [1,5,5,5,3,4,4,3,18].
right: The in-degree histogram, from 0 to 5, showing in-degree=1 as the most
abundant.

Fig. 4. A detail of the largest basin in Fig. 3, attractor period=357, basin vol-
ume=91868 70.1% of state-space, leaf density=0.345, max levels=119, Pm=5.
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Fig. 5. The subtree of a chain rule, n=400, where the root state is shown in
2d (20×20), with the same chain rule as in Figs. 3 and 4. Backwards iteration
was stopped after 400 time-steps. The subtree has 3346 states including the root
state. There are 109 leaves (leaf density = 0.0326). Pmax=2 and the density of
these branching states is 0.035.

4 Constructing chain rules at random

The procedure for finding the Z-parameter [5, 6, 7] (its first approximation)
from a rule-table (lookup-table) is as follows: Consider pairs of neighbourhoods
that differ only by their last right bit, so the k-1 bits on the left are the same.
Then look at the outputs of these pairs of neighbourhoods in the rule-table to
see if they are the same (00 or 11) or different (01 or 10). Zleft is the fraction
of different pairs in the look-up table. If all the pairs are different then Zleft=1.
Zright is given by the converse procedure.

There are refinements if effective-k in parts of the rule-table is less than k,
but we will not bother with that because the pairs procedure gives the most
chaotic dynamics.

To assign a chain rule at random, first pick Zleft or Zright at random, then
randomly assign different pairs of outputs (01 or 10) to the pairs of neighbour-
hoods defined above. Check the Z-parameter (with the full algorithm). If Zleft=1
or Zright=1 but not both, we have a chain rule.

>From experiment, the lesser value should not be too low, 0.5 or more [9].
This is to avoid a gradual lead-in and lead-out of structure in the space-time
pattern when decrypting. Ideally the message, picture, or information, should
pop out suddenly from a stream of chaos then rescramble quickly back into chaos,
as in Fig. 7. This is accompanied by a lowering blip in the high input-entropy,
the duration of the blip needs to be minimised to best “hide” the message.

DDLab [12] can assign a chain at random as above, instantaneously, with a
key press, see the DDLab manual [9], section 16.7 and elsewhere.
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5 How many chain-rules?

How many chain-rules, C, are there in a rule-space S = 22k

?
The number of ways (say Zleft=1) “pairs” can be assigned is 22k−1

= 2
√

S.
Adding the same for Zleft=1, the number of chain rules C=2(22k−1

), but we
must subtract the number of rules where both Zleft=1 and Zright=1, which is
about 22k−2

, because “pairs” need to be assigned to half of the rule-table, and
their compliment to the other half. Subtracting also cases where the lesser value
is less than 0.5, a round estimate for the number of acceptable chain rules is
22k−1

, or the square root of rule-space.
This is sufficiently large to provide an inexhaustible supply of keys, for ex-

ample for k=5: 216, k=6: 232, k=7 :264, k=8: 2128 etc. A chain-rule constructed
randomly in DDLab will very probably be a unique key.

6 Encryption/decryption with chain rules

The CA reverse algorithm is especially efficient for chain rules, because the
rules-tables are composed purely of “deterministic permutations” — they lack
the “ambiguous permutations” that can slow down the reverse algorithm [5].

Many experiments have confirmed that chain rules make basin of attraction
topologies that have the necessary properties for encryption. Nearly all states
have predecessors and are embedded deeply within long chain-like chaotic tran-
sients.

There will still be leaves, and states close to the leaves, patterns that could not
be encrypted by that particular chain rule because a backwards trajectory would
just stop prematurely. However, for big binary systems, like 1600 as in Figs. 6
and 7, the state-space is so huge, 21600, that to stumble on an unencryptable
state would be very unlikely, but if it were to happen, simply construct a different
chain rule.

Encryption/decryption has been available in DDLab since about 1998. To
encrypt, select a chain rule (and save it). Select a large enough 1d lattice (which
can be shown in 2d). Select the information to be encrypted by loading an
ASCII file (for text), or a DDLab image file as the seed, or create a picture
with DDLab’s drawing function. Select a subtree, and set it to stop after say
20 backwards time-steps. The subtree is unlikely to branch, but if it does, no
worries. Save the (encrypted) state reached. Fig. 6 and 8 show examples.

To decrypt, reset DDLab to run forward. Keep the same rule or load it.
Load the encrypted state as the initial state. If decrypting a picture, set the
presentation for 2d. Run forward, which can be done with successive key-press
to see each time-step at leisure. At the 20th time-step, the image will pop out
of the chaos. To fully observe the transition, continue stepping forward until the
pattern returns to chaos. There will be some degree of ordering/disordering on
either side, as in Figs. 7 and 9.
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Fig. 6. A 1d pattern is displayed in 2d (n=1600, 40×40); the “alien” seed was
drawn with the drawing function in DDLab. The seed could also be an ASCII
file, or any other form of information. With a k=7 chain rule constructed at
random, and the alien as the root state, a subtree was generated with the CA
reverse algorithm; note that the subtree did not branch, and branching is highly
unlikely to occur. The subtree was set to stop after 20 backward time-steps. The
state reached is the encryption. This figure was taken from [8, 10].

7 Generalising the methods to multi-value

In 2003, all functions and algorithms in DDLab were generalised from binary,
v=2 (0,1), to multi-value. The “value-range” v (number of colours) can be set
from 2 to 8, i.e. v=3 (0,1,2), v=4 (0,1,2,3), up to v=8 (0,1,2,..7). This included
the reverse algorithm, the Z-parameter, chain-rules, and encryption. Details of
the new algorithms will be written up at a later date.

Any available value-range can be used for encryption, but for efficiency’s
sake, not to waste bits, v=2, v=4 or v=8 are preferable.

The examples in Figs. 8 and 9 shows the encryption of a portrait, with v=8,
k=4, on a 88×88 lattice (n=7744), but as v=8, the size of the binary string
encoding the lattice is 61052. The v=8 chain rule was constructed at random;
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Fig. 7. To decrypt, starting from the encrypted state in Fig. 6 (n=1600, 40×40),
the CA with the same rule was run forward by 20 time steps, the same number
that was run backward, to recover the original image or bit-string. This figure
shows time steps 17 to 25 to illustrate how the “alien” image was scrambled both
before and after time step 20. This figure was taken from [8, 10].

Zleft=0.4, and Zright=1. When decrypting, the portrait pops out suddenly from
chaos, but it takes about 50 time-steps to fully restore chaos. This is because
k=4 is a small neighbourhood, and the chaotic pattern moves into areas of order
at its “speed of light”, set by k.

8 Possible drawbacks

Here are some possible drawbacks of the encryption method.
Chain rules usually result in attractor cycles with very long periods, though

this is relative — the fraction of state-space made up of attractor cycles is proba-
bly small. If a state to be encrypted happens to be on an attractor cycle, running
it backward may arrive at a point where a transient joins the attractor. In this
case the backwards trajectory will branch.

Note also that there is an effect called “rotational symmetry” (and also “bi-
lateral symmetry”) that is inescapable in classical CA, where states with greater
symmetry must be downstream of states with lesser symmetry, or with none [5].
This means that the uniform states, all-0s and all-1s, must be downstream of all
other states in the dynamics, and the states like 010101.. downstream of states
like 00110011.., which are downstream of the rest, etc. However, these highly
ordered states hold little or no information, so are irrelevant for encryption.

A consequent effect is that “rotational symmetry” must stay constant in an
attractor cycle, so in binary systems each uniform state must be one of the
following: a point attractor; a transient state leading directly to the other’s point
attractor; part of a 2-state attractor with the other. In multi-value networks
things get more complicated.

The key itself (the chain-rule) must be transmitted somehow — and with
perfect accuracy. Noise in transmission of the encryption will spread during
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Fig. 8. A 1D pattern is displayed in 22 (n=7744, 88×88). The “portrait” was
drawn with the drawing function in DDLab. With a v=8, k=4 chain rule con-
structed at random, and the portrait as the root state, a subtree was generated
with the CA reverse algorithm. The subtree was set to stop after 5 backward
time-steps. The state reached is the encryption.

Fig. 9. To decrypt, starting from the encrypted state in Fig. 8 (n=7744, 88×88),
the CA with the same rule was run forward to recover the original image. This
figure shows time steps -2 to +7.
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decryption, but only at the “speed of light” depending on k and the number of
forward time-steps, so the process is relatively robust to this extent.

9 A bit of history

The encryption method described in this paper relies on a number of ideas
first published in 1992 [5] and developed from work started in about 1988. The
reverse algorithm for running 1d CA backwards made it possible to invent the
Z-parameter, to reveal the topology of basins of attraction, and begin to study
and understand these objects - how they relate to rule-space.

The “limited pre-image rules” in [5] were renamed “chain-rules” for brevity
in about 1998, but the principle and possibility of encrypting by running CA
backward, decrypting by running forward, using “limited pre-image rules”, was
well know to the authors of [5] at the time of writing. The method was made
to work within DDLab in about 1998.

I’ve often described this encryption method in talks and lectures, including
live demos of encryption with DDLab in many venues in a number of countries.
The first time for a big audience was at the SFI summer school in Santa Fe in
1999. Up till now I have written only brief accounts specifically on this encryption
method, both published [9, 11] and unpublished [8, 10].

I’m relating this bit of history because I have just now read a new paper
by Gina M. B. Oliviera and others [1], sent to me for review, presenting their
independent discovery of the same encryption method; except they used a genetic
algorithm to evolve the rule-tables (instead of constructing them) to produce the
Z-parameter property: Zleft=1 or Zright=1 but not both (with some refinments)
— the exact definition of chain rules.

Other than spurring me on to write this paper (for which I am most grateful,
and also for their citations) I must say that as far as the science goes, I have not
been influenced by their paper in any way.

10 Conclusions

I have described a method of encryption where the key is a chain-rule, a special
type of maximally chaotic 1d CA rule.

Information is encrypted by using a key to run the CA backward in time. A
secret message can be transmitted openly. The receiver has the same key, and
uses it to decipher the message by running the CA forward in time by an equal
number of steps. Anyone could construct their own unique key instantaneously
from a virtually unlimited source — its size is about the square root of rule-space.

What is important to someone trying to crack an intercepted encrypted mes-
sage, with DDLab available? The key itself is vital; data on the CA, its neigh-
bourhood k, and value-range v, is important — not obvious from the key itself.
The number of time-steps are useful, to know when the forward run should stop.
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Suppose both the raw message and the encryption where known, could the
key be deduced? I do not see how if the two are separated by a number of
time-steps, without knowing the intervening steps.

In other security measures, the key itself could be encrypted. A message could
be doubly or multiply encrypted with more than one key.

Although these methods are available in DDLab, dedicated software and
hardware could be developed for the whole procedure to be fast, hidden and
automatic, and also to handle data streams in real time.
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Abstract. This paper is about the application of cellular automata
(CA) in cryptography. In the approach investigated here, the ciphering
is accomplished by pre-image calculus while deciphering is performed
by CA temporal evolution. We investigated the application in a crypto-
graphic model of the pre-image calculus algorithm proposed by Wuen-
sche [14] known as reverse algorithm. The viability of this algorithm
when applied to any arbitrary plaintext is based on the prerogative that
all configurations of CA lattices have at least one pre-image. We speculate
that transition rules with chaotic dynamical behavior are more probable
to exhibit this characteristic. Therefore, we investigate if it is possible to
find rule sets that guaranty the existence of one pre-image for all possi-
ble CA lattices. Theses rule sets were found by using a genetic algorithm
(GA) which was guided by the forecast dynamical behavior parameter
named as Z. The results of our experiments show that, beyond the dy-
namics forecast performed by Z, other two characteristics are important:
the symmetric level (S) and the balance between two components of Z
named Zleft and Zright.

1 Introduction

Several researchers investigated how CA can be employed as cryptography al-
gorithms [12, 7, 2, 10, 9]. A special kind of CA rule is used as the secret key
in Gutowitz’s cryptographic model [2]. They are toggle transition rules. By this
method, the plaintext is the initial lattice and P pre-images are successively cal-
culated, obtaining the ciphertext. Starting from the ciphertext the receptor just
needs to apply forward the transition rule by P times and the final lattice will
correspond to the plaintext. An important point related to this model is that
the lattice length increases of some cells for each pre-image processed, turning
the ciphertext larger than the plaintext.
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Some CA classification schemes have been used in the literature; for instance,
Wolfram proposed a qualitative behavior classification in four dynamical classes,
which is widely known [11]. The dynamics of a cellular automaton is associated
to its transition rule. It has already been proved that the decision problem asso-
ciated with forecasting CA dynamics is undecidable [1]. In order to help forecast
CA dynamical behavior, several parameters have been proposed, directly calcu-
lated from the transition rule [3, 13, 8] Z parameter [13] is one of them.

The pre-image calculus proposed by [14] named reverse algorithm is inves-
tigated as a new cipher method. The advantages of this method are: (i) it can
be applied to any kind of CA transition rule (not only toggle rules); (ii) the
pre-image has the same length of the original lattice. However, the viability of
this algorithm as a cipher method depends on the premise that any lattice has
at least one pre-image. Besides, a desirable characteristic in any CA-based ci-
pher method is that any perturbation in the initial lattice, which corresponds
to the plaintext, propagates very fast along the cells to turn the original text
unrecognizable from the ciphertext. Chaotic rules are more suitable to this task.
Therefore, we performed an investigation about the usage of Z parameter to
specify CA transition rules able to find pre-image for any arbitrary lattice.

Considering the application of the original reverse algorithm which does not
have the disadvantage to be an increasing-length method, we have obtained im-
portant conclusions: the join specification of the requisites (i) Z, (ii) Zleft/Zright

balance and (iii) symmetry (S) was shown to be a successful approach to define
the transition rules to be used as secret keys. A final specification of these rules
are Zrigh =1; 0.25 < Zleft < 0.5 and 0.25 < S < 0.5 or Zleft =1; 0.25 < Zrigh <
0.5 and 0.25 < S < 0.5. Experiments on Sec. 6 show that rules with this spec-
ification have high probability to find at least one pre-image for any arbitrary
pre-image. Besides, using a spatial entropy measure it was possible to verify that
rules with this specification exhibit a chaotic-like behavior. However, using the
original reverse algorithm even using rules that satisfying all these requisites it
is possible to fail when calculating a pre-image of some lattices. Therefore, to
effectively use this method as a ciphering process, we need to adopt some kind of
contour procedure. Here we propose to alternate the original and a modified re-
verse algorithm in the cipher process, using the second only when the pre-image
calculus fails. This modified reverse algorithm adds extra bits on the pre-image,
turning it larger than the original lattice. Sec. 7 discusses this new proposal.

2 Dynamical behavior and the Z parameter

The paper [11] proposed a qualitative behaviour classification of CA, which is
widely known. It divides the CA rule space into four classes, according to the
results of evolving the system from an arbitrary initial state: (1) homogeneous;
(2) stable or periodic; (3) chaotic; (4) complex. Chaotic rules are sensible to
perturbations on the initial configuration of the lattice and exhibit a high level
of randomness in their temporal evolution. For this, they have been applied to
several cryptographic systems [2, 9, 10].
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The dynamics of a cellular automaton is associated with its transition rule.
However, the decision problem associated with precisely forecasting the dynami-
cal behavior of a generic cellular automaton, from arbitrary initial configurations,
has been proved to be undecidable [1]. In order to help forecast the dynamic be-
havior of CA, several parameters have been proposed, directly calculated from
the transition table. The basic idea associated to such kind of parameter is to
perform a simple calculus over the output bits of the transition rule. It is ex-
pected that the result of this computation can estimate the CA behavior when
the rule transition is applied by many time steps starting from any arbitrary lat-
tice. Several parameters have been proposed in the literature [3, 8]; Z parameter
is one of them [13]. The definition of Z parameter derived from the pre-image
calculus algorithm. Z is a measure of the pre-imaging degree imposed by the
automaton’s rule, that is, it indicates if the number of possible pre-images is
high (low Z) or low (high Z), for any arbitrary lattice configuration. Due to it,
it is expect that when using CA rules with high Z there is a high probability to
have at least one pre-image for the majority of possible lattices.

Z parameter is composed by Zleft and Zright. Let us assume that part of a
pre-image of an arbitrary configuration is known and that we want to infer the
missing cell states, successively, from left to right. Zleft is defined as the proba-
bility that the next cell to the right in the partial pre-image has a unique value,
and it is directly calculated from the transition table, by counting the determin-
istic neighborhoods. Zrightis the converse, from right to left. Z parameter is the
greater of Zleft and Zright. A detailed explanation about this parameter is given
in [13]. In [8] an analysis of Z parameter is presented and the main conclusions
are: (i) it is good discriminators of the chaotic behavior (ii) rules with a Z value
close to 1 have high probability to be chaotic.

3 The reverse algorithm

An algorithm for CA pre-images calculation was proposed by [14]. This algorithm
is known as reverse algorithm and it is based on the idea of partial neighborhoods.
There are three different kinds of partial neighborhood: deterministic, forbidden
and ambiguous. Figure 1 shows the three possibilities of neighborhood that can
happen, when the calculation of the pre-image is being carried through from the
left to the right. It is assumed that all the left m – 1 cells of a neighborhood of m
bits have already been calculated and the bit in boldface corresponds to the next
bit (the rightmost cell) to be defined by the transition rule. Figure 1a shows an
example of deterministic neighborhood (00?→0): there is only one neighborhood
in the transition rule (000→0) corresponding to the known cells of the partial
neighborhood (00) in the pre-image and to the output bit in the original lattice
(0). Figure 1b shows an example of ambiguous neighborhood (01?→0): for the
partial neighborhood (01) there are two possible correspondent transitions in
the rule (010→0 and 011→0) compatible with the output bit (0). In this case,
the next bit can be either 0 or 1. Figure 1c shows an example in which it is not
possible to determine the next bit for the partial pre-image (01?→1). Considering
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the partial neighborhood (01) there is no possible correspondent transitions in
the rule compatible with the output bit (1). Thus, the third one is a forbidden
partial neighborhood.

Fig. 1. Partial neighborhood: (a) deterministic (b) ambiguous (c) forbidden.

Before starting the calculus, r cells are added to each side of the lattice
corresponding to the pre-image, where r is the CA radius. The algorithm starts
the calculus of the pre-image, randomly initializing the 2×r leftmost cells. Thus,
the first partial neighborhood is formed; it can be deterministic, ambiguous
or forbidden. If it is deterministic, the next bit is determined and the process
continues. If the partial neighborhood is ambiguous, the next bit is randomly
chosen, the other complementary value is stored in a stack and the calculus
continues. If the partial neighborhood is forbidden, the next bit is impossible to
obtain. In this case the calculus returns to randomly choose another initialization
of the 2×r leftmost cells and the process starts again. Whenever a next rightmost
bit is defined, a new partial neighborhood is formed. The process to determine the
next cell is the same as to determine the first one: (i) if the partial neighborhood is
deterministic, the next bit is deterministically determined; (ii) if it is ambiguous
a choice is made and its complementary is stored for future use; (iii) if it is
forbidden the next bit is impossible and the process needs to return to the last
choice stored in the stack. In the last situation, if all the values had been used
and the stack is empty, the process stops because no pre-image is possible to
obtain. This process continues until only the last 2×r rightmost cells remains
undetermined. If the CA boundary condition is periodic, these last cells need
to be validated. The pre-image calculus is concluded verifying if the initial bits
can be equal to the final 2×r rightmost ones. If so, the extra bits added to each
neighborhood side are discarded returning the pre-image to the same size of the
original lattice. If no, the process returns again to use the last option stored in
the stack.

The method proposed by [14] finds all the possible pre-images for an arbitrary
lattice: if it is necessary to find all of them, the calculation must continue until
all the ambiguities and values for the initial bits have been evaluated.

4 Toggle rules and Gutowitz’s model

A CA transition rule is said to be a toggle one if it is sensible in respect to a
specific neighborhood cell, that is, if any modification of the state on this cell nec-



Cryptographic model based on pre-images 143

essarily provokes a modification on the new state of the central cell, considering
all possible rule neighborhoods. Considering one-dimensional radius-1 CA, the
neighborhood is formed by three cells and the state a
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). For example, Figure 2 presents CA toggle rules: (a) right-toggle

rule (b) left-toggle rule. The CA rule presented in Figure 2(c) is simultaneously
sensible to the left and to the right cells (bidirectional toggle rule).

Fig. 2. Toggle rules (a) right , (b) left (c) right and left.

The paper [2] used irreversible CA with toggle rules — either to the right or
to the left — for encrypting. Toggle rules turn possible to calculate a pre-image
of any lattice starting from a random partial pre-image. Consider the initial
lattice and the transition rule presented in Fig. 3. Two initial bits are randomly
chosen to start the pre-image calculation and they are positioned in the extreme
border of the lattice that is the opposite of the sensibility direction. In Fig. 3, the
two initial bits are the rightmost cells because the transition rule is left-toggle.
For example, it can be initialized with 01. The state of the next left cell is 0
because the only two possible transitions are 001→1 and 101→0. Once the state
of the third cell is determined, the next step is to determine the state of the forth
cell and the other cells successively up to completing the entire pre-image. The
left-toggle property of the rule transition guarantees that all the pre-image cells
can be obtained, step-by-step, in a deterministic way. The same process can be
done for right-toggle rules and in this case the initial cells must be positioned in
the leftmost side.

A toggle transition rule τ is used as the secret key in Gutowitz’s cryptographic
model [2]. The plaintext is the initial lattice and P pre-images are successively
calculated, starting with random initial bits (2×r cells) at each step, where ris
the radius. The ciphertext is given by the last pre-image obtained after P steps.
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Fig. 3. Pre-image calculus using a left-toggle rule.

The decryption process is based on the fact that the receptor agent knows both
τ and P . By starting from the ciphertext the receptor just needs to apply the
transition rule τ forward by P steps and the final lattice will be the plaintext.

A fundamental characteristic in Gutowitz’s model to guarantee pre-image for
any lattice is the usage of a non periodic boundary condition. Thus, the final
bits do not need to be validated in this method and they are calculated in the
same manner as the others. When the pre-image is obtained the extra bits are
not discarded and they are incorporated to the lattice. Therefore, it is always
possible to obtain a pre-image for any initial choice of bits. As the length of
initial bits is 2×r, it is possible to obtain different pre-images for each lattice.
Therefore, the cellular automaton is irreversible. Let P be the number of pre-
image steps, N the length of the original lattice and r the CA radius. The method
adds 2×r bits to each pre-image calculated and the size of the final lattice is
given by N + (2×r×P). For example, if 10 pre-images were calculated using a
radius-1 rule starting from a plaintext of 16 bits, the size of the ciphertext would
be 36.

A high degree of similarity between ciphertexts when the plaintext is sub-
mitted to a little perturbation was identified as a flaw in Gutowitz’s model. The
original model was altered by using bidirectional toggle CA rules (Fig. 2c) in-
stead of one-directional ones in [9]. The experiments with this model show that
the similarity flaw was solved with such a modification and it is protected against
differential cryptanalysis [9]. However, the ciphertext increase in relation to the
plaintext length remains in this model.

5 A new approach

The main goal of our work is to evaluate if the reverse algorithm proposed by [14]
could be used as a cipher method. We started from the knowledge that as higher
is the value of Z parameter calculated for a CA transition rule: (i) as higher is
the probability of the cellular automation exhibits a chaotic behavior and (ii) as
higher is the probability of a pre-image exists for any lattice. Then, the set of
CA rules with Z equal to 1 was chosen as potential rules to use as secret keys
in a cryptographic model based on the reverse algorithm.

In the experiments reported here, a genetic algorithm was used to find radius-
2 and radius-3 CA rules having a specific characteristic. Z parameter was the
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main criterion applied to the fitness function to guide GA in the search for a set
of rules.

The initial population is formed by 150 CA rules randomly generated. Each
individual is a binary string with its length depending on the CA radius used:
32 bits for radius 2 and 128 bits for radius 3. The fitness function applied to
each population’s rule returns a value between 0 and 100. How much bigger is
its fitness, closer is the rule to present the desired characteristic. For example,
if it is desired that the rule has Z equal to 1, a rule with Z equal to 0.56 would
have an evaluation equal to 56. Roulette wheel was used to select crossover pairs.
A standard point crossover was used and a crossover rate of 60%. The mutation
rate was of 8% per individual. The offspring is compared with the parents and
the best ones survive for the next generation. This process is repeated 100 times,
getting 150 rules showing the desired characteristic in the final population.

Each rule set generated by GA was employed in two different approaches
using pre-image calculus. The first one refers to the original reverse algorithm
proposed by [14], which uses periodic boundary condition, the final bits must be
validated and the extra bits are discarded at each pre-image found. We call it
as pre-image calculus without extra bits. The second approach is a variation of
the original method in which the boundary condition is non periodic, the final
bits are not validate and the extra bits are kept at each pre-image found, similar
to Gutowitz’s method described in Sec. 3. We call this method as pre-image
calculus with extra bits.

6 Experiments

6.1 Initial experiments

It was realized experiments using CA with radius 1, 2 and 3. Considering radius-
1 CA rules, all chaotic rules with Z = 1 were analyzed; they are 20 from the 256
elementary rules. Considering radius-2 and radius-3 CA rules, samples generated
by GA with 150 transition rules with Z = 1 for each radius size were evaluated.
All these rule sets (radius 1, 2 and 3) was applied to both pre-image methods
explained in the last section. In all experiments each rule was tested verifying
if it was able to calculate 10 consecutive pre-images starting from each lattice
from a sample of 100 lattices with a fixed size. Each lattice sample was randomly
generated. In this paper we show the results obtained using samples of lattices
with 512 bits, except the last results in this section obtained using lattices of
size 64.

The twenty radius-1 rules with chaotic behavior and Z=1 were first evaluated.
For each rule evaluated, the percentage of lattices (out of 100) for which it
was possible to calculate 10 consecutive pre-images was stored. This result was
obtained for the both pre-image calculus method used. Considering pre-image
calculus without extra bits, fourteen rules (out of 20) was able to obtain 10
consecutive pre-images starting from all the 100 lattices analyzed with 512 bits.
On the other hand, six rules exhibit a converse behavior and could not finish
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the consecutive pre-images calculus for none of the lattices. Considering pre-
image calculus with extra bits, all the twenty radius-1 rules was able to find 10
consecutive pre-images for all the 100 tested lattices.

The results obtained with radius-2 and radius-3 CA rules using pre-image
calculus without extra bits are graphically presented in Fig. 4a. The radius-2 CA
rules outperform the radius-3. However, nor all the radius-2 rules had returned
100% of success when calculating the 10 consecutive pre-images starting from
all the lattices in the sample. Approximately 10 out 150 tested rules have failed
starting from some lattices. Considering the radius-3 CA rules the results are
worst: only 20 out 150 rules had returned 100% of success and approximately 80
of these rules have returned above 90% of performance.

On the other hand, Fig. 4b shows the results when the method with extra
bits was applied to the same radius-2 and radius-3 CA rules. All these rules have
returned 100% of success when calculating the 10 consecutive pre-images. It is
important to say that this result was not possible to obtain using rules with Z
6= 1. Therefore, it was possible to evidence that the pre-image calculus without
extra bits, a variation of the original Wuensche and Lesser’s reverse algorithm
can be applied in a new cryptographic model with Z = 1 CA rules. In such
method, the CA rules with Z = 1 are used as secret keys and the pre-image
calculus algorithm are employed as the cipher method. The pre-image calculus
are applied starting from the plaintext — used as the initial lattice — by P
times, where P is a predefined value known by either sender and receiver. The
final pre-image is transmitted to the receiver which has only to apply forward
the same rule (secret key) by P times to recover the plaintext.

It is important to notice that transition rules with Z = 1 are more general
than leftmost toggle rules or rightmost toggle rules employed in the methods
discussed in [2, 9]. All these toggle rules (rightmost, leftmost or both) have Z=1,
but the converse is not true. For example, a toggle rule sensible to the central cell
has Z=1 but can not be applied in the previous models. Therefore, the key space
for this new model, based on the variation of the reverse algorithm and using
rules with Z = 1, will have a larger cardinality key space when compared to the
previous methods, for the same specified radius. However, a cryptographic model
based on the variation of the reverse algorithm employing extra bits will suffer
the same disadvantage of the others: the ciphertext is larger than the plaintext.
So, it is still an increasing-length cryptographic model and this increase is defined
by 2PR, where R is CA radius and P is the number of pre-image steps.

6.2 Symmetry and Zleft/Zright balance analysis

Due to the last arguments, we return our attention to the experiments using the
original reverse algorithm trying to identify why in all analyzed radius it was
possible to identify rules with 100% of success but there are other rules with null
performance. Inspecting with well-taken care the null performance rules with ra-
dius 1 (8 bits of length) it was possible to observe an unusual characteristic in all
of them: they are totally symmetric, that is, the first bit is identical to the last,
the second is equal to the penultimate and so on (Ex: 01011010). Once noticed
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Fig. 4. Experiments using radius-2 and radius-3 CA rules with Z=1 (a) pre-
image calculus without extra bits (b) pre-image calculus with extra bits.

this fact, we started to analyze the symmetry of radius-2 and radius-3 CA rules
(32 and 128 bits of length), trying to relate this characteristic to the rule per-
formance. It was possible to observe that the majority of low performance rules
have higher levels of symmetry; even so they were not necessarily symmetrical
in all the bits. Thus, we defined the symmetric level S as a new parameter of
the rule that is important to specify the secret keys, besides Z parameter.

Other characteristics of the low performance rules with radius-2 and radius-
3 were analyzed and one of them asked our attention: in the majority of low
performance rules the two components of Z, named Zleft and Zright, was close
or equal to 1. Due to its proper definition considering a rule with Z equal to 1,
either Zleft or Zright necessarily must be equal the 1. However, in some rules the
two components had high values: one equal to 1 and the other close or equal to
1. On the other hand, rules with good performance on pre-image calculus have
only one of the components equal to 1. Thus, the unbalancing of the components
Zleft/Zright has also showed significant in the rule specification.

Aiming to confirm the relevance of symmetry level and Zleft/Zright balance
in the specification of the secret keys, the GA was executed again to find two
samples of rules with different specifications, for each radius size. In the first
one, the fitness evaluation was directly proportional to Z and to symmetry. It
was possible to find 150 rules with Z = 1 and S = 1 for radius-2 and radius-3
CA. In the second one, the fitness evaluation was directly proportional to Zleft

and Zright. As a consequence, 150 CA rules with Zleft = 1 and Zright = 1
(consequently Z = 1) was found for each radius size.

Two experiments were performed in which we try to calculate 10 consecutive
pre-images using the original reverse algorithm and the two last samples of rules.
The results of theses new experiments using radius-3 CA rules are presented
graphically in Fig. 5, in which the performance of Z = 1 and S = 1 rules sample
and Zleft = 1 and Zright = 1 rules sample are shown. The curve related to the
experiment using radius-3 and Z = 1 rules (Fig. 4a) was replicated to facilitate
the comparison. It is possible to observe that the performance of the rules in
the new samples fell drastically, confirming that these characteristics also must
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Fig. 5. Experiments using radius-3 CA and the pre-image calculus without extra
bits. Rules generated with: (a) Z=1 (b) Z=1 and S=100% (c) Zleft=1 and
Zright=1.

be prevented. In other words, the rules to be good secret keys — considering
its ability to have at least one pre-image — must not only have Z equal to 1
but they must not have a high level of symmetry and must not have a high
Zleft/Zright balancing.

GA was modified to find a sample of rules with the following characteristics:
S < 0.25, Z = 1 and Zleft < 0.25 (consequently, Zright = 1). A significant
improvement happened in the performance of the rules in relation to their ca-
pacity to calculate 10 consecutive pre-images. In the experiment using rules
searched with only the specification Z = 1, approximately 20 out of 150 rules re-
turned 100%. In the experiment using the specification S < 0.25, Zright = 1 and
Zleft < 0.25 all the 150 rules returned 100% of performance. However, when
we carefully analyze the pattern diagrams generated by these rules we discover
that the rules generated with this specification have a very simple behavior: they
only provoke a kind of shift in the lattice. Therefore, even that these Z = 1 rules
have a good performance to calculate the pre-images, they can not be used as
secret keys because they are not chaotic rules, they are fixed-point.

6.3 Final experiments

We have evidenced that rules with high level of symmetry and high Zleft/Zright

balancing are not good to use in the generic pre-image calculus. So, we performed
a final experiment using rules with 0.25 < S < 0.5 and 0.25 < Zleft < 0.5
and Zright = 1 (consequently, Z = 1). GA was modified to find rules with
these characteristics and the performance of 100 radius-2 CA rules was evaluated
calculating 128 consecutive pre-images starting from 1000 random lattices of 512
bits. All the rules were able to calculate the 128 consecutive pre-images for all
the 1000 512-bits lattices.
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Aiming to evaluate the randomness imposed by this consecutive calculus as
a cipher process, we calculate the spatial entropy related to a perturbation in
the initial lattice. This evaluation was performed as follows: for each one of the
1000 tested lattices we generated a similar lattice which differs by the original in
only 1 of the 512 bits; that is, we performed a simple perturbation in each 512-
bits lattice X obtaining a correspondent similar lattice X ′. Each related pair of
initial lattices (X, X ′) was submitted to the pre-image calculus obtaining a pair
of ciphertexts (Y, Y ′) and XOR operation was applied using Y and Y ′ resulting
in a string D with 512 bits, which represents the difference between Y and Y ′. A
spatial entropy calculus was performed in each D related to each initial lattice
X of the sample of 1000 512-bits lattices. Figure 6 presents the mean entropy
found for each radius-2 rule evaluated (calculated over 1000 lattices).

Table 1. Entropy of some radius-2 rules evaluated

Rule Emean Emin Emax

10100110011001101010101010011010 0.901 0.883 0.930
10101001010110011010100110100110 0.908 0.886 0.928
10010101010110100101010101010110 0.889 0.424 0.928
01010110010101101001011001010101 0.876 0.385 0.929
01100110011010010110100101101010 0.909 0.885 0.928

The average of the mean entropy obtained for all the 50 evaluated radius-2
rules is 0.8857. As we can see in the figure the lower mean entropy found was
0.75 and the higher mean entropy was around 0.91. A spatial-entropy above 0.7
is enough to guarantee the randomness of a binary string. Therefore, we can
conclude that this last sample of radius-2 CA rules has a good performance in
the pre-image calculus and they exhibit chaotic-like behaviors. Table 1 shows 5 of
these rules; its binary code is presented (from 00000 to 11111), the mean entropy
(Emean), the minimum entropy (Emin) and the maximum entropy (Emax) found
in the tests with the sample of 1000 lattices. All of them were able to calculate
the 128 consecutive pre-images for all the 1000 512-bits lattices.

Aiming to compare these results with the rules with fixed-point behavior this
evaluation was also performed for the sample generated with S < 0.25, Z = 1
and Zleft < 0.25: the average of the mean entropy obtained for all the 150
rules is 0.5604; the lower mean entropy found was 0.1152 and the higher mean
entropy was around 0.7760. These low values of entropy corroborate our visual
identification of the fixed-point behavior.
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Fig. 6. Mean entropy of the difference obtained using 100 radius-2 CA rules
submitted to 1000 pairs of similar initial lattices.

7 A proposal of a new cryptographic model with a
variable-length ciphertext

Using all the characteristics investigated in last sections to generated secret
keys it was possible to obtain rules with a high probability to find at least one
pre-image for any lattice and a good perturbation spread. However, even the
better rules evaluated can fail when the pre-image calculus is applied to some
lattice. Thus, one alternative to propose a method based on the original reverse
algorithm is to adopt a contour procedure to apply when the pre-image calculus
fail. As the secret key specification previous discussed gives a low probability
to this failure occurrence, we expect to rarely use this contour procedure but it
guarantees the possibility to cipher any plaintext.

The contour procedure proposed here is to add extra bits only when the pre-
image is not possible to calculate. The cipher process is defined by the calculus of
P consecutive pre-images starting from a lattice of size N corresponding to the
plaintext. The secret key is a radius-R CA rule generated with the specification:
Zright =1; 0.25 < Zleft < 0.5 and 0.25 < S < 0.5 or Zleft =1; 0.25 < Zright <
0.5 and 0.25 < S < 0.5. Suppose that the algorithm started to calculate the
pre-images using the reverse algorithm and it fails in the K-th pre-image such
that K ≤ P.In such situation the cipher process uses the modified reverse
algorithm with extra bits to calculate the K-th pre-image. Thus, the K-th pre-
image will have N +2R cells. The cipher process return again using the original
reverse algorithm (without extra bits) to calculate the remaining pre-images. If
all the subsequent pre-images calculus succeeds the final ciphertext will have a
size of N + 2R.If the pre-image calculus fails again, the cipher process changes
to the modified reverse algorithm and add more 2R bits. If the process fails in
F pre-images (F ≤ P )the final lattice will have N+2FR. Therefore, in theory,
starting from a lattice of N cells, the size of the ciphertext after P pre-images
calculus can be:

N ≤ ciphertext size ≤ N + 2PR (1)

For example, if N= 512, P= 32 andR= 5 the size of the ciphertext will be
situated between 512 and 832 bits. However, we expected that in practice the
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ciphertext size will be next to 512 due to the characteristics of the rule used as
secrete key. It is important to note that using the same parameters the ciphertext
obtained using Gutowitz’s model will have exactly 832 bits — the worst and
improbable situation in the new proposed method. Thus, it is a variable-length
cryptographic model.

Another aspect that must be addressed in this proposal is related to the
information needed by the receptor to do the decipher process. Based only on
the size of the ciphertext transmitted, the receptor can obtain the number of
pre-images in which the reverse algorithm had failed. For example, for the same
parameters used in the previous example, if the ciphertext has size 532, the
number of fails had been two (F = 2), since 512+2×2×5=532.However,this in-
formation is not enough to recover the cipher process. The receptor need to know
not only the number of fails but exactly in which pre-images the reverse algo-
rithm had failed and the extra bits was added. In a fail occurrence, we propose
to transmit a fixed binary block with size equal to the number of pre-images
calculated(P )such that the first bit is related to the first pre-image calculated,
the second bit to the second pre-image and so on. If the K-th pre-image fail in
the original reverse algorithm, the K-th bit has value 1; otherwise it has value
0. Suppose that the 2 fails related to the previous example had happened in
the calculus of the 5-th and 14-th pre-images. So, the fixed block transmitted is

0000100000000100.
The case that no fail occurred does not need to transmit the fixed block. Using
this approach the amount of bits actually transmitted is given by:

N ≤ bits transmitted ≤ N + P + 2PR (2)

For example, if N = 512, P = 32 and R = 5 the size of the ciphertext will
be situated between 512 (F = 0) and 848 (F = 32) bits in theory and next to
512 in practice.

8 Additional remarks

The results presented in this work derived from several studies carried through
since 2000 in Brazil under the coordination of the first author of this work.
The initial motivation of these studies drifts of the analysis of the cryptographic
model proposed by Gutowitz. By this analysis, it was evidenced that this method
provokes a strong increase of the ciphertext in relation to the plaintext, discour-
aging its practical use, especially in respect to the transmission of the ciphered
data. In the first study performed [4], it was investigated the use of radius-1 CA
rules with Z=1 with the reverse algorithm in a cipher method. From this study,
it was clearly that the Z equal to 1 condition of a rule would not be enough
to employ it as a cryptographic key. In a subsequent study [5], the symmetry
and Zleft /Zright balance had shown promising in a more restricted specification
of rules that could in fact be viable as keys. In a complementary study [6], it
was clearly that in the search for rules with 100% of pre-image guarantee, we
could be in approaching to rules with a fixed-point behavior and moving away
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from rules with the desired chaotic behavior. More recently, with the aid of a
spatial entropy measure and employing a subgroup of Z=1 rules specified us-
ing adequate symmetry level and Zleft /Zright balancing, it was able to verify
that these rules have high probability of pre-image for any lattice and exhibits
chaotic behavior. These rules are characterized by Zleft = 1; 0.25 < Zright < 0.5
and 0.25 < S < 0.5. From these last results and of all the previous analyzes, a
proposal of a new cryptographic method was elaborated in this work.

We have just taken knowledge about two works written by Andrew Wuen-
sche in which he had also considered the use of his reverse algorithm as a crypto-
graphic method. The first reference is a book chapter about DDLab environment,
which was elaborated by him for the study of cellular automata and discrete
networks [15]. In this chapter, the idea to use the reverse algorithm is presented
together with the employment of chain-rules as secret keys, that according to
author, would tend to present only one pre-image for all possible lattice. Even
so the concept and characterization of the chain-rules is not presented in this
chapter. However, the chain rules had been defined previously in DDLab man-
ual [17] in which it is said that they are suitable for encryption. In the second
reference [16], not yet published, the idea is more elaborated and the “chain-
rules” are characterized with the use of Z parameter and their components Zleft

and Zright: these rules must have Z equal to 1 but with Zleft different of Zright;
that is, the both components (Zleft and Zright) can not be equal a 1. This rule
characterization was reached by Wuensche based on his DDLab’s studies about
the Garden-of-Eden density related to basins of attraction. According to per-
sonal communications with the author, he had written his initial ideas of this
paper in 2000 and it having remained not published for different reasons.

Although we have not done a detailed analysis of his work yet, we believe
that they are similar but there are significant differences. We intend to compare
his model with ours in a next future.

9 Conclusions

This work investigates the application of the reverse algorithm proposed by [14]
as a cipher method in a cryptographic system. The usage of GA in the search of
valid secret keys and Z parameter in their specification are also evaluated.

A variation of the reverse algorithm in which extra bits are added in each pre-
image calculus has revealed viable of being applied in a cipher process, having
been enough to use rules with Z equal to 1 as secret keys. A genetic algorithm
can be easily used in the generation of rules of such kind. In relation to the
previous methods proposed in [2] and [9], this method has the advantage to use
more general rules. Consequently, it has a larger cardinality key space for the
same CA radius. However, a disadvantage of the previous methods remains: a
significant increase of the ciphertext in relation to the original plaintext.

Considering the application of the original reverse algorithm which does not
have the disadvantage to be an increasing-length method, we have obtained im-
portant conclusions: the join specification of the requisites (i) Z, (ii) Zleft/Zright
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balance and (iii) symmetry (S) was shown to be a successful approach to de-
fine the transition rules to be used as secret keys. A final specification of these
rules are Zrigh = 1; 0.25 < Zleft < 0.5 and 0.25 < S < 0.5 or Zleft = 1;
0.25 < Zrigh < 0.5 and 0.25 < S < 0.5. However, using the original reverse al-
gorithm (without extra bits) even using rules that satisfying all these requisites
it is possible to fail when calculating a pre-image of some lattices. Therefore, to
effectively use this method as a ciphering process, we need to adopt some kind of
contour procedure. Here we propose to alternate the original reverse algorithm
and the modified reverse algorithm in the cipher process, using the second only
when the pre-image calculus fails. This contour procedure needs to add some bits
to the ciphertext in relation to the plaintext size when a fail occurs: (i) a fixed
number of bits, equal to the number of pre-images P and (ii) a variable number
of bits due to eventual fails, 2R bits for each fail, where R is the CA radius. We
expected that in practice few fails happens and the ciphertext size will be equal
or close to the plaintext. We have implemented the proposed cipher method and
we will submit it to more robust tests to confirm this expectation.

The approach discussed here uses a variable-length method to contour an
eventual failure in the pre-image calculus. Another possible approach is trying
to find a manner to guarantee that the cellular automaton will calculate at least
one pre-image for any possible lattice. We are conducting a new investigation
related to this way in which the problem is fixed using non-homogeneous CA.
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Abstract. Decidability of the number-conservation property of one-
dimensional cellular automata rules can be established by necessary and
suficient conditions given by Boccara and Fukś Nevertheless, a related
open question would ask for a definition of the intermediate conserva-
tion degree of a rule. Based upon those conditions, a proposal is made
herein of the intermediate conservation degree for one-dimensional cellu-
lar automata rules. Empirical measures of this quantity are also defined
and then related results of computational experiments are presented.
Possible relations between theoretical and experimental results are also
investigated.

1 Introduction

Cellular automata (CAs) are a class of discrete dynamical system where ho-
mogeneous, local, short-range interactions between their components can result
in emergent behaviour [1]. Due to their distributed nature and local process-
ing, they can play important role in complex systems modeling [2]. Nagel and
Schreckenberg [3] proposed a one-dimensional, 2-state CA based model of high-
way traffic flow where the number of cars remains constant during system evo-
lution. The success of that model depends on the fact that the evolution rule
satisfies a certain quantity conservation law, that is, the rule must be number-
conserving [4]. Indeed, given a one-dimensional CA rule, it is always possible to
decide whether or not the rule is number-conserving, by means of the Boccara-
Fukś conditions [5]; nevertheless, nothing can be said about the intermediate
conservation degree, since such a quantity has apparently not yet been defined
in the literature. The purpose of this paper is to contribute in filling up this gap.
Understanding the meaning of conservation degree for non-conservative CAs
may be useful in open systems modeling like biological and thermodynamical
systems [2].
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In what follows, this section provides general background material on CAs
and on Boccara-Fukś conditions [5]. The next section then introduces a definition
of conservation degree for one-dimensional CA rules that is consistent for rules
belonging to the same dynamical equivalence class. In Section 3, an empirical
conservation degree is defined, which is based on the normalisation of the sum
of the proportion of number-conserving configurations, and then main results of
the analyses of its asymptotic behaviour for all elementary rules are presented.
Comparative results between theoretical and experimental conservation degrees
are also considered. In addition, a new empirical measure of conservation degree
for one-dimensional CA rules is proposed, that suggests an alternative interpre-
tation of conservation in the present context; also, attempts are made to relate
the empirical and theoretical conservation degrees. Finally, Section 4 discusses
the conclusions and possible extensions of this work.

1.1 Cellular automata

CAs are fully discretised dynamical systems, since their spatial composition,
temporal evolution and state variables are all given in discrete domains. All the
processing is distributed, so that computations occur locally, without a central
processing unit or memory [2]. Despite their simplicity, CAs may produce com-
plex patterns useful in modeling natural phenomena. Basically, a CA consists of
an n-dimensional array of identical finite state machines (cells), where each cell
takes on a state drawn from a discrete set of values. Its spatio-temporal dynam-
ics is determined by a state transition function, that depends on the state of the
neighbourhood cells at a given time t. One dimensional CAs may be defined as
follows [5]. Let S : Z× N→ Q a function that satisfies the equation:

s(i, t + 1) = f(s(i− rℓ, t), s(i− rℓ + 1, t), . . . , s(i, rr, t)). (1)

For all i ∈ Z, t ∈ N where Z is the set of integers, N is the set of nonnegative
integers and Q = {0, 1, . . . , q − 1}, q ∈ N, a finite set of states. The state of
cell i at time t is given by s(i, t), as represented in Fig. 1. A configuration is
any element S ∈ QZ. In this work only finite CAs are considered, so that QZ is
replaced by QL, L ∈ Z being the length of the configuration.

Fig. 1. Local evolution of a one-dimensional CA with neighborhood n = rℓ +
rr + 1.
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Let f : Qn → Q be a local transition function (or rule), n = rℓ +rr +1, where
rℓ and rr ∈ Z

+ are, respectively, the left and right radii of the rule, referred to
as an n-input rule. Following Wolfram’s lexicographic ordering scheme [2], each
transition function f can be assigned a rule number N(f) ∈ Z

+ such that:

N(f) =
∑

(x1,x2,...,xn)∈Qn

f(x1, x2, . . . , xn)qqn−1x1+qn−2x2+···+q0xn (2)

Since there are qn distinct neighbourhoods, each of them mapping one of
q distinct states, this entails a total of q . . . q . . . q

︸ ︷︷ ︸

qn

= qqn

distinct rules, which

defines a rule space. In particular, when n = 3 and q = 2, a set with 256 rules
defines the ‘elementary’ space [2]. But regardless of the space at issue, distinct
rules may exhibit equivalent dynamical behaviours, when they relate to each
other through certain particular transformations, as shown in expression (3).
Accordingly, rule spaces can be partitioned into dynamical equivalence classes
[2]. In the elementary space, 88 equivalence classes can be generated by applying
the operators of conjugation and reflection, denoted respectively by C and R,
and their composition CR (or, equivalently, RC ), defined as follows [5]:

Cf(x1, x2, . . . , xn) = q − 1− f(q − 1− x1, q − 1− x2, . . . , q − 1− xn)

Rf(x1, x2, . . . , xn) = f(xn, xn−1, . . . , x1)
(3)

1.2 One-dimensional CA rules

Consider the one-dimensional CA rule where N(f) = 170, n = 3 e q = 2. From
(2) it follows that:

f(0, 0, 0) = 0, f(0, 0, 1) = 1, f(0, 1, 0) = 0, f(0, 1, 1) = 1

f(1, 0, 0) = 0, f(1, 0, 1) = 1, f(1, 1, 0) = 0, f(1, 1, 1) = 1
(4)

It is easy to see that ∀x1, x2, x3 ∈ Q, f(x1, x2, x3) = x3. So, for any configu-
ration with length L ≥ n, according to [4], condition (5) should be satisfied:

f(s(1, t), s(2, t), s(3, t)) + f(s(2, t), s(3, t), s(4, t)) + · · ·
+f(s(L, t), s(1, t), s(2, t)) = s(1, t) + s(2, t) + · · ·+ s(L, t)

(5)

Thus, the sum of all states remains constant as the system is iterated. This is
a consequence of the number-conserving indexnumber-conserving rule nature of
rule 170, according to (5). Note that rule is equivalent to the application of the
shift-left operator to the initial configuration, which is clearly number-conserving
(as depicted in Fig. 2). Number conserving CA rules may be regarded as evo-
lution operators where the number of interacting particles remains constant as
the system evolves, caracterising an isolated system [5].
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Fig. 2. Spatio-temporal diagram of elementary rule 170, from a random initial
configuration of length 50, for 50 iterations. Quantity-conservation is clearly
noticed during the evolution.

As proved by Boccara and Fukś [5], an n-input one-dimensional CA rule is
number-conserving if, and only if, ∀(x1, x2, . . . , xn) ∈ Qn, the rule satisfies:

f(x1, x2, . . . , xn) = x1 +
n−1∑

k=1

(f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, · · · , xn−k+1)−

f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, · · · , xn−k)

(6)

In particular, it is clear that, if f is number conserving, then:

f(0, 0, . . . , 0) = 0 +

n−1∑

k=1

(f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, 0, . . . , 0)− f(0, 0, . . . , 0
︸ ︷︷ ︸

k+1

, 0, . . . , 0)) = 0 (7)
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For instance, it follows from (6) that (4) refers to a number-conserving CA
rule, since:

f(0, 0, 0) = 0 ⇔ 0 = 0 → True

f(0, 0, 1) = f(0, 0, 1) − f(0, 0, 0) ⇔ 1 = 1 − 0 → True

f(0, 1, 0) = f(0, 1, 0) − f(0, 0, 0) ⇔ 0 = 0 − 0 → True

f(0, 1, 1) = f(0, 1, 1) − f(0, 0, 0) ⇔ 1 = 1 − 0 → True

f(1, 0, 0) = 1 + 2f(0, 0, 0) − f(0, 0, 1) − f(0, 1, 0) ⇔ 0 = 1 + 2.0 − 1 − 0 → True

f(1, 0, 1) = 1 + f(0, 0, 0) − f(0, 1, 0) ⇔ 1 = 1 + 0 − 0 → True

f(1, 1, 0) = 1 + f(0, 1, 0) − f(0, 1, 1) ⇔ 0 = 1 + 0 − 1 → True

f(1, 1, 1) = 1 ⇔ 1 = 1 → True

(8)

Now, since for all number-conserving rules f(0, 0, . . . , 0) = 0, a further step
can be taken from Boccara-Fukś conditions, for all neighbourhoods starting with
x1 = 0. In order to realise that, it suffices to introduce the latter considerations
into (6) and then simplify it, as follows:

f(0, x2, . . . , xn) = 0 +

n−1∑

k=1

(f(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, · · · , xn−k+1)−

f(0, 0, . . . , 0
︸ ︷︷ ︸

k+1

, x2, . . . , xn−k)) =

f(0, x2, · · · , xn)− f(0, 0, · · · , 0) =

f(0, x2, · · · , xn)→ True

(9)

This follows from the fact that, for each k, the addition of the second term
of the sum with the first term for k + 1 is always zero; for instance, while for
k = 1 the second term of the sum yields f(0, 0, x2, . . . , xn−1), the first term for
k + 1 is −f(0, 0, x2, . . . , xn1− 1). As a consequence, qn−1 tautologies become
evident in (6), so that decidability of the number-conservation property can, in
fact, be established by checking only qn − qn−1 + 1 conditions, instead of the
qn conditions of the original Boccara-Fukś proposal. This provides a simplified
algorithm for achieving the conservation decision, at a lower computational cost.

2 Conservation degree of one-dimensional CA rules: An
analytical proposal

Since the number-conservation property is preserved for rules in the same equiv-
alence class of dynamical behaviour [5], the conservation degree should also be.
So, by applying conjugation and reflection operators to (6), the following condi-
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tions must be satisfied, ∀(x1, x2, . . . , xn) ∈ Qn:

Cf(x1, x2, . . . , xn) = x1 +
n−1∑

k=1

(Cf(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)−

Cf(0, 0, ..., 0
︸ ︷︷ ︸

k

, x1, x2, ..., xn−k))

(10)

Rf(x1, x2, . . . , xn) = x1 +

n−1∑

k=1

(Rf(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, . . . , xn−k+1)−

Rf(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k))

(11)

RCf(x1, x2, . . . , xn) = x1 +

n−1∑

k=1

(RCf(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x2, x3, ..., xn−k+1)−

RCf(0, 0, . . . , 0
︸ ︷︷ ︸

k

, x1, x2, . . . , xn−k))

(12)

Let Φ, ΦC , ΦR and ΦCR be the equation sets from (6), (10), (11) and (12),
respectively, for n ∈ N fixed. Hence, the theoretical conservation degree of one-
dimensional CA rules can be defined as follows (where |C| means the cardinality
of set C):

γ =
|{ϕ ∈ Φ

⋃
ΦC

⋃
ΦR

⋃
ΦCR : ϕ is True}|

|Φ⋃ΦC

⋃
ΦR

⋃
ΦCR|

(13)

Therefore, the maximum possible conservation degree value is set to γ = 1,
in the case of a number-conserving CA rule, and the minimal value is γ =
0. In this way, given a one-dimensional CA rule, γ refers to the proportion
of conservation equations that are satisfied, in relation to the total number of
conservation equations.

In particular, for n = 3 and q = 2 (i.e., in the elementary rule space), a
further simplification is straightforward. For that, one can easily see that (11)
is equivalent to (6), as it suffices to apply the reflection operator in (11) and
notice that Rf(xn, xn−1, . . . , x1) = f(x1, x2, . . . , xn), which results in identical
equations. Analogously, the same argument can be used to show that the set
of equations in (10) and (12) are also equivalent, by applying the reflection
operator in (12). As a consequence, (6) and (10) become necessary and sufficient
to define a measure that is identical among rules of the same equivalence class,
thus entailing (13) to be simplified as follows:

γ =
|{ϕ ∈ Φ

⋃
ΦC : ϕ is True}|
|Φ⋃ΦC |

(14)

As illustration, Fig. 3 shows the value of γ for all elementary rules. Notice,
for instance, that 5 rules display γ = 1.0, which correspond to the number-
conserving elementary rules 170, 184, 226 and 240; also, 8 rules appear with
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Fig. 3. Conservation degree γ for every elementary rule, in order of their number.

γ = 0, which are the rules 15, 29, 33, 51, 71, 85, 105 and 123. Since for q=2
and n=3 Boccara-Fukś conditions can be established by applying (5) to the
configuration (0, 0, x1, x2, x3), it was observed that rules with γ = 1.0 satisfy
(5) for all these configurations and for rules with γ = 0, no conditions are
satisfied at all, so that the conservation degree can be interpreted as counting
the configurations which satisfy (5).

Finally, the analysis in the elementary rule space of the frequency of occur-
rence of the equations in (14) whose logical value is true, shows that such a
distribution is not constant, thus suggesting the idea of probing the effect of
adding weights to each equation. However, a formulation of γ as such leads to
different values among rules of the same equivalence class, a situation that is not
appropriate.

3 Empirical conservation degree for one-dimensional
rules

An empirical measure for the conservation degree must satisfy the facts that,
according to (13), number-conserving rules should remain number-conserving in
respect to the measure, and rules in the same class of dynamical equivalence
should have the same empirical conservation degree. Accordingly, let S ∈ QL,
L ∈ Z

+ be a configuration. If f is a number-conserving CA rule, then:

L∑

i=1

s(i, t) =

L∑

i=1

s(i, t + 1)∀t ∈ Z
+. (15)
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From (15), for each configuration we can define

ΘS = {σt : σt =

L∑

i=1

s(i, t), t ∈ Z
+}, (16)

from which, f is number-conserving if, and only if, |Θ| = 1, ∀S ∈ QL, L ∈ N and
t ∈ Z

+. Hence, a candidate for the empirical conservation degree can be defined
as

γe =
1

L

L∑

i=1

|{S ∈ Qi : |ΘS | = 1}|
qi

(17)

which represents the normalised sum of the proportions of number-conserving
configurations for each length from 1 to L and fixed t = T (i.e., the configura-
tions that satisfy (15) up to a certain t = T ). The values of γe for rules of the
elementary space are depicted in Fig. 4.

Fig. 4. Empirical conservation degree γe for L=5 and T=3 for all elementary
rules, in order of their number.

Notice in Fig. 4 that there are 5 rules with γ = 1.0, corresponding to the
elementary number-conserving rules 170, 184, 226 and 240, and 4 rules (27, 39,
53 and 83, all of them, by the way, belonging to the same dynamical equiv-
alence class) with γ = 0.03125, the minimal value of conservation degree in
the elementary space, since the normalisation of the sum of the proportions of
number-conserving configurations from length 1 to L and fixed t = T for these
rules are also minimal.
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Considering again L = 5 and T = 3 and then ploting γ and γe in the same
coordinate system, Fig. 5 is obtained. Notice that, unless otherwise stated, in
the following figures only the representative rule of each equivalence class of
the elementary space [2] is considered, where the representative rule is the one
possessing the smallest rule number; also, the points in the x-axis correspond to
the ordinal position (in ascending order) of the representative rule, and not the
rule number itself. As such, rule number 30 for instance, corresponds to the 27th
position along the x-axis.

Fig. 5. Theoretical conservation degree γ and empirical conservation degree γe

(L = 5 and T = 3), for all elementary classes of dynamical equivalence.

A possible explanation for the difference in the curves plotted in Fig. 5 may
be the fact that, since γ depends on the conservation of the configuration of the
form (0, 0, x1, x2, x3) and γe depends on the conservation of all configurations
with size from length 1 up to 5, their values can be distinct.

Numerical experiments suggest that γe converges quickly as a function of t
(on average for t = 3). However, for L ∈ {1, 2, . . . , 30} ∪ {40, 50, . . . , 150} (an
approximation to L → ∞) and T = 10, the situation displayed in Fig. 6 is
typically observed, meaning that:

lim
L→∞

γe =

{
1, iff is number-conserving
0, otherwise (18)

In fact, if f is number-conserving, then:

|{S ∈ Qi : ΘS = 1}| = qi ⇒ lim
L→∞

γe = 1 (19)
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Fig. 6. Average amount of number-conserving configurations for elementary
rules 30, 51 and 142 for every configuration length. All configurations were
considered for t = 10 and L = 16, and random samples of 100,000 distinct
configurations for L > 16.

As Fig. 6 makes it evident, on average the amount of number-conserving
configurations decreases as the configuration lengths increase. Similar limit be-
haviour was observed for all 88 representative rules of the elementary space
equivalence classes, even though three basic patterns of transients could be dis-
tinguished: non-monotonic convergence (as depicted in Fig. 6, for rules 30 and
142); monotonic convergence (as happened for rules 0, 2 and 132); and slow con-
vergence with subsequent jumps from 0 to the calculated value of γe, for even
and odd values of L, respectively (as in the case of rules 15, 23 and 51, the latter
displayed in Fig. 6).

Although (6) provides necessary and sufficient conditions for deciding on the
number-conservation property for a one-dimensional CA rule, an analogous con-
dition has not yet been established with respect to the conservation degree of
one-dimensional CA rules. However, considering that the conservation degree of
a one-dimensional CA is defined as the normalisation of the sum of the number-
conserving configurations from lengths 1 to L, the quantity becomes dependent
on the length of the configuration at issue, so that, for large L, it tends to zero.
Obviously, the computational cost for calculating the empirical conservation de-
gree may become relatively high due to the exponential growth of configurations
that should be considered.
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3.1 Empirical conservation degree of one-dimensional Rules: An
alternative approach

Since the previous definition of empirical conservation degree depends on the
length of the configurations and converges to zero for all elementary rules, it
cannot be an useful measure. In order to amend that, a new definition is proposed
below.

Recalling the conditions that have to be met by an empirical measure of
conservation degree, as expressed at the onset of this section, let γL,T be defined
as the arithmetic mean of the measure |s(i, 0)− s(i, t)| for all i ∈ {1, . . . , L} and
t ∈ {1, . . . , T}, as follows:

γL,T =
1

LT

T∑

t=1

|
L∑

i=1

(s(i, 0)− s(i, t))| (20)

Now, based on the latter, another form for the empirical conservation degree
(γ′e) can be defined, as expressed by the difference between 1 and the mean of
γL,T over all configuration lengths L ∈ N, in T ∈ Z

+ iterations, for fixed L and
T . Mathematically, the new quantity then becomes

γ′e = 1− 1

qL

∑

S∈QL

γL,T (21)

from which, if f is number-conserving, then

L∑

i=1

(s(i, 0)− s(i, t)) = 0⇒ γ′e = 1 (22)

Numerical experiments suggest that γ′e converges quickly as a function of
T (on average for T = 15), but much slower as a function of L. However, as
verified for L ∈ {1, 2, . . . , 30} ∪ {40, 50, . . . , 150}, all 88 representative rules for
the equivalence classes in the elementary space converge for sufficiently large
L. For instance, on Fig. 7 the asymptotic behaviour of γ′e for elementary rules
0, 146 and 154 can be realised. These rules present, respectively, the minimal
value (γ′e = 0.5) of the space, the maximum possible value (γ′e = 0.976) for a
non-conservative rule, and an intermediate value (γ′e = 0.772), that is close to
the arithmetic mean of the latter two.

Spatio-temporal analyses of the elementary rules suggest that γ′e is related
indeed to a certain capacity of the rule to maintain density constant in relation to
the initial configuration, which, as expected, can be interpreted as a measure of
conservation degree. As illustration, the values of ΘS for rules 0, 146 and 154 are
presented in Fig. 8, for each configuration of length L = 4 and T = 3. Notice for
rule 0, that the difference between the first term of each quadruplet and the last
one is maximum, meaning that the rule capacity to maintain constant its density
in relation to the initial configuration is minimal. Such behaviour is expected,
since rule 0 maps any configuration to the one composed of all 0s. It also explains
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Fig. 7. Empirical conservation degree γ′e of elementary rules 0, 146 and 154, for
various configuration lengths. The graph refers to all configurations for T = 10
and L = 16, and random samples of 50,000 different configurations for L > 16.

Fig. 8. ΘS for elementary rules 0, 146 and 154. Each quadruplet represents the
values of ΘS for each configuration of length L = 4 and T = 3.

the quick convergence observed for rule 0, shown in Fig. 7. Conversely, for rule
146, the difference between the first term of each quadruplet and the last one
is close to 0 for almost all quadruplets, indicating the capacity of the rule to
maintain constant its density in relation to the initial configuration tends to be
maximum. Finally, both previous patterns can be observed for rule 154.

Figure 9 shows the convergence of γ′efor all representative rules of the dy-
namical equivalence classes in the elementary space.

According to [2], rules can be categorised into four classes of dynamical be-
haviour: Class-I (initial configurations converge to a homogeneous configuration),
Class-II (configurations converge to a fixed-point or a cycle), Class-III (a chaotic
or pseudo-random behaviour is typically observed), and Class-IV (configurations
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Fig. 9. Empirical conservation degree γ′e for each representative of the dynamical
equivalence classes in the elementary space. The graph refers to all configurations
for T = 10 and L = 16, and random samples of 50,000 different configurations
for L > 16.

Fig. 10. Arithmetic mean of γ′e for rules in each equivalence class of dynamical
behaviour.

often display complex patterns of localised structures). So, considering this clas-



Conservation degree for 1D CA 169

sification, the arithmetic mean of γ′e for rules belonging to each of these classes
can be noticed in Fig. 10.

According to Wolfram’s classification scheme, lower values of γ′e for Class-I
rules are expected, since almost all configurations converge to a homogeneous
configuration; hence, the difference between the first term and the last one of
their ΘS becomes maximum. For Class-II rules, higher values of γ′e are expected
than those for Class-I, since some configurations may converge to homogeneous
configurations or cycles of number-conserving configurations. For Class-III and
Class-IV rules, ΘS analyses are not so evident. In fact, while all elementary
number-conserving rules belong to Class-II, the arithmetic mean of γ′e for Class-
IV has the greatest value. So, for the elementary space, complex rules are, in
average, the most conservative ones.

3.2 Further analyses of γ′

e

The possibility of establishing a relationship between γ and γ′e is appealing in
that it might provide an indirect analytical method for the calculation of γ′e,
which is independent on the configuration lengths. Comparing such parameters
it happens that rules with the same value of γ may have different values of γ′e and
vice versa. Indeed, the granularity presented by γ’e is bigger than that presented
by γ; for example, n = 3 and q = 2 entails |Φ∪ΦC | = 8, implying that γ can take
on no more than 9 different values (in fact, there are exactly 8 values), while γ′e
takes on 86 different values.

In order to overcome the distinct granularities of the two measures and at-
tempt a compatible match between them, let δγe

: Γ ′ → Γ be a function that
maps the values of γ′e onto the smaller set defined by the values of γ, where Γ ′

and Γ are the image sets of γ′e and γ, respectively, such that:

δγe
(x) =

{
1, if x = 1
γi, if γi ≤ x < γi+1

(23)

In Fig. 11 the overall relationship between δγe
and γ can be noticed. From

the graph it can be drawn that δγe
= 0.75 for both rules 76 and 105, suggest-

ing that these rules should display similar behaviours from the perspective of
that quantity. However, analyses of ΘS for these rules showed this does not
hold true. Fig. 12 presents ΘS values for rules 76 and 105, respectively, for each
configuration of length L = 4 and T = 3. Such behaviour is expected, since
γ

′(76)
e = 0.875 < 0.970 = γ

′(105)
e , indicating a higher average size of γL,T for

rule 76 and, therefore, a lower empirical degree of conservation γ′e. From a diff-
ferent pespective, Fig. 12 clearly shows that there are more number-conserving
configurations associated to rule 105 than to rule 76, once again pointing to the
fact that γ

′(105)
e > γ

′(76)
e . In conclusion, the idea of trying to match δγe

and γ
does not help as a conceptual tool for linking the analytical conservation degree
measure γ and the empirical counterpart γ′e.

Finally, a relationship between γ′e and Langton’s λ activity parameter [6] can
be noticed, as illustrated in Fig. 13. This relationship is due to the fact that
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Fig. 11. Empirical conservation degrees γ and δγe
(the mapped version of γ′e

onto γ), for the elementary space dynamical equivalence classes (under the same
conditions of Fig. 5).

extreme values of λ, either high or low, can bring in greater variation of (20)
and, consequently, also of γ′e.

Fig. 12. ΘS for elementary rules 76 and 105. The quadruplets in bold face rep-
resent the values of ΘS for number-conserving configurations of length L = 4
and T = 3.

4 Conclusion

A definition was proposed here for the conservation degree of one-dimensional
CA rules, based on Boccara-Fukś conditions. A theoretical measure of conserva-
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Fig. 13. The value γ′e–0.5 and Langton’s λ parameter, for all elementary classes
of dynamical equivalence (under the same conditions of Fig. 5).

tion degree was defined, which is consistent among the rules of the same class
of dynamical equivalence, and two empirical conservation degree measures have
also been proposed.

The first empirical measure showed that the mean of the amount of number-
conserving configurations tends to decrease as the configuration lengths in-
crease; consequently, assuming that conservation involves the amount of number-
conserving configurations, such a measure would not depend only on the CA rule,
but also on the configuration lengths considered. Numerical experiments showed
that for all rules of the elementary space, their conservation degrees tend to zero
as the configuration lengths increase.

The second empirical measure defined is based on the capacity that the rule
has to maintain the quantities in relation to the initial configuration. Numerical
experiments showed that for all rules in the elementary space, their conservation
degrees converge for sufficiently large configuration lengths, suggesting the mea-
sure is related to the rule global dynamics. In fact, some clear relations could
be established between Wolfram’s classes of dynamical behaviour and the mean
value of the empirical conservation degree for each class.

In the absence of a definition for the theoretical conservation degree some
attempts were made in order to relate the theoretical and empirical results ob-
tained; however, no relations were found. Numerical experiments indicate that
both empirical conservation degrees preserve their qualitative behaviours when
other rule spaces are considered; however, more research is needed not only
in this direction, but also in the theoretical formulation of conservation degree
equivalent to the last one defined.
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Abstract. An existence or non-existence of five-state firing squad syn-
chronization protocol has been a longstanding and famous open problem
for a long time. In this paper, we answer partially to this problem by
proposing a family of smallest four-state firing squad synchronization
protocols that can synchronize any one-dimensional ring cellular array
of length n = 2k for any positive integer k. The number four is the
smallest one in the class of synchronization protocols proposed so far.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. The synchronization in cellular
automata has been known as a firing squad synchronization problem since its
development, in which it was originally proposed by J. Myhill in Moore [1964]
to synchronize all parts of self-reproducing cellular automata. The firing squad
synchronization problem has been studied extensively for more than 40 years
[1-12]. The optimum-time (i.e., (2n − 2)-step ) synchronization algorithm was
devised first by Goto [1962] for one-dimensional array of length n. The algorithm
needed many thousands of internal states for its realization. Afterwards, Waks-
man [1966], Balzer [1967], Gerken [1987] and Mazoyer [1987] also developed an
optimum-time algorithm and reduced the number of states realizing the algo-
rithm, each with 16, 8, 7 and 6 states. On the other hand, Balzer [1967], Sanders
[1994] and Berthiaume et al. [2004] have shown that there exists no four-state
synchronization algorithm. Thus, an existence or non-existence of five-state fir-
ing squad synchronization protocol has been a longstanding and famous open
problem for a long time. Umeo and Yanagihara [2007] initiated an investigation
on the FSSP solutions that can synchronize some infinite set of arrays, but not
all, and presented a five-state 3n + O(1) step algorithm that can synchronize
any one-dimensional cellular array of length n = 2k for any positive integer k
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in 3n− 3 steps. Recently, Yunès [2008] and Umeo, Yunès, and Kamikawa [2008]
developed 4-state protocols based on Wolfram’s rule 60 and 150.

In this paper, we answer partially to the problem by proposing a family of
smallest four-state firing squad synchronization protocols that can synchronize
any one-dimensional ring cellular array of length n = 2k for any positive integer
k. The number four is the smallest one in the class of synchronization protocols
proposed so far. Due to the space availability we only give informal descriptions
of the family of the four-state solutions.

2 Firing squad synchronization problem

2.1 Definition of the firing squad synchronization problem

C3
Soldiers

General

C1

C2

Cn

Cn-1

Fig. 1. One-dimensional ring cellular automaton.

The firing squad synchronization problem is formalized in terms of the model
of cellular automata. Figure 1 shows a finite one-dimensional ring cellular array
consisting of n cells, denoted by Ci, where 1 ≤ i ≤ n. All cells are identical finite
state automata. The array operates in lock-step mode such that the next state of
each cell is determined by both its own present state and the present states of its
right and left neighbors. All cells (soldiers), except one cell, are initially in the
quiescent state at time t = 0 and have the property whereby the next state of
a quiescent cell having quiescent neighbors is the quiescent state. At time t = 0
the cell C1 (general) is in the fire-when-ready state, which is an initiation signal
to the array.

The firing squad synchronization problem is stated as follows: Given an array
of n identical cellular automata, including a general cell which is activated at
time t = 0, we want to give the description (state set and next-state transition
function) of the automata so that, at some future time, all of the cells will
simultaneously and, for the first time, enter a special firing state. The set of
states and the next-state transition function must be independent of n. Without
loss of generality, we assume n ≥ 2. The tricky part of the problem is that
the same kind of soldier having a fixed number of states must be synchronized,
regardless of the length n of the array. One has to note that any solution in
the original problem is to synchronize any array of length greater than two. We
call it full solution. On the other hand, Umeo and Yanagihara [2007] initiated
an investigation on the FSSP solutions that can synchronize some infinite set
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of arrays, but not all, and presented a five-state 3n + O(1) step algorithm that
can synchronize any one-dimensional cellular array of length n = 2k for any
positive integer k in 3n− 3 steps. Recently, Yunès [2008] and Umeo, Yunès, and
Kamikawa [2008] developed 4-state protocols based on Wolfram’s rule 150 and
60. We call such protocol partial solution.

We summarize recent results on state lower bounds in FSSP. In the state-
ments in the theorems below the term open-ring means a conventional one-
dimensional array with a general at one end.

[Theorem 1]Berthiaume, Bittner, Perkovic, Settle, and Simon [2004] (State Lower Bound)
There is no 3-state full solution to the firing squad synchronization problem for
the ring.

[Theorem 2]Berthiaume, Bittner, Perkovic, Settle, and Simon [2004] (State Lower Bound)
There is no 4-state, symmetric, minimal-time full solution to the firing squad
synchronization problem for the ring.

[Theorem 3]Balzer [1967], Sanders [1994] (State Lower Bound) There is no 4-state
full solution to the firing squad synchronization problem for the open-ring.

[Theorem 4]Umeo, Yunes, and Kamikawa [2008], Yunes [2008] There exist 4-state par-
tial solutions to the firing squad synchronization problem for the open-ring.

[Theorem 5]Yunes [2008] There exist no 3-state partial solutions to the firing
squad synchronization problem for the open-ring.

In this paper we will establish the following theorems with a help of computer
investigation.

[Theorem 6] There is no 3-state partial solution to the firing squad synchro-
nization problem for the ring.

[Theorem 7] There exist seventeen symmetrical 4-state partial solutions to
the firing squad synchronization problem for the ring of length n = 2k for any
positive integer k.

3 A quest for four-state symmetrical partial solutions for
rings

3.1 Four-state symmetrical ring cellular automata

Let M be a four-state ring cellular automaton M = {Q, δ}, where Q is an
internal state set and δ is a transition function such that Q = {A, F, G, Q},
δ : Q3 → Q. Without loss of generality, we assume that Q is a quiescent state
with a property δ(Q, Q, Q) = Q, A and G are auxiliary states and F is the firing
state, respectively. One of the auxiliary states is assumed to be the general

state. The initial configuration is either G

n−1
︷ ︸︸ ︷

QQ, ..., Q or A

n−1
︷ ︸︸ ︷

QQ, ..., Q for n ≥ 2,
depending on the general state G or A, respectively.
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Fig. 2. Symmetrical four-state transition table.

3.2 A computer investigation into four-state symmetrical FSSP
solutions for rings

We consider only symmetrical four-state ring cellular automata. Figure 2 is a
symmetrical four-state transition table, where a symbol • shows a possible state
in Q = {A, F, G, Q}. A blank symbol in the table is uniquely determined by the
symmetrical property such that δ(x, y, z) = δ(z, y, x), for any state x, y, z in Q.
To define a symmetrical transition table, it is sufficient to specify the entries
shown by • in Fig. 2. Thus, we have totally 417 possible transition rules. This
is no problem on today’s computer. We make a computer investigation into the
transition rule set that might yield an FSSP solution. Our searching strategy is
a very simple generate-and-test method described below:

1. Generate a symmetrical 4-state transition table.
2. Compute the configuration of each transition table for a ring of length

n, starting from an initial configuration: G

n−1
︷ ︸︸ ︷

Q, ..., Q, such that 2 ≤ n ≤ 32

and check whether each rule yields a synchronized configuration:

n
︷ ︸︸ ︷

FF, ..., F
during the time t such that n ≤ t ≤ 4n and the state F never appears in the
configurations before.

Observation 1: We have found that there exist many thousands of possible
partial solutions satisfying the conditions above. Exactly, we have got 6412
transition rule sets that yield successful synchronized configurations. One
of the biggest reasons for the large number of possible solutions is that
most of them include some redundant entries that give no influence to the
computation.

3. Remove all redundant entries in each solution.
4. Compare and classify those valid solutions into small groups.

Observation 2: Eventually we have got seventeen solutions that consist of
four optimum-time solutions, four nearly-optimum-time solutions, and nine
non-optimum-time solutions. Surprisingly, all of the solutions obtained can
synchronize rings of length n = 2k for any positive integer k.
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The outline of those solutions will be described in the next section.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G G G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G G Q A Q G G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G G G Q A A A Q G G G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G G Q A A Q G G G Q A A Q G G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 A Q Q Q Q Q A A A Q Q Q Q Q A A

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q A A Q A A Q G Q A A Q A A Q G

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 G Q G G G Q G G G Q G G G Q G G

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 G A G A G A G A G A G A G A G A

16 F F F F F F F F F F F F F F F F

Q
Right State

Q G A
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Q Q G A

G G A Q

A A Q G
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Q G Q

G Q A

A F

A
Right State

Q G A
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e

ft S
ta
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Q A Q

G F

A Q G

Solution 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A A A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A A Q G Q A A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A A A Q G G G Q A A A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A A Q G G Q A A A Q G G Q A A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 G Q Q Q Q Q G G G Q Q Q Q Q G G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G G Q G G Q A Q G G Q G G Q A

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 A Q A A A Q A A A Q A A A Q A A

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 A G A G A G A G A G A G A G A G

16 F F F F F F F F F F F F F F F F
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G F

A Q A

Solution 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 A Q Q Q Q Q A G A Q Q Q Q Q A G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G A Q A G Q A Q G A Q A G Q A

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 G Q G A G Q G A G Q G A G Q G A

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 G G G G G G G G G G G G G G G G

16 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te
Q Q G A

G G A Q

A A Q G

G
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G F

A Q G

A
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G Q A

A F

Solution 4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A G Q A G Q A G A Q G A Q G A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 G Q Q Q Q Q G A G Q Q Q Q Q G A

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q A G Q G A Q G Q A G Q G A Q G

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 A Q A G A Q A G A Q A G A Q A G

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 A A A A A A A A A A A A A A A A

16 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q A G

G A G Q

A G Q A

G
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G F

A Q A

A
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G Q G

A F

Solution 3

Fig. 3. Transition tables and snapshots on 16 cells for the Solutions 1, 2, 3, and
4.

4 Four-state solutions

4.1 Optimum-time solutions

It has been shown by Berthiaume et al. [2004] that there exists no algorithm
that can synchronize any ring of length n in less than n steps.

[Theorem 8]Berthiaume, Bittner, Perkovic, Settle, and Simon [2004] The minimum time
in which the firing squad synchronization could occur is no earlier than n steps
for any ring of length n.

We have got four optimum-time partial solutions operating in exactly n steps.
Figure 3 shows the transition rules and snapshots on 16 cells for Solutions 1, 2,
3 and 4. It is noted that both of the states G and A can be an initial general
state in each solution without introducing any additional transition rules. Let
Ti,G(n), Ti,A(n) be time complexity of Solution i for synchronizing a ring CA of
length n with an initial general in state G, A, respectively. We get the following
observation.

Observation 3: For any i such that 1 ≤ i ≤ 4, Ti,G(n) = Ti,A(n) = n.
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In Table 4.1 we give the time complexity and number of transition rules for
each solutions.

Table 1. Time complexity and number of transition rules for Solutions 1, 2, 3
and 4.

Time # of
Solutions complexity transition Notes

rules

Solution 1 T1,G(n) = T1,A(n) = n 19
Solution 2 T2,G(n) = T2,A(n) = n 19
Solution 3 T3,G(n) = T3,A(n) = n 19
Solution 4 T4,G(n) = T4,A(n) = n 19

4.2 Nearly optimum-time solutions

We have got four nearly optimum-time Solutions 5, 6, 7, and 8, each can syn-
chronize rings of length n = 2k in n or n+1 steps. Figure 4 shows the transition
rules and snapshots on 16 cells for Solutions 5, 6, 7 and 8. It is noted that both
of the states G and A can be an initial general state in each solution without
introducing any additional transition rules. Those solutions have an interesting
property on synchronization time such that:

Observation 4: T5,G(n) =

{
n k : odd

n + 1 k : even
T5,A(n) =

{
n + 1 k : odd

n k : even.

Similar observations can be made for the Solutions 6, 7 and 8. In Table 2 we
give the time complexity and number of transition rules for each solution.

4.3 Non-optimum-time solutions

Here we give nine non-optimum-time Solutions 9, 10, 11, 12, 13, 14, 15, 16 and
17, each can synchronize rings of length n = 2k in 3n/2 − O(1) or 2n − O(1)
steps. Figure 5 shows the transition rules and snapshots on 16 cells for Solutions
9, 10, 11 and 12 and Figure 6 shows the transition rules and snapshots on 16
cells for Solutions 13, 13, 15, 16 and 17. In Table 3 we give the time complexity
and number of transition rules for each solution. In those solutions, except the
Solution 11, It is observed that both of the states G and A can be an initial
general state in each solution without introducing any additional transition rules.
The Solution 11 with an initial general in state A cannot be a partial solution
as it is.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A G Q A G Q A G A Q G A Q G A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 G Q Q Q Q Q G A G Q Q Q Q Q G A

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q A G Q G A Q G Q A G Q G A Q G

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 A Q A G A Q A G A Q A G A Q A G

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 A A A A A A A A A A A A A A A A

16 G G G G G G G G G G G G G G G G

17 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q A G

G A G Q

A G Q A

G
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G F

A Q A

A
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G Q G

A G

Solution 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 A Q Q Q Q Q A G A Q Q Q Q Q A G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G A Q A G Q A Q G A Q A G Q A

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 G Q G A G Q G A G Q G A G Q G A

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 G G G G G G G G G G G G G G G G

16 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q G A

G G A Q

A A Q G

G
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G F

A Q G

A
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G Q A

A G

Solution 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 A Q Q Q Q Q A G A Q Q Q Q Q A G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G A Q A G Q A Q G A Q A G Q A

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 G Q G A G Q G A G Q G A G Q G A

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 G G G G G G G G G G G G G G G G

16 A A A A A A A A A A A A A A A A

17 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q G A

G G A Q

A A Q G

G
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G A

A Q G

A
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G Q A

A F

Solution 6

Q
Right State

Q G A
L

e
ft S

ta
te

Q Q A G

G A G Q

A G Q A

G
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G A

A Q A

A
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G Q G

A F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A G Q A G Q A G A Q G A Q G A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 G Q Q Q Q Q G A G Q Q Q Q Q G A

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q A G Q G A Q G Q A G Q G A Q G

12 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

13 A Q A G A Q A G A Q A G A Q A G

14 Q A Q A Q A Q A Q A Q A Q A Q A

15 A A A A A A A A A A A A A A A A

16 F F F F F F F F F F F F F F F F

Solution 8

Fig. 4. Transition tables and snapshots on 16 cells for the Solutions 5, 6, 7, and
8.

Table 2. Time complexity and number of transition rules for Solutions 5, 6, 7
and 8.

Time # of
Solutions complexity transition Notes

rules

Solution 5 T5,G(n) =

{
n k : odd

n + 1 k : even
19 n = 2k

Solution 6 T6,G(n) =

{
n k : odd

n + 1 k : even
19 n = 2k

Solution 7 T7,G(n) =

{
n + 1 k : odd

n k : even
19 n = 2k

Solution 8 T8,G(n) =

{
n + 1 k : odd

n k : even
19 n = 2k
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A A A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A A Q G Q A A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A A A Q G G G Q A A A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A A Q G G Q A A A Q G G Q A A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 G Q Q Q Q Q G G G Q Q Q Q Q G G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G G Q G G Q A Q G G Q G G Q A

12 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

13 A Q Q Q Q Q A A A Q Q Q Q Q A A

14 Q G Q Q Q G Q A Q G Q Q Q G Q A

15 Q A A Q A A Q G Q A A Q A A Q G

16 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

17 G Q G G G Q G G G Q G G G Q G G

18 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

19 A Q A A A Q A A A Q A A A Q A A

20 Q A Q A Q A Q A Q A Q A Q A Q A

21 A G A G A G A G A G A G A G A G

22 F F F F F F F F F F F F F F F F

Q
Right State

Q G A
L

e
ft S
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te

Q Q A G

G A Q Q

A G Q A

G
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G Q G

A F

A
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G F

A Q A

Solution 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 A Q Q Q Q Q A G A Q Q Q Q Q A G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G A Q A G Q A Q G A Q A G Q A

12 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

13 G Q Q Q Q Q G A G Q Q Q Q Q G A

14 Q G Q Q Q G Q A Q G Q Q Q G Q A

15 Q A G Q G A Q G Q A G Q G A Q G

16 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

17 A Q A G A Q A G A Q A G A Q A G

18 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

19 G Q G A G Q G A G Q G A G Q G A

20 Q A Q A Q A Q A Q A Q A Q A Q A

21 Q G Q G Q G Q G Q G Q G Q G Q G

22 A A A A A A A A A A A A A A A A

23 G G G G G G G G G G G G G G G G

24 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q G A

G G A Q

A A Q Q

G
Right State

Q G A

L
e

ft S
ta

te

Q A Q

G F

A Q G

A
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G Q A

A G

Solution 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G G Q G G Q Q Q Q Q Q

3 Q Q Q Q G Q Q Q Q Q G Q Q Q Q Q

4 Q Q Q G A G Q Q Q G A G Q Q Q Q

5 Q Q G G Q G G Q G G Q G G Q Q Q

6 Q G Q Q Q Q Q Q Q Q Q Q Q G Q Q

7 G A G Q Q Q Q Q Q Q Q Q G A G Q

8 G Q G G Q Q Q Q Q Q Q G G Q G Q

9 A Q Q Q G Q Q Q Q Q G Q Q Q A Q

10 G A Q G A G Q Q Q G A G Q A G G

11 G A A G Q G G Q G G Q G A A G A

12 Q Q Q G Q Q Q Q Q Q Q G Q Q Q Q

13 Q Q G A G Q Q Q Q Q G A G Q Q Q

14 Q G G Q G G Q Q Q G G Q G G Q Q

15 G Q Q Q Q Q G Q G Q Q Q Q Q G Q

16 A G Q Q Q G A Q A G Q Q Q G A Q

17 A G G Q G G A G A G G Q G G A G

18 Q G Q Q Q G Q Q Q G Q Q Q G Q Q

19 G A G Q G A G Q G A G Q G A G Q

20 G Q G Q G Q G Q G Q G Q G Q G Q

21 A Q A Q A Q A Q A Q A Q A Q A Q

22 G G G G G G G G G G G G G G G G

23 A A A A A A A A A A A A A A A A

24 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q G A

G G Q A

A A A G

G
Right State

Q G A

L
e

ft S
ta

te

Q A Q G

G Q A G

A G G Q

A
Right State

Q G A

L
e

ft S
ta

te

Q G A

G A Q Q

A Q F

Solution 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

9 A Q Q Q Q Q A G A Q Q Q Q Q A G

10 Q A Q Q Q A Q G Q A Q Q Q A Q G

11 Q G A Q A G Q A Q G A Q A G Q A

12 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

13 G Q Q Q Q Q G A G Q Q Q Q Q G A

14 Q G Q Q Q G Q A Q G Q Q Q G Q A

15 Q A G Q G A Q G Q A G Q G A Q G

16 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

17 A Q A G A Q A G A Q A G A Q A G

18 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

19 G Q G A G Q G A G Q G A G Q G A

20 Q A Q A Q A Q A Q A Q A Q A Q A

21 Q G Q G Q G Q G Q G Q G Q G Q G

22 A A A A A A A A A A A A A A A A

23 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q G A

G G A Q

A A Q Q

G
Right State

Q G A

L
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ta

te
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A Q G

A
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ta

te

Q G Q
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A F

Solution 12

Fig. 5. Transition tables and snapshots on 16 cells for the Solutions 9, 10, 11,
and 12.
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Solution 13

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q A G

G A G Q

A G Q Q

G
Right State

Q G A

L
e

ft S
ta

te

Q G Q

G F

A Q A

A
Right State

Q G A

L
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ft S
ta

te

Q A Q

G Q G

A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A G Q A G Q A G A Q G A Q G A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q Q

11 Q Q Q Q G A Q G Q A G Q Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q Q

13 Q Q G A G Q A G A Q G A G Q Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q Q

15 G A Q G A Q G A G Q A G Q A G Q

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

17 A Q Q Q Q Q A G A Q Q Q Q Q A G

18 Q G Q Q Q G Q A Q G Q Q Q G Q A

19 Q G A Q A G Q A Q G A Q A G Q A

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

21 G Q Q Q Q Q G A G Q Q Q Q Q G A

22 Q A Q Q Q A Q G Q A Q Q Q A Q G

23 Q A G Q G A Q G Q A G Q G A Q G

24 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

25 A Q A G A Q A G A Q A G A Q A G

26 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

27 G Q G A G Q G A G Q G A G Q G A

28 Q G Q G Q G Q G Q G Q G Q G Q G

29 G G G G G G G G G G G G G G G G

30 F F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q Q

11 Q Q Q Q A G Q A Q G A Q Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q Q

13 Q Q A G A Q G A G Q A G A Q Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q Q

15 A G Q A G Q A G A Q G A Q G A Q

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

17 G Q Q Q Q Q G A G Q Q Q Q Q G A

18 Q G Q Q Q G Q A Q G Q Q Q G Q A

19 Q A G Q G A Q G Q A G Q G A Q G

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

21 A Q Q Q Q Q A G A Q Q Q Q Q A G

22 Q A Q Q Q A Q G Q A Q Q Q A Q G

23 Q G A Q A G Q A Q G A Q A G Q A

24 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

25 G Q G A G Q G A G Q G A G Q G A

26 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

27 A Q A G A Q A G A Q A G A Q A G

28 Q G Q G Q G Q G Q G Q G Q G Q G

29 Q A Q A Q A Q A Q A Q A Q A Q A

30 G G G G G G G G G G G G G G G G

31 F F F F F F F F F F F F F F F F
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Solution 14 Solution 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A A A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A A Q G Q A A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A A A Q G G G Q A A A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A A Q G G Q A A A Q G G Q A A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q G G G Q Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q Q

11 Q Q Q Q G G Q A Q G G Q Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q Q

13 Q Q G G G Q A A A Q G G G Q Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q Q

15 G G Q A A Q G G G Q A A Q G G Q

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

17 A Q Q Q Q Q A A A Q Q Q Q Q A A

18 Q G Q Q Q G Q A Q G Q Q Q G Q A

19 Q A A Q A A Q G Q A A Q A A Q G

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

21 G Q Q Q Q Q G G G Q Q Q Q Q G G

22 Q A Q Q Q A Q G Q A Q Q Q A Q G

23 Q G G Q G G Q A Q G G Q G G Q A

24 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

25 A Q A A A Q A A A Q A A A Q A A

26 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

27 G Q G G G Q G G G Q G G G Q G G

28 Q G Q G Q G Q G Q G Q G Q G Q G

29 G A G A G A G A G A G A G A G A

30 F F F F F F F F F F F F F F F F

Q
Right State

Q G A
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te

Q Q A G

G A G Q

A G Q Q

G
Right State

Q G A
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te

Q A Q

G Q G

A F

A
Right State

Q G A

L
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ta

te

Q G Q

G F

A Q A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A G Q A G Q A G A Q G A Q G A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q Q

11 Q Q Q Q G A Q G Q A G Q Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q Q

13 Q Q G A G Q A G A Q G A G Q Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q Q

15 G A Q G A Q G A G Q A G Q A G Q

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

17 A Q Q Q Q Q A G A Q Q Q Q Q A G

18 Q G Q Q Q G Q A Q G Q Q Q G Q A

19 Q G A Q A G Q A Q G A Q A G Q A

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

21 G Q Q Q Q Q G A G Q Q Q Q Q G A

22 Q A Q Q Q A Q G Q A Q Q Q A Q G

23 Q A G Q G A Q G Q A G Q G A Q G

24 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

25 A Q A G A Q A G A Q A G A Q A G

26 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

27 G Q G A G Q G A G Q G A G Q G A

28 Q G Q G Q G Q G Q G Q G Q G Q G

29 G G G G G G G G G G G G G G G G

30 A A A A A A A A A A A A A A A A

31 F F F F F F F F F F F F F F F F

Q
Right State

Q G A

L
e

ft S
ta

te

Q Q A G

G A G Q

A G Q Q

G
Right State

Q G A

L
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ta

te

Q G Q

G A

A Q A

A
Right State

Q G A
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ta

te

Q A Q

G Q G

A F

Solution 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 G A Q G A Q G A G Q A G Q A G Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q Q

11 Q Q Q Q A G Q A Q G A Q Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q Q

13 Q Q A G A Q G A G Q A G A Q Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q Q

15 A G Q A G Q A G A Q G A Q G A Q

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

17 G Q Q Q Q Q G A G Q Q Q Q Q G A

18 Q G Q Q Q G Q A Q G Q Q Q G Q A

19 Q A G Q G A Q G Q A G Q G A Q G

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

21 A Q Q Q Q Q A G A Q Q Q Q Q A G

22 Q A Q Q Q A Q G Q A Q Q Q A Q G

23 Q G A Q A G Q A Q G A Q A G Q A

24 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

25 G Q G A G Q G A G Q G A G Q G A

26 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

27 A Q A G A Q A G A Q A G A Q A G

28 Q G Q G Q G Q G Q G Q G Q G Q G

29 Q A Q A Q A Q A Q A Q A Q A Q A

30 G G G G G G G G G G G G G G G G

31 A A A A A A A A A A A A A A A A

32 F F F F F F F F F F F F F F F F

Q
Right State

Q G A
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Q Q G A

G G Q Q

A A Q G

G
Right State

Q G A
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Q A Q

G A

A Q G

A
Right State

Q G A
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ta
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Q G Q

G Q A

A F

Solution 17

Fig. 6. Transition tables and snapshots on 16 cells for the Solutions 13, 14, 15,
16, and 17.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

1 G G Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q

2 A Q G Q Q Q Q Q Q Q Q Q Q Q Q Q Q

3 A Q G G Q Q Q Q Q Q Q Q Q Q Q Q Q

4 A Q Q Q G Q Q Q Q Q Q Q Q Q Q Q Q

5 A A Q G G G Q Q Q Q Q Q Q Q Q Q Q

6 G Q Q Q A Q G Q Q Q Q Q Q Q Q Q Q

7 G G Q A A Q G G Q Q Q Q Q Q Q Q Q

8 A Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

9 A A Q Q Q Q Q G G G Q Q Q Q Q Q Q

10 G Q A Q Q Q G Q A Q G Q Q Q Q Q Q

11 G Q A A Q G G Q A Q G G Q Q Q Q Q

12 G Q Q Q Q Q Q Q A Q Q Q G Q Q Q Q

13 G G Q Q Q Q Q A A A Q G G G Q Q Q

14 A Q G Q Q Q A Q G Q Q Q A Q G Q Q

15 A Q G G Q A A Q G G Q A A Q G G Q

16 A Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q A

17 A A Q Q Q Q Q Q Q Q Q Q Q Q Q A A

18 G Q A Q Q Q Q Q Q Q Q Q Q Q A Q G

19 G Q A A Q Q Q Q Q Q Q Q Q A A Q G

20 G Q Q Q A Q Q Q Q Q Q Q A Q Q Q G

21 G G Q A A A Q Q Q Q Q A A A Q G G

22 A Q Q Q G Q A Q Q Q A Q G Q Q Q A

23 A A Q G G Q A A Q A A Q G G Q A A

24 G Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

25 G G Q Q Q Q Q G G G Q Q Q Q Q G G

26 A Q G Q Q Q G Q A Q G Q Q Q G Q A

27 A Q G G Q G G Q A Q G G Q G G Q A

28 A Q Q Q A Q Q Q A Q Q Q A Q Q Q A

29 A A Q A A A Q A A A Q A A A Q A A

30 G Q G Q G Q G Q G Q G Q G Q G Q G

31 G A G A G A G A G A G A G A G A G

32 F F F F F F F F F F F F F F F F F

Q
Right State

Q G A *

L
e

ft S
ta

te

Q Q G A Q

G G A Q A

A A Q G

*

G
Right State

Q G A *

L
e

ft S
ta

te

Q G Q G

G Q A A

A F F

* G A F

A
Right State

Q G A *

L
e

ft S
ta

te

Q A Q A

G F F

A Q G G

* A F G

Fig. 7. Transition tables and snapshots on 17 cells for the converted solution.
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Table 3. Time complexity and number of transition rules for Solutions 9, 10,
11, 12, 13, 14, 15, 16, and 17.

Time # of

Solutions complexity transition Notes

rules

Solution 9 T9,G(n) = 3n/2, T9,A(n) = 2n 19

Solution 10 T10,G(n) =

{
3 k = 1

3n/2− 2 k ≥ 2
T10,A(n) =

{
2 k = 1

2n − 2 k ≥ 2
19 n = 2k

Solution 11 T11,G(n) =

{
4 k = 1

3n/2 k ≥ 2
25 n = 2k

Solution 12 T12,G(n) = 3n/2− 1, T12,A(n) = 2n− 1 18

Solution 13 T13,G(n) =

{
2 k = 1

2n − 2 k ≥ 2
T13,A(n) = 3n/2− 2, k ≥ 2 18 n = 2k

Solution 14 T14,G(n) = 2n− 1, T14,A(n) = 3n/2 − 1, k ≥ 1 18

Solution 15 T15,G(n) =

{
2 k = 1

2n − 2 k ≥ 2
T15,G(n) =

{
3 k = 1

3n/2− 2 k ≥ 2
19 n = 2k

Solution 16 T16,G(n) = 2n− 1, T16,A(n) = 3n/2 − 1, k ≥ 2 19

Solution 17 T17,G(n) = 2n, T17,A(n) = 3n/2 19

4.4 Converting ring solutions into open-ring solutions

It is noted that most of the solutions presented above can be converted into
the solutions for open-ring, that is, conventional one-dimensional array with the
general at one end, without introducing any additional state. For example, Fig.
7 shows the transition rules and snapshots on 17 cells for a converted solution
operating in optimum-steps. The solution can be obtained from the Solution 1
by adding 14 rules shown in Fig. 7 (left) illustrated with shaded small squares. It
is noted that the solution obtained is also symmetric and optimum one in time.

5 Conclusion

An existence or non-existence of five-state firing squad synchronization protocol
has been an outstanding and famous open problem for a long time. Å@In this
paper, we answer partially to this problem by proposing a family of smallest
four-state firing squad synchronization protocols that can synchronize any one-
dimensional ring cellular array of length n = 2k for any positive integer k. The
number four is the smallest one known at present in the class of synchronization
protocols proposed so far.
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Abstract. This paper deals with a new method to search for mobile
self-localized patterns of non-resting states in cellular automata. The
spontaneous emergence of such patterns called gliders have been searched
throughout all the automata of a specific space. As a result, thousands
of novel gliders were discovered through the subsequent experiments and
studied in terms of speed and period thanks to an automatic process of
identification of gliders.

1 Introduction

The emergence of computation in complex systems with simple components is a
hot topic in the science of complexity [23]. A uniform framework to study this
emergent computation in complex systems is cellular automata [15]. They are
discrete systems in which an array of cells evolve from generation to generation
on the basis of local transition rules [22].

The well-established problems of emergent computation and universality in
cellular automata has been tackled by a number of people in the last thirty
years [4, 12, 10, 14, 1] and remains an area where amazing phenomena at the
edge of theoretical computer science and non-linear science can be discovered.

The most well-known universal automaton is the Game of Life [7]. It was
shown to be universal by Conway [5] who employed gliders. The latter are mobile
self-localized patterns of non-resting states, used by Conway to carry informa-
tion. Such gliders are the basic element for showing the universality in Conway’s
demonstration.

The search for gliders is then a new study of science of complexity and was no-
tably explored by Adamatzky et al. with a phenomenological search [13], Wuen-
sche, who used his Z-parameter and entropy [25] and Eppstein [6]. Lohn et al. [11]
and Ventrella [21] have searched for gliders using genetic algorithms [8], while,
Sapin et al. [18, 19] used genetic algorithms to evolve transition rules of cellular
automata then, searched for gliders exhibited by the evolved automata.

In this work, a new method of research for gliders is presented. Instead of
using any method to chose transition rules of cellular automata, the challenge
here is to search for gliders in all the automata of a space. As the ones use by
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adamtzky et al. [2] as models of reaction-diffusion excitable chemical systems,
ternary totalistic cellular automata are chosen. Then, in order to limited the
search space, cellular automata using the four nearest neigbours to updates their
cell states are considered. Following on from this, the space called V , of 2D
ternary totalistic cellular automata using the four nearest neigbours to updates
their cell states at the next generation are chosen.

The first section presentes notations and definitions, the second describes
the search for gliders, while those which are found are described in the next
section. Finally, the last section summarizes the presented results and discusses
directions for future research.

2 Definitions and notations

In this section, some definitions and notations about cellular automata are pre-
sented.

2.1 Cellular automata

A local transition rule of a 2D ternary cellular automata using the four nearest
neighbours to updates their cell states at the next generation is a function φ : {0,
1, 2}5→ {0, 1, 2}. Among these automata, totalistic automata are studied. An
automaton is totalistic iff a cell-state is updated depending on just the numbers,
not positions of different cell-states in its neighbourhoods. The functions of the
local transition rule are then:

φ(q1, q2, q3, q4, q5) = f(σ1(x)t, σ2(x)t) (1)

where f : {0, . . . , 5}2→{0, 1, 2} and σp(x)t is the number of cell x’s
neighbours with cell-state p∈{0, 1, 2} at time step t.

To give a compact representation of the cell-state transition rule, the formal-
ism in [3] is adopted. The cell-state transition rule is represented as a matrix M
= (Mij), where 0 ≤ i ≤ j ≤ 7, 0 ≤ i + j ≤ 5, and Mij∈{0, 1, 2}. The output
state of each neighbourhood is given by the row-index i (the number of neigh-
bours in cell-state 1) and column-index j (the number of neighbours in cell-state
2). We do not have to count the number of neighbours in cell-state 0, because it
is given by 7 - (i + j). The matrix M contains then 21 elements.

Ternary automata are considered, in which the state 0 is a dedicated substrate
state. A state 0 is dedicated substrate state iff a cell in state 0, whose neigh-
bourhood is filled only with states 0, does not change its state, 0 is analogue
of quiescent state in cellular automaton models [24]. Then M00 is equal 0 in all
automata so the studied space V contains 320.

A glider, called G and exhibited by some automata of V , is presented gener-
ation after generation as the one from figure 1 while the set of automata of V
that exhibit this glider is determined by the process used in [20].
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Fig. 1. Glider of period 1 exhibited by some automata of V shown generation
after generation along its period.











0 1 X X X X
0 2 X X X
0 X X X
0 0 X
X X
X











Table 1. Transition rule of automata that exhibits the glider G.

Finally, the elements of M that can vary without changing the evolution of
G is represented by the letter X on table 1, that shows the transition rules of
the automata that exhibit G.

In turn, fourteen elements of M can change their value without changing the
evolution of G so 314 of the 320 automata of V exhibit the glider G.

3 Search for gliders

3.1 Search method

Gliders are searched for in all automata of V . The search method is inspired
by the one use in [17]. A random configuration of cells is generated in a square
of 40×40 centered in a 200×200 space. These cells evolve during three hundred
generations with the transition rule of the tested automaton. At each generation,
each group of connected cells, figure 2, is isolated in an empty space and evolves
during 30 generations. For each generation, the original pattern is searched in
the test universe. Three situations can arise:

– The initial pattern has reappeared at its first location, it is then periodic
and the simulation do not need to continue.

– It has reappeared at another location, it is then a glider and the current
generation is the period of the glider.

– It has not reappeared.

3.2 Number of gliders

In order to determine how many different gliders were found, an automatic sys-
tem that determines if a glider is new is required. At least two criteria can be
used:
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Fig. 2. Groups of isolated cells.

– Shapes of gliders.
– Sets of used neighbourhood states.

The shapes of gliders are not taken into account because the gliders can
be found in different orientations and in different generations. So, in order to
determine if a glider is new, the set of neighbourhood states used by the given gun
are compared to the ones of the other guns. For each gun and each neighbourhood
state, four cases exist:

– The neighbourhood state is not used by this gun.
– The neighbourhood state is used by this gun and the value of the central

cell at the next generation is 0, 1 or 2.

Two gliders are different iff at least one neighbourhood state is not in the
same case for the two gliders.

Thanks to this qualification of different gliders through the experimentations,
5186 different ones were discovered, all of them emerging spontaneously from
random configurations of cells. The 5186 gliders can be found in [16] in mcl
format.

4 Description of gliders

The period and the speed of the found gliders are described in the first subsection
below then some specific gliders are shown in the last part.

4.1 Characteristic of the gliders

The distribution of the periods of the found gliders is shown figure 3.
There are very few gliders of period 1 and no gliders beyond period 4 were

found.
The distribution of the speeds of the found gliders is shown in figure 4. In

order to ascertain this, the position after a period is compared to the initial
position, with the speed being in cells per generation and only the four direct
neighbours of a cell C are spaces by 1 while the diagonal cells are spaced by 2.

All the gliders with speeds of 1
3 and 2

3 have a period of 3 and the other gliders
of period 3 have a speed of 1. Only the gliders of period 4 are capable of a speed
of 1

4 ,and finally, the gliders of period 1 have a speed of 1.
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Fig. 3. Distribution of the periods of the found gliders.

Fig. 4. Distribution of the speeds of the found gliders.

3267 gliders move horizontally or vertically and the others move along diag-
onals.

4.2 Specific gliders

The glider accepts by the highest number of automata is the one in Fig. 1. It is
also one with the highest speed of 1.

A glider with the slowest speed of 1
4 is shown in Fig. 5, and is exhibited by

the automata of Tab. 2.

Fig. 5. Glider of period 4.

This glider has a period of 4 and moves by 1 cell per period.
A period 2 diagonal glider of speed 1, exhibited by automata of Tab. 3, is

shown Fig. 6.
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0 2 1 2 X X
0 0 2 1 0
0 1 1 X
0 1 X
0 0
0











Table 2. Transition rule of automata that exhibits the glider shown in Fig. 5

Fig. 6. Diagonal glider.











0 2 2 2 X 2
0 1 2 1 1
0 1 X X
0 0 0
0 1
0











Table 3. Transition rule of automata that exhibits the glider shown in Fig. 6.

5 Synthesis and perspectives

This paper deals with the emergence of computation in complex systems with
local interactions, while more particularly, this paper presents a new approach
to searching for gliders in cellular automata.

The presented search method was to look for the appearance of gliders from
the evolution of random configuration of cells for all automata of a space. 2D
ternary totalistic automata using the four nearest neighbours to updates their
cell states were chosen, 5186 gliders exhibited by automata of this space were
found. These gliders were not known before and they have been studied in terms
of speed and period.

Further goals can be to find glider guns by the same method in this space
of automata or to extend the method to other spaces of automata. All these
automata may be potential candidates for being shown as universal automata
and future work could be aimed at proving the universality of some of them.

Future work could also be to calculate for each automata some rule-based
parameters, e.g., Langton’s λ [9]. All automata exhibiting gliders may have sim-
ilar values for these parameters, which could lead to a better understanding of
the link between the rule transition and the emergence of computation in cellu-
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lar automata, and therefore, the emergence of computation in complex systems
with simple components.
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Abstract. This work examines the chaotic properties of the elementary
cellular automaton rule 168 of Wolfram class I.
Wolfram’s classification based on a computer simulation is well known
and the time-space patterns generated by the members of the class I is
known to die out in a finite time and these cellular automata might not
be attractive at first glance.
F.Ohi [4] has shown that a dynamical system defined by rule 40 of Wol-
fram’s class I is Devaney chaos on the class of configurations of spe-
cific patterns and an exact calculation of the spreading rates of the spe-
cific configurations were shown at Automata 2007 in Toronto, where we
showed that for every α such that 1/2 ≤ α ≤ 1, there exists a configura-
tion of which right spreading rate is α. The spreading rate is equivalent
to Lyapunov exponent defined by M. A. Shereshevsky [5] for rule 40.
In this work we show that rule 168, which is also a member of Wolfram’s
class I and in one sense contains rule 40, defines a chaotic dynamical
system on a class of configurations of specific type and show that for
every α such that 0 < α ≤ 1, there exists a configuration of which right
spreading rate is α, for the proof of which we use Ergodic theory for an
interval dynamical system.

1 Introduction

Wolfram’s classification based on an extensive computer simulation is well known
and the time-space patterns generated by the members of the class I is known
to die out in a finite time and might not be attractive at first glance.

F.Ohi [4] has shown that a dynamical system defined by the rule 40 of Wol-
fram class I is Devaney chaos on the class of configurations having specific pat-
terns and an exact calculation of the spreading rates of the specific configurations
were shown at Automata 2007 in Toronto, where we had that for every α such
that 1/2 ≤ α ≤ 1, there exists a configuration of which spreading rate is α.
The spreading rate is equivalent to Lyapunov exponent defined by M. A. Shere-
shevsky [5] for the case of rule 40.

In this paper we examine the dynamical system defined by rule 168, which is
also a member of Wolfram’s class I, and show that it has a chaotic sub-dynamical
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system and also, using Ergodic theorem, for every α such that 0 < α ≤ 1, there
exists a configuration of which spreading rate is α. Furthermore, rule 168 is
shown to contain in one sense rule 40 as a sub-dynamical system.

An elementary cellular automaton (ECA) is defined to be a tuple ({0, 1}, g),
where g is a mapping from {0, 1}3 to {0, 1} and is called a local transition
function. An ECA is determined by g and is then we simply call it an ECA
g. There exist 28 = 256 ECAs and each of them has the rule number defined
by
∑

a,b,c g(a, b, c)2a22+b2+c. We write the local transition function having rule
number r as gr.

The local transition functions g40, g168 are given by the following table.

(a, b, c) (1, 1, 1) (1, 1, 0) (1, 0, 1) (1, 0, 0) (0, 1, 1) (0, 1, 0) (0, 0, 1) (0, 0, 0)

g40(a, b, c) 0 0 1 0 1 0 0 0

g168(a, b, c) 1 0 1 0 1 0 0 0

We hardly imagine that these rules have chaotic properties by observing the
time-space patterns generated by computer simulations for randomly given ini-
tial configurations. However, these cellular automata have chaotic properties
and rule 168 contains in one sense the chaotic properties of rule 40, which are
explained in the following sections.

An ECA g defines a mapping g from A ≡ {0, 1}Z to A, which is called the
global transition function of the ECA, as

x = (· · · , x−1, x0, x1, · · · ) ∈ A, (g(x))i = g(xi−1, xi, xi+1), i ∈ Z.

We usually use the bold face letter of the letter denoting the local transition
function to show the corresponding global transition function. An element of A
is called a configuration.

The left shift and right shift transformations are written as σL : A → A and
σR : A → A, respectively.

Defining a metric d on A as

x, y ∈ A, d(x, y) =
∞∑

i=−∞

|xi − yi|
2|i|

,

we have a topological dynamical system (A, g), which defines an orbit for an
arbitrarily given initial configuration x ∈ A as

g0(x) = x, gt+1(x) = g(gt(x)), t ≥ 0.

The time-space pattern generated by g with an initial configuration x ∈ A is the
set {(t, gt(x)), t ≥ 0}. Our general problem is to analyze the dynamical system
and characterize the time-space pattern.

A topological dynamical system (S, g) is a sub-dynamical system of (A, g) if
S ⊆ A and g(S) ⊆ S. The metric on S is the one defined on A.

A topological dynamical system (S, g) is called Devaney chaos when it has
a dense orbit and the class of all periodic configuration is dense in S. ( See
G. Cattaneo, et al. [2]. )

In this paper we use the following notations for our rigorous examination of
time-space patterns generated by rule 168.
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1.1 Notations

(1) For αi ∈ {0, 1}ni, βi ∈ {0, 1}mi, ni ≥ 1, mi ≥ 1, i ∈ Z, we define

(αi, βi)
+∞
i=−∞ =(· · · , α−1

1 , · · · , α−1
n−1

, β−1
1 , · · · , β−1

m−1
,

α0
1, · · · , α0

n0
, β0

1 , · · · , β0
m0

, α1
1, · · · , α1

n1
, β1

1 , · · · , β1
m1

, · · · ),

where αi = (αi
1, · · · , αi

ni
), βi = (βi

1, · · · , βi
mi

), i ∈ Z.
(2) 0 means one of the three types (· · · , 0, 0, 0, · · · ), (· · · , 0, 0, ) and (0, 0, · · · ).
It is clear from the context which type 0 means. We also use the terminology
0n = (0, · · · , 0

︸ ︷︷ ︸

n

), n ∈ N, where N is the set of nonnegative integers. 1 and 1n

are interpreted similarly to 0 and 0n, respectively. When n = 0, the blocks are
empty.
(3) We intensively use the following terminology.

S0(m1,··· ,mp),1(n1,··· ,nq) = {(0ij
,1kj

)∞j=−∞ | ij = m1 or · · · or mp,

kj = n1 or · · · or nq} ,

S0(≤m),1(≤n) = {(0ij
,1kj

)∞j=−∞ | 1 ≤ ij ≤ m, 1 ≤ kj ≤ n} ,

S0(≤m) = ∪∞n=1S0(≤m),1(≤n) ,

S1(≤n) = ∪∞m=1S0(≤m),1(≤n) .

(4) For x ∈ A, xi,→ = (xi, xi+1, · · · ), x←,i(· · · , xi−1, xi), xi,j = (xi, · · · , xj) (i <
j), and for a subset S of A,

S+ = {x0,→ | x ∈ S } .

2 Spreading rate and Lyapunov exponent

Following Shereshevsky [5], Lyapunov exponent of x ∈ A is defined by the
following procedure. For s ∈ Z, let

W+
s (x) ≡ {y ∈ A | ∀i ≥ s, yi = xi} ,

W−
s (x) ≡ {y ∈ A | ∀i ≤ s, yi = xi} ,

Λ̃+
t (x) ≡ min

{
s | gt(W+

0 (x)) ⊂W+
s (gt(x))

}
,

Λ+
t (x) ≡ max

j∈Z

{

Λ̃+
t (σj

Lx)
}

,

Λ̃−t (x) ≡ max
{
s | gt(W−

0 (x)) ⊂W−
s (gt(x))

}
,

Λ−t (x) ≡ min
j∈Z

{

Λ̃−t (σj
Lx)

}

,

where σj
L = σ−j

R for j < 0. When

lim
t→∞

Λ+
t (x)

t
and lim

t→∞

Λ−t (x)

t
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exist, we call them right and left Lyapunov exponents of x, respectively.
For x, y ∈ A, we set

DFR(x, y) ≡ sup{i | xi 6= yi} and DFL(x, y) ≡ inf{i | xi 6= yi}.

The next Lemma combines the spreading rate and Lyapunov exponent.

Lemma 2.1. For ECA g, configuration x ∈ A and t ∈ N+, we have

(1) max
y∈W+

0 (x)
DFR(gt(x), gt(y))

= min
{

s | gt(W+
0 (x)) ⊂W+

s (gt(x))
}
− 1,

(2) min
y∈W−

0 (x)
DFL(gt(x), gt(y))

= max
{
s | gt(W−

0 (x)) ⊂W−
s (gt(x))

}
+ 1.

Following Ilachinski [3], the spreading rate of a configuration x ∈ A is defined
as the following. First we set nj : A → A (j ∈ Z) as

x ∈ A, (nj(x))i =

{
xi, i 6= j,
xi, i = j.

nj reverses the state of the j-th site of the configuration x. For ECA g, letting

Γ+
t (x) ≡ max

j∈Z

{
DFR(gt(x), gt(nj(x))− j

}
,

Γ−t (x) ≡ min
j∈Z

{
DFL(gt(x), gt(nj(x))− j

}
,

when
γ+(x) = lim

t→∞
Γ+

t (x)/t and γ−(x) = lim
t→∞

Γ−t (x)/t

exist, we call them right and left spreading rates of x, respectively.

Theorem 2.1. For ECA g, at x ∈ A and t ∈ N, we have

(1) Λ+
t (x) = max

j∈Z
max

y∈W+
j

(x)

{
DFR(gt(x), gt(y))− j

}
+ 1,

Γ+
t (x) ≤ Λ+

t (x).

(2) Λ−t (x) = min
j∈Z

min
y∈W−

j
(x)

{
DFR(gt(x), gt(y))− j

}
− 1,

Λ−t (x) ≤ Γ−t (x).

Spreading rate does not generally coincide with Lyapunov exponent, but
they are generally equivalent when ECA is left most permutive or right most
permutive. Rule 40 and 168 are neither right nor left most permutive, but for
the configurations which we are going to treat in this paper they are coincide
with each other.
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3 Chaotic property of rule 168

F. Ohi [4] shows that

∀x ∈ A\S0(1),1(1,2), limt→∞ gt
40(x) = 0,

∀x ∈ S0(1),1(1,2), g40(x) = σL(x),

and the sub-dynamical system (S0(1),1(1,2), g40) is Devaney chaos.
In this section, examining the orbits of x ∈ A by g168 and using the method

of F. Ohi [4], we show that g168 = σL on S0(1),1(≤m) and then is Devaney chaos.
It is also shown that the spreading rate of an element of S0(1),1(≤m) by g168 is
equivalent to the relative frequency of some patterns relating to an invariant
measure of (S+

0(1),1(≤m), σL) and also related to an interval dynamical system
([0, 1], f) which is defined to be conjugate to (S+

0(1),1(≤m), σL)

From the table of g168 in the section 1, the next two Lemmas are clear.

Lemma 3.1. For a configuration x ∈ A, if xi = xi+1 = 0, then

(g168(x))i,i+1 = (0, 0) .

A block (0, 0) in the configuration x plays like a wall in the time development
of the configuration by g168. More precisely we have the following formulas for
gt

168(x) at time step t.

gt
168(x) =

(

(
gt

168(x←,i−1,0)
)

←,i−1
,

i
⌣
0 ,

i+1
⌣
0 ,
(
gt

168(0, xi+2,→)
)

i+2,→

)

Lemma 3.2. (1) Let x = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0,1m1, 0,1m2 , 0,1m3, · · · ). The site num-

bers −1 and 0 of the block (0, 0) does not lose the generality. In this case we
have

gm1
168(x) = (· · · ,

−1
⌣
0 ,

0
⌣
0 ,

1
⌣
0 , 0,1m2 , 0,1m3, · · · ) ,

gm1+···+mn

168 (x) = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0, · · · , 0
︸ ︷︷ ︸

n

, 0,1mn+1, · · · ) .

(2) For x = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0,1m1, 0,1m2 , · · · 0,1mn

,0) we have

gm1
168(x) = (· · · ,

−1
⌣
0 ,

0
⌣
0 ,

1
⌣
0 , 0,1m2 , · · · 0,1mn

,0) ,

gm1+···+mn

168 (x) = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0, · · · , 0
︸ ︷︷ ︸

n

,0) ,

(
gt

168(x)
)

−1,→
= 0 , ∀t ≥ m1 + · · ·+ mm .
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(3) For x = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0,1m1, 0,1m2 , · · · 0,1mn

, 0,1) we have

gm1
168(x) = (· · · ,

−1
⌣
0 ,

0
⌣
0 ,

1
⌣
0 , 0,1m2 , · · · 0,1mn

, 0,1) ,

gm1+···+mn

168 (x) = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0, · · · , 0
︸ ︷︷ ︸

n

, 0,1) ,

(
gt

168(x)
)

−1,→
= (0, 0, 0, · · · , 0

︸ ︷︷ ︸

n

, 0,1) , ∀t ≥ m1 + · · ·+ mm .

(4) For x = (· · · ,
0
⌣
0 , 0, · · · , 0

i
⌣
0

︸ ︷︷ ︸

≥2

, · · · ) we have

g(x) = (· · · ,
−1
⌣
0 ,

0
⌣
0 , 0, · · · , 0,

i
⌣
0 , · · · )

gt(x) = (· · · ,
−t
⌣
0 , 0, · · · , 0,

0
⌣
0 , 0, · · · , 0,

i
⌣
0 , · · · ) , ∀t ≥ 1 .

From Lemmas 3.1, 3.2 and the table of g168, the next Theorem is easily given.

Theorem 3.1. (1) x ∈ S0(1),1(≤k) , g168(x) = σL(x) .

(2) For x ∈ A\S0(1);
(2-i) If 0-state sites of x are isolated and ∃i ∈ Z , xi,→ = 1, then

∀t ≥ 1 , gt
168(x) 6= 1 , lim

t→∞
gt

168(x) = 1 .

(2-ii) If x = 1 , then gt
168(1) = 1 , and thus

∀t ≥ 1 , gt
168(1) = 1 .

(2-iii) If ∃i ∈ Z, xi,→ = 1 , ∃j ∈ Z, (xj , xj+1) = (0, 0) (the right most 00
block in x), then

lim
t→∞

gt
168(x) = (

j+1
⌣
0 ,1) .

(2-iv) For a configuration x except for the above patterns, we have

lim
t→∞

gt
168(x) = 0 .

(g168,S0(1),1(≤k)) is a sub-dynamical system of (g168,A) and a left-shift dy-
namical system. Following the way of the proof similar to that of F.Ohi (2007),
we have the next theorem.

Theorem 3.2. For every k ≥ 2, (S0(1),1(≤k), g168) is Devaney chaos.
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Reminding that

S0(1) = ∪∞k=1S0(1),1(≤k) = { (0,1kj
)∞j=−∞ | kj ≥ 1, sup

j
kj <∞ }

is the set of configurations consisted of (0,1kj
), (−∞ < j < ∞), where the

length of the 1 blocks are bounded and every 0 state site is isolated, g168 is the
left shift transformatio on S0(1) and we have the folowing Theorem.

Theorem 3.3. (S0(1), g168) is Devanery chaos.

Letting S denote the set of all configurations of which every 0 state site is
isolated. S0(1) is a proper subset of S, S0(1) ⊂ S,S0(1) 6= S, since the length of
the 1 blocks in a configuration of S are not necessarily bounded.

(S, g168) is a left shift dynamical system and we have also the following
theorem.

Theorem 3.4. (S, g168) is Devaney chaos.

The above two theorems are almost clear, since for any configuration x ∈ S,
every pattern of (x−k, · · · , xk) can be consisited of at most 01, 011, 0111 and
0 1 · · ·1
︸ ︷︷ ︸

2k+1

, then the set of all periodic configurations is shown to be dense and a

dense orbit is easily constructed.
The following theorem about periodic configurations of rule 168 is clear.

Theorem 3.5. (1) (g168,S0(1),1(1,2)) has every periodic configuration except for
the ones having prime period 1, 4 or 6.

(2) (g168,S0(1),1(1,2,3)) has every periodic configuration except for ones having
the prime period 1 or 4.

(3) (g168,S0(1),1(≤k)) (k ≥ 4) has every periodic configuration except for ones
having prime period 1.

(4) For every (k ≥ 4)ÅC (g168,S0(1),1(≤k) ∪ {0}) has every periodic configu-
ration.

Remark 3.1. (1) Since rule 224 is dual of rule 168, then the dual theorems of the
above ones hold for rule 224.

(2) (g168,S0(1),1(1,2)) is equivalent to (g40,S0(1),1(1,2)), since both of them are
left-shift dynamical systems on the same set S0(1),1(1,2), then referring Theorem
3, we might say that rule 168 involves rule 40.

4 Right spreading rate of rule 168

Without loss of generality we may assume for x ∈ S0(1)

x = (· · · ,
0
⌣
1 , 0,1m1 , 0,1m2, 0,1m3 , 0, · · · ) .
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Letting

n0(x) = (· · · ,
0
⌣
0 , 0,1m1 , 0,1m2, 0,1m3 , 0, · · · ) ,

we examine the time development of the right-most different site of x and n0(x).
From Lemma 3 (1) and Theorem 2 (1) we have,

gm1(x) = (· · · , 1, 0,

1
⌣

1m1 ,
2
⌣
0 ,1m2 , 0,1m3, 0, · · · ) ,

gm1+1(x) = (· · · , 1, 0,

0
⌣

1m1 ,
1
⌣
0 ,

2
⌣
1 ,1m2−1, 0,1m3, 0, · · · ) ,

gm1(n0(x)) = (· · · ,
0
⌣
0 ,

1
⌣
0 ,

2
⌣
0 ,1m2 , 0,1m3, 0, · · · ) ,

gm1+1(n0(x)) = (· · · ,
0
⌣
0 ,

1
⌣
0 ,

2
⌣
0 ,1m2−1, 0,1m3, 0, · · · ) ,

then the coordinate numbers of the right-most different sites are given in the
following.

1 ≤ t ≤ m1, DFR(gt(x), gt(n0(x)) = 1,

m1 + 1 ≤ t ≤ m1 + m2, DFR(gt(x), gt(n0(x)) = 2,

m1 + m2 + 1 ≤ t ≤ m1 + m2 + m3, DFR(gt(x), gt(n0(x)) = 3.

Hence we have inductively

m1 + · · ·+ mn + 1 ≤ t ≤ m1 + · · ·+ mn + mn+1 ,

DFR(gt(x), gt(n0(x))

t
=

n

t
,

and if the limiting value
lim

n→∞

n

m1 + · · ·+ mn

exists, then the value is the right spreading rate of the configuration x.
Letting (0,1k, 0)(x0,j) be the number of (0,1k, 0) contained in x0,j, the right

spreading rate is the limiting value

lim
j→∞

∑∞
n=1(0,1n, 0)(x0,j)

∑∞
n=1 n · (0,1n, 0)(x0,j)

.

The infinite sums in the denominator and numerator are practically finite, since
x0,j consists of finite number of terms.
Let the configuration x be a member of S0(1),1(≤k) (k ≥ 2).

Then the right spreading rate is determined by the limiting value of

lim
j→∞

∑k
n=1(0,1n, 0)(x0,j)

∑k
n=1 n · (0,1n, 0)(x0,j)

= lim
j→∞

∑k
n=1

(0,1n, 0)(x0,j)

j
∑k

n=1 n · (0,1n, 0)(x0,j)

j

,
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which means that the relative frequency of (0,1n, 0) in x0,→ 1 ≤ n ≤ k determine
the right spreading rate of x.

For x ∈ S0(1),1(≤k) it is sufficient to focus on x0,→. Then we examine the dy-
namical system (S+

0(1),1(≤k), σL) which is topologically conjugate to the interval
dynamical system ([0, 1], f), where the graph of the mapping f : [0, 1]→ [0, 1] is
given by the Fig. 1.
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Fig. 1. An interval dynamical system ([0, 1], f) conjugate to (S+
0(1),1(≤k), σL)

The homeomorphism Ψ : [0, 1]→ S+
k is defined as

x ∈ [0, 1] , (Ψ(x))i =

{

0, f i(x) ∈ [ 0 ,
∑k

j=1 αj ),

1, f i(x) ∈ [
∑k

j=1 αj , 1 ].

The Lebegue measure l on ([0, 1],B[0,1]) is easily shown to be the invariant
measure of ([0, 1], f) and also Ergodic by the Folklore Theorem (A. Boyarski,
et al. [1]). The induced measure of l by Ψ is an Ergodic measure on S+

0(1),1(≤k).
Relative frequencies by this Ergodic measure is the relative frequencies derived
on ([0, 1], f, l) as the following.
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Diverting the symbol (0,1n, 0), we interpret the symbol as a function of n+2
variable.

(0,1n, 0)(a0, a1, · · · , ai, an+1)

=

{
1, a0 = 0, a1 = · · · = ai = 1, an+1 = 0,
0, otherwise.

It is sufficient to derive the limiting value

lim
j→∞

∑k
n=1

∑j
i=0(0,1n, 0)(f i(x), f i+1(x), · · · , f i+n+1(x))

j

∑k
n=1 n ·

∑j
i=0(0,1n, 0)(f i(x), f i+1(x), · · · , f i+n+1(x))

j

.

By Ergodic theorem, we have
∑j

i=0(0,1n, 0)(f i(x), f i+1(x), · · · , f i+n+1(x))

j

→ E[(0,1n, 0)(·, f1(·), · · · , fn+1(·))], l− a.s.

Noticing
E[(0,1n, 0)(·, f1(·), · · · , fn+1(·))] = αk−n+1 ,

the right spreading rate we want to have is

∑k
n=1 αn

∑k
n=1(k − n + 1) · αn

.

αn (n = 1, · · · , k) should satisfy

k∑

i=1

i∑

j=1

αj +

k∑

j=1

αj = 1 , αj > 0 , 1 ≤ j ≤ k .

The next equality and inequalities are easily verified.

1

k
<

∑k
i=1 αi

∑k
i=1(k − i + 1) · αi

=

∑k
i=1 αi

1−∑k
i=1 αi

≤ 1 .

Thus we have the following theorem about the right spreading rate.

Theorem 4.1. For rule 168, for arbitrarily given real number between 0 and 1,
there exists a configuration of which right spreading rate is the given number.

Remark 4.1. (1) The left spreading rate of every configuration x ∈ S0(1) is 1,
which is easily proved.

(2) For rule 168, spreading rate and Lyapunov exponent are equivalent with
each other.
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5 Concluding remarks

In this paper we have shown that rule 168 of Wolfram class I defines a chaotic
dynamical system and right spreading rates of configurations of specific type,
which are also Lyapunov’s exponents of the configurations, are the expectation
of relative frequencies of some patterns observed in a topologically conjugate
interval dynamical system ([0, 1], f).

Rule 168 defines a chaotic dynamical system which is simply a left shift
dynamical system and cannot be given in a computer simulation, since 0 state
site in a configuration of S0(1) is isolated and Bernoulli measure cannot give such
a configuration as an initial one.

Reminding that for a randomly given initial configuration the time-space
pattern generated by a member of Wolfram’s class II is said to be simple as
periodic, it might be interesting that rule 56 of the class II defines a chaotic
dynamical system more complicated than left or right shift dynamical system.
We are preparing a paper about full examination of rule 56.
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Abstract. We investigate cellular automata and iterative arrays as ac-
ceptors for formal languages. In particular, we consider real-time devices
which are reversible on the core of computation, i.e., from initial configu-
ration to the configuration given by the time complexity t. This property
is called t-time reversibility. We study whether for a given real-time de-
vice there exists a reverse real-time device with the same neighborhood. It
is shown that real-time reversible iterative arrays can simulate restricted
variants of stacks and queues. It turns out that real-time reversible itera-
tive arrays are strictly weaker than real-time reversible cellular automata.
On the other hand, they accept non-semilinear languages. We show that
real-time reversibility itself is not even semidecidable, which extends the
undecidability for cellular automata and contrasts the general case, where
reversibility is decidable for one-dimensional devices. Moreover, we prove
the undecidability of several other properties. Several closure properties
are also derived.

1 Introduction

Reversibility in the context of computing devices means that deterministic com-
putations are also backward deterministic. Roughly speaking, in a reversible de-
vice no information is lost and every configuration occurring in any computation
has at most one predecessor. Many different formal models have been studied in
connection with reversibility. For example, reversible Turing machines have been
introduced in [3], where it is shown that any irreversible Turing machine can be
simulated by a reversible one. With respect to the number of tapes and tape
symbols the result is significantly improved in [22]. On the opposite end of the
automata hierarchy, reversibility in very simple devices, namely deterministic
finite automata, has been studied in [2] and [28].

Here we study linear arrays of identical copies of deterministic finite au-
tomata. The single nodes, except the node at the origin, are homogeneously
connected to its both immediate neighbors. Moreover, they work synchronously
⋆ Summary of the full papers [18, 19] whose extended abstracts have been presented

at LATA 2007 and FCT 2007
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at discrete time steps. The distinguished cell at the origin, the communication
cell, is equipped with a one-way read-only input tape. Such devices are com-
monly called iterative arrays (IA). Closely related to iterative arrays are cellular
automata (CA). Basically, the difference is that cellular automata receive their
input in parallel. That is, in our setting the input is fed to the cells in terms of
states during a pre-initial step. There is no extra input tape.

In connection with formal language recognition IAs have been introduced
in [7]. In [9] a real-time acceptor for prime numbers has been constructed. A
characterization of various types of IAs in terms of restricted Turing machines
and several results, especially speed-up theorems, are given in [11]. Some recent
results concern infinite hierarchies beyond linear time [13] and between real time
and linear time [6], hierarchies depending on the amount of nondeterminism [5],
and descriptional complexity issues [20]. It is well known that conventional real-
time cellular automata are strictly more powerful than real-time iterative ar-
rays [30]. Our particular interest lies in reversible devices as acceptors for formal
languages. An early result on general reversible CAs is the possibility to make
any CA, possibly irreversible, reversible by increasing the dimension. In detail,
in [31] it is shown that any k-dimensional CA can be embedded into a (k + 1)-
dimensional reversible CA. Again, this result has significantly been improved
by showing how to make irreversible one-dimensional CAs reversible without
increasing the dimension [25]. A solution is presented which preserves the neigh-
borhood but increases time (O(n2) time for input length n). Furthermore, it is
known that even reversible one-dimensional one-way CAs are computationally
universal [21, 23]. Once a reversible computing device is under consideration, the
natural question arises whether reversibility is decidable. For example, reversibil-
ity of a given deterministic finite automaton or of a given regular language is
decidable [28]. For cellular automata, injectivity of the global transition function
is equivalent to the reversibility of the automaton. It is shown in [1] that global
reversibility is decidable for one-dimensional CAs, whereas the problem is un-
decidable for higher dimensions [14]. Additional information on some aspects of
CAs may be found in [15, 17]. All these results concern cellular automata with
unbounded configurations. Moreover, in order to obtain a reversible device the
neighborhood as well as the time complexity may be increased. In [8] it is shown
that the neighborhood of a reverse CA is at most n−1 when the given reversible
CA has n states. Additionally, this upper bound is shown to be tight. In con-
nection with pattern recognition reversible two-dimensional partitioned cellular
automata have been investigated in [24, 26]. A recent survey of reversibility in
cellular automata is [27].

Here, in contrast to the traditional notion of reversibility, we consider cellu-
lar automata working on finite configurations with fixed boundary conditions.
Clearly, these devices cannot be reversible in the classical sense since the number
of different configurations is bounded and, thus, the system will run into loops.
Therefore, we consider cellular automata and iterative arrays that are reversible
on the core of computation, i.e., from initial configuration to the configuration
given by the time complexity. Our main interest is in fast computations, i.e.,
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real-time computations. Consequently, we call such devices real-time reversible.
In particular, we want to know whether for a given nearest neighbor real-time
device there exists a reverse real-time device with the same neighborhood. This
point of view is rather different from the traditional notion of reversibility since
only configurations are considered that are reachable from initial configurations.
At first glance, such a setting should simplify matters. But quite the contrary, we
prove that real-time reversibility is not even semidecidable for iterative arrays,
which extends the undecidability for cellular automata and contrasts the general
case, where reversibility is decidable for one-dimensional devices. Moreover, it
is shown that emptiness is undecidable. Thus, also the questions of finiteness,
infiniteness, inclusion, and equivalence are undecidable. The same holds true
for regularity and context-freedom. We give evidence that real-time reversible
iterative arrays can simulate restricted variants of stacks and queues. It turns
out that real-time reversible iterative arrays are strictly weaker than real-time
reversible cellular automata. On the other hand, a non-semilinear language is
accepted. Finally, we present some results concerning closure properties under
several operations.

2 Real-time reversible cellular automata and
iterative arrays

We denote the set of non-negative integers by N. The empty word is denoted
by λ, and the reversal of a word w by wR. For the length of w we write |w|.
We use ⊆ for inclusions and ⊂ for strict inclusions. In order to avoid technical
overloading in writing, two languages L and L′ are considered to be equal, if
they differ at most by the empty word, i.e., L \ {λ} = L′ \ {λ}.

We consider devices where each cell is connected to its both nearest neighbors,
and identify the cells by positive integers.

Definition 2.1. A cellular automaton (CA) is a system 〈S, δ, #, A, F 〉, where S
is the finite, nonempty set of cell states, # /∈ S is the boundary state, A ⊆ S is
the nonempty set of input symbols, F ⊆ S is the set of accepting states, and
δ : (S ∪ {#})× S × (S ∪ {#})→ S is the local transition function.

· · ·# a1 a2 a3 an #

Fig. 1. A two-way cellular automaton.

A configuration of a cellular automatonM = 〈S, δ, #, A, F 〉 at time t ≥ 0 is a
description of its global state, which is actually a mapping ct : [1, . . . , n]→ S, for
n ≥ 1. The configuration at time 0 is defined by the initial sequence of states.
For a given input w = a1 · · · an ∈ A+ we define c0,w as the configuration at
time 0 by c0,w(i) = ai, for 1 ≤ i ≤ n. During its course of computation a CA
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steps through a sequence of configurations, whereby successor configurations are
computed according to the global transition function ∆. Let c be some configu-
ration, defined by s1, . . . , sn ∈ S, then the successor configuration c′, defined by
s′1, . . . , s

′
n ∈ S, is as follows:

c′ = ∆(c) ⇐⇒ s′1 = δ(#, s1, s2), s
′
2 = δ(s1, s2, s3), . . . , s

′
n = δ(sn−1, sn, #).

Thus, ∆ is induced by δ.
An iterative array is a semi-infinite array of cells, where the leftmost cell

at the origin, the communication cell, is connected to its right neighbor and,
additionally, equipped with a one-way read-only input tape. At the outset of a
computation the input is written with an infinite number of end-of-input sym-
bols to the right on the input tape, and all cells are in the so-called quiescent
state. The state transition of the communication cell additionally depends on
the current input symbol. The head of the one-way input tape is moved at any
step to the right.

Definition 2.2. An iterative array (IA) is a system 〈S, A, F, s0, ⊳, δ, δ0〉, where
S is the finite, nonempty set of cell states, A is the finite, nonempty set of input
symbols, F ⊆ S is the set of accepting states, s0 ∈ S is the quiescent state,
⊳ /∈ A is the end-of-input symbol, δ : S3 → S is the local transition function for
non-communication cells satisfying δ(s0, s0, s0) = s0, δ0 : (A ∪ {⊳}) × S2 → S
is the local transition function for the communication cell.

LetM be an IA. A configuration ofM at some time t ≥ 0 is a pair (wt, ct),
where wt ∈ A∗ is the remaining input sequence and ct : N → S is a mapping
that maps the single cells to their current states. The configuration (w0, c0) at
time 0 is defined by the input word w0 and the mapping c0(i) = s0, i ≥ 0,
while subsequent configurations are chosen according to the global transition
function ∆: Let (wt, ct), t ≥ 0, be a configuration, then its successor configuration
(wt+1, ct+1) is as follows:

(wt+1, ct+1) = ∆
(
(wt, ct)

)
⇐⇒

{

ct+1(i) = δ
(
ct(i− 1), ct(i), ct(i + 1)

)
, i ≥ 1,

ct+1(0) = δ0

(
a, ct(0), ct(1)

) ,

where a = ⊳, wt+1 = λ if wt = λ, and a = a1, wt+1 = a2 · · · an if wt = a1 · · · an.
Thus, the global transition function ∆ is induced by δ and δ0.

s0 s0 s0 s0 s0 · · ·

a1 a2 a3 · · · an ⊳ ⊳ · · ·

Fig. 2. Initial configuration of an iterative array.
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An input w is accepted by a CA (IA) M if at some time i during its course
of computation the leftmost cell enters an accepting state. L(M) = {w ∈ A∗ |
w is accepted byM} is the language accepted by M. Let t : N → N, t(n) ≥ n
(t(n) ≥ n + 1 for IAs) be a mapping. If all w ∈ L(M) are accepted with at most
t(|w|) time steps, then L(M) is said to be of time complexity t.

Now we turn to cellular automata and iterative arrays that are reversible on
the core of computation, i.e., from initial configuration to the configuration given
by the time complexity. We call them t-time reversible, if the time complexity t
is obeyed. Reversibility is meant with respect to the possibility of stepping the
computation back and forth. Due to the domain S3 and the range S, obviously,
the local transition function cannot be injective in general. But for reverse com-
putation steps we may utilize the information which is available for the cells, that
is, the states of their neighbors. So, we have to provide a reverse local transition
function.

For some mapping t : N → N let M = 〈S, δ, #, A, F 〉 be a t-time cellular
automaton. Then M is defined to be t-reversible (REV-CA), if there exists a
reverse local transition function δR : S3 → S such that ∆R(∆(ci)) = ci, for
all configurations ci of M, 0 ≤ i ≤ t(n) − 1. The global transition functions ∆
and ∆R are induced by δ and δR.

Similarly, let M = 〈S, A, F, s0, ⊳, δ, δ0〉 be a t-time iterative array. Then M
is defined to be t-reversible (REV-IA), if there exist reverse local transition
functions δR and δR

0 such that ∆R(∆(ci)) = ci, for all configurations ci of M,
0 ≤ i ≤ t(n) − 1. The global transition functions ∆ and ∆R are induced by
δ, δ0 and δR, δR

0 . The head of the input tape is always moved to the left when
the reverse transition function is applied. For distinctness, we denote the devices
with reverse transition functions by MR.

The family of languages accepted by some REV-CA (REV-IA) with time
complexity t is denoted by Lt(REV-CA) (Lt(REV-IA)). If t equals the identity
function id(n) = n (the function n+1), acceptance is said to be in real time and
we write Lrt(REV-CA) (Lrt(REV-IA)).

In order to introduce some of the particularities in connection with reversible
language recognition we continue with an example. The goal is to define a real-
time REV-IA that accepts the non-context-free language {an2

b2n−1 | n ≥ 1},
which is not even semilinear. We start with a conventional iterative array. Basi-
cally, the idea is to recognize time steps which are square numbers. To this end,
assume k cells of the array are marked at time k2. Then a signal can be emitted
by the communication cell. The signal moves through the marked area, extends
it by one cell, and moves back again. So, the signal arrives at the communication
cell at time (k + 1)2. Finally, the number of bs is checked by sending another
signal through the marked area and back. Figure 3 (left) shows an accepting
computation. But the transition functions have to be extended in order to reject
words not belonging to the language. To this end, we consider possible errors
and observe that all errors can be detected by the communication cell. We iden-
tify the following errors: (1) the first input symbol is a b, (2) an a follows b, (3)
the number of as is not a square number, (4) the number of bs is insufficient,
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or (5) there are too many bs. Accordingly, we provide rules to cope with the
situations. An example of a rejecting computation is given in Fig. 3 (middle).
Moreover, in our current construction the whole computation may get frozen
before time step n + 1, for inputs not belonging to the language. Clearly, this
implies non-reversibility. One reason is that for conventional computations we do
not care about rejecting computations, except for keeping them rejecting. Nor
do we care about the part of the computation that cannot influence the overall
result, that is, the computation of cells i ≥ 1 after time step n + 1 − i, i.e., the
area below the diagonal starting from the lower left corner of the space-time
diagram.

a

a !

a >

a ◦ <0

a ! ◦
a > ◦
a ◦ >

a ◦ ◦ <0

a ◦ < ◦
b ! ◦ ◦
b b> ◦ ◦
b b> b> ◦
b b> b> <b

b b> <b <b

⊳ <b <b <b

⊳ + <b <b

a

a !

a >

a ◦ <0

a ! ◦
a > ◦
a ◦ >

b ◦ ◦ <0

a - < ◦
b - ◦ ◦
b - ◦ ◦
b - ◦ ◦
b - ◦ ◦
b - ◦ ◦
⊳ - ◦ ◦
⊳ - ◦ ◦

a

a !

a >

a ◦ <0

a ! ◦
a > ◦
a ◦ >

b ◦ ◦ <0

a ◦- < ◦
b ◦- <- ◦
b ◦- <- ◦-
b ◦- <- ◦- s-

0

b ◦- <- ◦- s-
0

s-
0

b ◦- <- ◦- s-
0

s-
0

s-
0

⊳ ◦- <- ◦- s-
0

s-
0

s-
0

s-
0

⊳ ◦- <- ◦- s-
0

s-
0

s-
0

s-
0

s-
0

Fig. 3. Space-time diagrams of a real-time IA accepting {an2

b2n−1 | n ≥ 1}
(left), not being reversible (middle), rejecting reversibly (right). Cells in quiescent
state are left blank.

For reversible computations we do have to care about rejecting computations
as well as for computations in the mentioned area. The idea of our construction
is to send a signal from left to right which freezes the computation, whereby each
cell passed through has to remember its current state. Clearly, this idea does not
work in general. Sometimes much more complicated computations are necessary
in order to obtain reversible computations. Next, we present the complete tran-
sition functions of a REV-IA accepting the language {an2

b2n−1 | n ≥ 1}. For
convenience, δ(p, q, r) = s is written as pqr → s, and the same holds for δ0. By
x, z we denote arbitrary states.
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δ0

a s0 s0 → !

a ! z → >

a > z → ◦
a ◦ < → !

a ◦ <0 → !

b ! s0 → <b

b ! ◦ → b>

b b> <b → <b

⊳ <b z → +

δ

> s0 s0 → <0

> ◦ y → >

x ◦ <0 → <

x ◦ < → <

x > z → ◦
x <0 s0 → ◦
x < z → ◦

b> ◦ ◦ → b>

b> ◦ s0 → <b

x b> <b → <b

δ0

b s0 s0 → s0
-

a b> z → b>
-

a <b z → <-b
b ◦ z → ◦-

b > z → >-

b <b z → <-b
⊳ s0 z → s-0
⊳ ! z → !-

⊳ > z → >-

⊳ ◦ z → ◦-

⊳ b> z → b>
-

δ

>- s0 s0 → s-0
>- ◦ y → ◦-

x- ◦ <0 → ◦-

x- ◦ < → ◦-

x- > z → >-

x- <0 s0 → <-0
x- < z → <-

b>
- ◦ ◦ → ◦-

b>
- ◦ s0 → ◦-

x-
b> <b → b>

-

x- s0 s0 → s-0

The two blocks of transition rules at the left are for accepting computations.
The third block provides rules for detecting that the input is of wrong format.
The rules of the fourth block are for the freezing error signal. An example for
a reversible rejecting computation is given in Fig. 3 (right). It is not hard to
obtain the reverse local transition functions δR

0 and δR.
Concerning the computational capacity of IA it is well known and one of the

fundamental results that conventional real-time cellular automata are strictly
more powerful than real-time iterative arrays [30]. The next theorem estab-
lishes a reversible relationship equal to the relationship in the conventional case
(cf. Fig. 4).

Theorem 2.1. The family Lrt(REV-IA) is properly included in the family of
languages accepted by real-time reversible cellular automata.

3 Reversible simulation of data structures

We next want to explore the computational capacity of real-time REV-IAs in
more detail. To this end, we first consider the data structures stack and queue,
and show that REV-IAs can simulate special variants thereof. We start with
the stack. In detail, we consider real-time deterministic pushdown automata
accepting linear context-free languages. Moreover, the stack behavior is restricted
in such a way that in every step exactly one symbol is pushed on or popped from
the stack. For convenience, we denote the family of languages accepted by such
automata by DLR.

Theorem 3.1. Every language from DLR belongs to the family Lrt(REV-IA).

Now we can utilize the simulation (cf. Fig. 5) in order to derive particular
languages belonging to the family Lrt(REV-IA).

Example 3.1. Every regular language as well as the languages {anbn | n ≥ 1}
and {wccwR | w ∈ {a, b}+} are in DLR and, thus, belong to Lrt(REV-IA).

Similar to the restricted stack behavior, we can show that real-time REV-IAs
can simulate queues under certain conditions.
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c0:

$ a a b $ b b # b $ b a $

• • • • • • • • • • • • •
$ a a b $ b b # b $ b a $

c1:

$ a a b $ b b # b $ b a $

• • • • • • • • • • • •
a a b $ b b # b $ b a $ 3

$

c2:

$ a a b $ b b # b $ b a $

• • • • • b • • • • • •
a b $ b b # $ b a $ 3 3

a $

c3:

$ a a b $ b b # b $ b a $

• • • • b • • • • • •
b $ b b # $ b a $ 3 3 3

a a $

c4:

$ a a b $ b b # b $ b a $

• • • + b • • • • • •
$ b b # $ b a $ 3 3 3 3

b a a $

c5:

$ a a b $ b b # b $ b a $

• • $ + b • • • • • •
b b # b a $ 3 3 3 3 3

$ b a a $

c6:

$ a a b $ b b # b $ b a $

• $ + b • • • • • •
b # b a $ 3 3 3 3 3 3

b $ b a a $

c7:

$ a a b $ b b # b $ b a $

b $ + b • • • • • •
# a $ 3 3 3 3 3 3 3

b b $ b a a $

c8:

$ a a b $ b b # b $ b a $

b $ + b • • • • • •
a $ 3 3 3 3 3 3 3 3

# b b $ b a a $

c9:

$ a a b $ b b # b $ b a $

a b $ + b • • • • • •
$ 3 3 3 3 3 3 3 3 3

# b b $ b a a $

c10:

$ a a b $ b b # b $ b a $

a b $ + b • • • • • •
$ 3 3 3 3 3 3 3 3 3 3

# b b $ b a a $

c11:

$ a a b $ b b # b $ b a $

+ a b $ + b • • • • • •
$ 3 3 3 3 3 3 3 3 3 3 3

# b b $ b a a $

c12:

$ a a b $ b b # b $ b a $

$ + a b $ + b • • • • • •
3 3 3 3 3 3 3 3 3 3 3 3

# b b $ b a a $

c13:

$ a a b $ b b # b $ b a $

$ + a b $ + b • • • • • •
3 3 3 3 3 3 3 3 3 3 3 3 3

# b b $ b a a $

Fig. 4. Example computation of a real-time reversible cellular automaton accept-
ing {$xk$ · · · $x1#y1$ · · · $yk$ | 1 ≤ k, xR

i = yizi, xi, yi, zi ∈ {a, b}∗, 1 ≤ i ≤ k}
which cannot be accepted by any conventional real-time iterative array.

Lemma 3.1. Let Q be an empty queue which is filled by a number of in oper-
ations, and then emptied by a sequence of out operations. Moreover, in every
time step exactly one in or out operation is performed. Then Q can be simulated
by a real-time REV-IA.

Example 3.2. Consider the language L = {wcwc | w ∈ {a, b}+}. First, the input
prefix wc is inserted into a queue. Then, the content of the queue is removed
step by step, whereby it is matched against the remaining input wc. Due to
Lemma 3.1, language L belongs to the family Lrt(REV-IA).

The restrictions on the data structures seem to be very natural, since the de-
terministic, linear context-free language L = {$xk$ · · ·$x1#y1$ · · · $yk$ | xR

i =
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Fig. 5. Pushing (left) and popping (right) of ten pushdown symbols in real time.
The left half of each cell contains the three registers for simulating the stack.
The first two registers of the right half are used to store the current state of
the communication cell and the last popped stack symbol, respectively. The last
register indicates whether the stack is increasing (↑), decreasing (↓), or a switch
takes place (→). The first entry of the stack is marked by underlining.

yizi, xi, yi, zi ∈ {a, b}∗} used as witness in the proof of Theorem 2.1 is not ac-
cepted by any conventional real-time iterative array.

4 Closure properties

The technique to send a signal that freezes the computation in order to maintain
reversibility in certain situations, yields the closure of the family Lrt(REV-IA)
under Boolean operations. A family of languages is said to be effectively closed
under some operation, if the result of the operation can be constructed from the
given language(s).

Lemma 4.1. The family Lrt(REV-IA) is effectively closed under the Boolean
operations complementation, union, and intersection.

Next, we want to show closure under inverse homomorphism. The closure of
languages accepted by conventional real-time iterative arrays has similarly been
obtained in [29]. We start with some preliminaries.

Let A and B be two alphabets. The shuffle of two words x ∈ A∗ and y ∈ B∗

is x X y = {x1y1 . . . xkyk | x = x1 . . . xk, y = y1 . . . yk, 1 ≤ i ≤ k, k ≥ 1}. The
shuffle of two languages L ⊆ A∗ and L′ ⊆ B∗ is defined as L X L′ = {x X y |
x ∈ L and y ∈ L′}.
Lemma 4.2. Let A and B be two disjoint alphabets. If L ⊆ A∗ is accepted by a
real-time REV-IA, then L X B∗ is accepted by a real-time REV-IA as well.
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Lemma 4.3. The family Lrt(REV-IA) is effectively closed under inverse ho-
momorphism.

Lemma 4.4. The family Lrt(REV-IA) is effectively closed under marked con-
catenation and right concatenation with regular languages.

We derive further closure properties using the above-mentioned language L =
{$xk$ · · · $x1#y1$ · · ·$yk$ | 1 ≤ k, xR

i = yizi, xi, yi, zi ∈ {a, b}∗, 1 ≤ i ≤ k}.

Lemma 4.5. The family Lrt(REV-IA) is not closed under reversal, left con-
catenation with regular languages, and λ-free homomorphism.

Next we summarize the results for the family Lrt(REV-CA).

Theorem 4.1. The family Lrt(REV-CA) is effectively closed under comple-
mentation, union, and intersection.

t = i

t = n

t = 0

Fig. 6. Signals for the construction of a complementary real-time REV-CA. The
leftmost cell enters an accepting state at time t = i for the first time. The cell
along the dotted line is marked.

5 Decidability questions

To show undecidability results for REV-CAs we use reductions from Post’s cor-
respondence problem (PCP) which is known to be undecidable. Let A be an
alphabet and an instance of the PCP be given by two lists α = u1, u2, . . . , uk

and β = v1, v2, . . . , vk of words from A+. Furthermore, let A′ = {a1, a2, . . . , ak}
be an alphabet with k symbols and A ∩ A′ = ∅. Consider two languages Lα

and Lβ :

Lα = {ui1ui2 . . . uim
aim

aim−1 . . . ai1 | m ≥ 1, 1 ≤ ij ≤ k, 1 ≤ j ≤ m}
Lβ = {vi1vi2 . . . vim

aim
aim−1 . . . ai1 | m ≥ 1, 1 ≤ ij ≤ k, 1 ≤ j ≤ m}
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Lemma 5.1. The languages Lα and Lβ belong to the family Lrt(REV-CA).

We can utilize the languages of Lemma 5.1 to prove the first undecidable
property of real-time REV-CAs.

Theorem 5.1. Emptiness is undecidable for real-time REV-CAs.

Lemma 5.2. LetM be a real-time REV-CA and a, b, c be new alphabet symbols.
Then the following languages belong to the family Lrt(REV-CA).

1. LM,1 = {wa5|w| | w ∈ L(M)}
2. LM,2 = {wa5|w|(bc6|w|−1)n | w ∈ L(M), n ≥ 0}
3. LM,3 = {wa|w|b4|w| | w ∈ L(M)}
4. LM,4 = {wa|w|b|w|c3|w| | w ∈ L(M)}

Theorem 5.2. Finiteness, infiniteness, universality, inclusion, equivalence, reg-
ularity, and context-freedom is undecidable for real-time REV-CAs.

Theorem 5.3. Let M be a real-time CA. It is undecidable whether or not M
is real-time reversible.

Now we turn to explore undecidable properties for real-time REV-IAs. To this
end, we consider valid computations of Turing machines [10]. Roughly speaking,
these are histories of accepting Turing machine computations. It suffices to con-
sider deterministic Turing machines with a single tape and a single read-write
head. Without loss of generality and for technical reasons, one can assume that
any accepting computation has at least three and, in general, an odd number of
steps. Therefore, it is represented by an even number of configurations. More-
over, it is assumed that the Turing machine cannot print blanks, and that a
configuration is halting if and only if it is accepting. The language accepted by
some machineM is denoted by L(M).

Let S be the state set of some Turing machine M , where s0 is the initial
state, T ∩S = ∅ is the tape alphabet containing the blank symbol, A ⊂ T is the
input alphabet, and F ⊆ S is the set of accepting states. Then a configuration
of M can be written as a word of the form T ∗ST ∗ such that t1 · · · tisti+1 · · · tn is
used to express that M is in state s, scanning tape symbol ti+1, and t1 to tn is
the support of the tape inscription. The set of valid computations VALC(M) is
now defined to be the set of words of the form w1####w2#### · · · ####w2m####,
where m ≥ 2, # /∈ T ∪ S, wi ∈ T ∗ST ∗ are configurations of M , w1 is an initial
configuration of the form s0A

∗, w2m is an accepting configuration of the form
T ∗FT ∗, and wi+1 is the successor configuration of wi, with 0 ≤ i ≤ 2m− 1. The
set of invalid computations INVALC(M) is the complement of VALC(M) with
respect to the alphabet {#} ∪ T ∪ S.

The following lemma is the key tool to prove undecidability properties for
real-time REV-IAs.

Lemma 5.3. Let M be a Turing machine. Then the set VALC[M] can be rep-
resented as the intersection of two languages from Lrt(REV-IA).
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By Lemma 4.1 the family Lrt(REV-IA) is closed under intersection. So, we
obtain the following corollary.

Corollary 5.1. Let M be a Turing machine. Then the set VALC[M] belongs
to the family Lrt(REV-IA).

Theorem 5.4. Emptiness, finiteness, infiniteness, universality, inclusion, equiv-
alence, regularity, and context-freedom are not semidecidable for real-time re-
versible IAs.

Theorem 5.5. Let M be a real-time IA. It is not semidecidable whether or
not M is real-time reversible.
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Abstract. Iterative arrays (IAs) are a parallel computational model with a sequen-
tial processing of the input. They are one-dimensional arrays of interacting identical
deterministic finite automata. In this paper, realtime-IAs with sublinear space bounds
are used to accept formal languages. The existence of an infinite proper hierarchy of
space complexity classes between logarithmic and linear space bounds is proved. Some
decidability questions on logarithmically space bounded realtime-IAs are investigated.
Furthermore, an optimal space lower bound for non-regular language recognition on
realtime-IAs is shown.

1 Introduction

Iterative arrays (IAs, for short) are computational devices consisting of an array
of identical deterministic finite automata — called cells — which themselves are
homogeneously interconnected with their both neighbors. An IA reads the input
sequentially via a distinguished communication cell. The state of each cell is
changed at discrete time steps by applying its transition function synchronously.
Cole [2] was the first who studied formal language aspects of IAs. A survey on
such aspects may be found in [3]. Some recent results concern communication-
restricted IAs [4, 12] and reversible IAs [5].

The space used by IAs considers, as a function of the input length, the number
of cells activated along computations. In the general model, as many cells as the
input is long may be used. Here, we consider realtime-IAs which are allowed
to use only a sublinear amount of space. This paper summarizes some recent
results which have been submitted to [8]. A previous version has been published
as technical report [7].

As a main result, we exhibit an infinite proper hierarchy of classes of lan-
guages accepted between logarithmic and linear space bounds by realtime-IAs.
For sublogarithmic space bounds, we obtain that only regular languages can be
accepted. Finally, some decidability questions on logarithmically space bounded
realtime-IAs are studied.
⋆ Summary of results submitted to [8].

⋆⋆ Corresponding author.
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2 Definitions

An iterative array consists of a linear array of identical deterministic finite state
automata called cells. At the beginning, all cells are in a designated quiescent
state q0. Each cell is connected with its left and right neighbor, except clearly
the leftmost cell having only a right connection. The leftmost cell is the com-
munication cell, which processes one input symbol at each time step. The local
transition function is applied to each cell at the same time step. When the whole
input is read, the end-of-input symbol # is processed. More details and results
on iterative arrays may be found, e.g., in [3]. An IA is depicted in the following
figure.

q0 q0 q0 q0 q0 . . .

a1a2a3 · · · an#

Fig. 1. An iterative array.

3 Space bounded iterative arrays

In the general model, along their computations, IAs may use as many cells as
the input length. It is natural to investigate a sublinear cells usage. In analogy
with the Turing machine model, we call space the amount of cells used by an IA.
Formally, the space used in the computation (x#, c0), . . . , (ε, c|x|+1) of a realtime-
IA A on the word x ∈ Σ∗ is defined as

S(x) = max {i ∈ N | c|x|+1(i) 6= q0}.

The strong space complexity of A is the function S : N→ N defined as

S(n) = max {S(x) | x ∈ Σ∗ and |x| = n}.

Hence, S(n) counts the maximum number of cells activated during the computa-
tions on words of length n. It is easy to see that, for any realtime-IA, S(n) ≤ n+1.
In this paper, we focus on sublinearly strongly space bounded realtime-IAs, i.e.,
with S(n) = o(n). We denote by Lrt(S(n)-IA) the class of languages accepted by
S(n) strongly space bounded realtime-IAs, i.e., the class of languages accepted
by realtime-IAs which use in all the computations on inputs of length n at most
S(n) cells.

Examples

1. The language {ambmcm | m ≥ 1} can be accepted by a realtime-IA in log(n)
strong space.
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2. The language {amk | m ≥ 1}, for fixed k ≥ 2, can be accepted by a
realtime-IA in k

√
n strong space. (Cf. [9])

3. The language P = {wcwR | w ∈ {a, b}∗} can be accepted by a realtime-IA
in linear strong space.

An infinite proper space hierarchy

Let us now start to build an infinite proper hierarchy for sublinearly space
bounded realtime-IAs. The first results are

1. REG ⊂ Lrt(log(n)-IA).
2. For every function f(n) = o(n), Lrt(f(n)-IA) ⊂ Lrt(IA).

To go further in the hierarchy construction, we introduce the notion of ts-
constructibility of functions by IAs (cf. [1]). This will enable us to get a general
result leading to proper inclusions. Roughly speaking, the IA-ts-constructibility
of a function f means that exactly at time steps f(1), f(2), . . . the communication
cell enters an accepting state while not using more than f−1(n) cells for the
computations on inputs of length n. It can be observed that the function f(n) =
nk, for any given integer k ≥ 2, is IA-ts-constructible.

Lemma 1 Let f(n) be an IA-ts-constructible function which satisfies f−1(n) =
Ω(log n), and let g(n) = o(f−1(n)) be a non-decreasing function. Then, we ob-
tain Lrt(g(n) -IA) ⊂ Lrt(f

−1(n) -IA).

Corollary 1 For any integer k ≥ 2, it holds: Lrt(log(n) -IA) ⊂ Lrt( k
√

n -IA)
and Lrt( k+1

√
n -IA) ⊂ Lrt( k

√
n -IA).

In conclusion, we obtain the following infinite space hierarchy:

Theorem 2 For any integer k ≥ 2,

REG ⊂ Lrt(log(n)-IA) ⊂ Lrt(
k+1
√

n-IA) ⊂ Lrt(
k
√

n-IA) ⊂ Lrt(IA).

Decidability questions

It is shown in [6] that almost all decidability questions for realtime-IAs are
undecidable and not semidecidable. The same results can be extended to the
restricted model of realtime-IAs working in log(n) strong space.

Theorem 3 Emptiness, finiteness, infiniteness, universality, equivalence, in-
clusion, regularity, and context-freedom are not semidecidable for realtime-IAs
working in log(n) strong space.
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Lower bounds for recognizing non-regular languages

According to Theorem 3, restricting to a logarithmic cell usage still leads to non-
semidecidable questions. So, as a further restriction, we could consider realtime-
IAs which are allowed to use only a sublogarithmic number of cells. Notice that
an analogous investigation has been carried on even for space bounded Turing
machines (see, e.g., [10, 11] for a survey on the sublogarithmic space world).

The next theorem shows that sublogarithmic space bounds reduce the com-
putational capacity of realtime-IAs to the regular languages.

Theorem 4 Let A be a realtime-IA S(n) strongly space bounded. Then, either
S(n) ≥ C · log(n), for some constant C > 0 and infinitely many n, or A accepts
a regular language and the space used by A is bounded by a constant.

We conclude by observing that the logarithmic space lower bound for non-
regular language acceptance in Theorem 4 is optimal. It is enough, in fact, to
consider the examples where a non-regular language is shown to be accepted by
a realtime-IA in log(n) strong space.
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Abstract. Cellular automata are a promising model for many theoreti-
cal and real-life problems. The range of applications is enormous and the
simplicity of description attracts scientists from various fields. However,
finding the correct rules for a given problem often is a tedious task. One
possible solution for this problem is evolving cellular automata. Unfor-
tunately, using Genetic Algorithms presents a new barrier. The repre-
sentation of rule sets as binary strings in Genetic Algorithms results in a
search space for the evolution which increases exponentially in the num-
ber of states. But today’s sophisticated problems mostly require state
numbers which are large enough to cope with high complexity. This pa-
per proposes a vision on cells not from a rule sets point of view but a
view on small programs instead which are evolved much easier.

1 The problem: Complex tasks require many states

Research on dynamic systems like weather forecast, swarm behaviour, gas sim-
ulation, and uncounted others is one of the big issues of our time. Such systems
and their models show huge effects even on smallest deviations and thus often
reflect nature’s laws much better than classic approaches. They can be used to
integrate desired capabilities like self-organisation, self-healing, self-optimisation,
and so on. And they depict the reality we are living in a much better way than
classic models. Some of the mentioned problems strongly affect our everyday life
and improving their characteristics is thus much desired.

However, describing such dynamic systems is often difficult. Analytic defi-
nitions and methods often fail due to the complexity of the systems and the
inability of researchers to find simple modelling equations which can be solved
in order to optimise certain parameters of the systems or to foresee results of
events in present and future. Thus, other methods have to be used. One of them
are Cellular Automata (CAs). Describing problems with CAs turns out to be
much more simple because only the local interaction of the single cells has to be
specified in contrary to other approaches where the behaviour of the complete
system is directly modeled. Simulations then show if the local rules were chosen
correctly and if the behaviour of the complete automata reflects the system it
simulates or if the local rules have to be altered. Anyway, discussing the model
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of CAs is not the scope of this paper. For more details, please refer to [1], [2], or
[3].

Using the CA model, writing down rules is plain simple. But the simplicity
of the model does of course not simplify the problem itself. Finding the right
local rules by hand is sometimes tedious if not impossible. Unexpected global
effects often occur during simulation and pointing out the reasons in the local
rules demand profound comprehension and experience as well with CAs as with
the described problem itself. These requirements don’t apply to every person
using CAs and they slow the development processes. Therefore, evolution in
the form of Genetic Algorithms was introduced to cellular automata. For some
problems, evolving good local rules was effective. Please see [4], [5], or [6] for
more information on the topic. But explaining all aspects of evolution is also not
in the focus of this paper, so refer to the mentioned literature for details. We
expect the reader to be familiar with the basic principles of evolution because
we will only go into detail about the following important parts.

If using Genetic Algorithms, two things always have to be done very carefully:
First, defining the quality function, and second, finding a suitable encoding of the
individuals (the rule sets of CAs in this case). These two issues present the major
hurdles for designing a successful evolutionary process and strongly influence its
speed. Describing creation of the quality function in general is difficult because it
is very problem-specific. For Genetic Algorithms and CA, the rule sets are usually
encoded as binary strings. Thus, all states are encoded as binary numbers. A
rule set then defines a cell’s new state for each combination of neighbours’ states.
Saying it short, one string represents exactly one possible rule set for the given
number of states and neighbours.

We wrote that the quality function strongly depends on the specific prob-
lem. But one statement about the encoding is always true: Having more states
increases the length of the encoding strings and thus increases the number of
possible rule sets exponentially. Consider a classic two-dimensional CA with s
states and n neighbours. The amount of neighbours is depending on the kind
of neighbourhood and the radius. For a NEWS neighbourhood with radius one,
the amount is five because the cell itself also has to be counted here. For s states
and n neighbours, we have sn possible neighbourhood configurations for each
cell. Thus, ssn

different rule sets are possible making the growth exponential in
s.

For larger numbers of states, it is obviously not possible to simulate all possi-
ble rule sets in order to retrieve their quality. For example, having six states and
NEWS neighbourhood results in more than 221 × 1020 possible rule sets. The
idea of the genetic process now is to merge different rule sets or slightly alter
single rule sets that qualified as good in order to decrease the number that has
to be simulated for finding a suitable rule set for a given problem. All possible
rule sets thus build the search space the genetic process is searching in. Summing
up, large numbers of states result in huge search spaces and are therefore likely
to result in poor quality of the found CA or in very long evolution time.
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As stated before, many complex systems rely on the model of CAs. But
describing problems with few states like four or less is difficult if not impossible
in most cases. The need for higher numbers of states results from the need for the
description of different weather conditions, several kinds of animals or animal
states/behaviours or particles, not mentioning specific boundary cases. Even if
one is able to find a minimal state set for a given problem or is otherwise able to
reduce the number of applicable rule sets, the amount of states required might
exceed reasonable sizes of the search space by far. In the end, we have to find a
different representation of the problem in order to come to acceptable results in
reasonable times using evolution.

2 A solution: Evolving small programs instead of rule
sets

For a fixed issue, faster computers or evolution directly in hardware [7], [8]
decrease the time until a solution is found. But these approaches can’t cope
with the root of the problem. They are only reducing computation time by a
constant factor. This might work out in specific cases, but not in the big scheme.
We have to find a model where the search space is not exponentially dependent
on the number of states.

The solution is to look at single cells of the CA not with a view on states
but to consider them as small processors capable of executing small programs
instead. They still need to have states though but it is possible to decrease the
required number of these states significantly compared to the formerly mentioned
approach. Apart from that, this model fits very well to real-world, fine-grained,
massively-parallel architectures (see Sect. 3.2) for details.

Evolving programs is called Genetic Programming and is strongly connected
to the works of John Koza [9]. He proposed to take a set of elementary operations
(functions and literals), put them together arbitrarily, and to let evolution form
programs from this primordial soup which suit a given problem. This kind of
evolution differs not much from Genetic Algorithms in principle. It also uses
mutation, crossover, and selection to increase the fitness of individuals. The
difference lies in the representation of individuals and the quality function.

The quality function now is responsible for checking the strength of evolved
programs. But the basic idea of quality doesn’t change and neither do quality
criteria of a specific problem. Transforming the quality function from Genetic
Algorithms to Genetic Programming is thus mostly relatively easy. Apart from
basic “desired output" measurement, the quality function has to be extended by
some factors. First to mention is a weighing factor for the length of the program.
If one does not attach it to the quality function, the evolutionary process will
tend to create very long, super-specialised programs which are on one hand
time- and maybe hardware-cost-expensive and which don’t generalise well on
the other hand. A second weighing factor may be the real time a program needs
for execution. For example, a multiplication by two with a multiplying unit might
cost the same program size but twice the real execution time of a left shift.
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The larger difference lies in the representation of individuals. Using Genetic
Algorithms, we had bit strings which encode the states and the state transitions.
Using Genetic Programming, we now have small programs which are executed by
each cell. The cell model therefore has to be able to cope with such instructions,
extending the classic model. The set of basic instructions a cell can execute build
the core from which evolution derives programs. Not every instruction has to be
used in optimal programs though. For example, making an edge detection of
objects does not necessarily require arithmetic functionality of the cells or an
agent moving from left to right does not require an instruction to go north or
south.

The evolutionary process now again merges and alters good quality individ-
uals.The final program can be viewed as a binary tree. The evolutionary process
cuts off arbitrary partial subtrees of two individuals each and exchanges them
mutually creating two new individuals (crossover). Or it simply exchanges one
instruction with another one from the core set (mutation). See Fig. 1 and Fig. 2
for illustration. This procedure might create programs which are not allowed.
The scientist has to take care that either all possible combinations of literals
and functions are valid constructs or has to take care of eliminating such mali-
cious individuals.

Fig. 1. Genetic Programming crossover: Nodes z and - and their subtrees are
mutually exchanged (z does not have a subtree).

Fig. 2. Genetic Programming mutation: Node a is mutated to d.

As already told, this view on CA evolution of course requires leaving the
classic CA model. But it makes it possible to exploit the capabilities of processors
in the cells of a cellular automaton extending the set of possible applications
which are easy to describe. Another point is that such program-CAs can often
be re-transformed into classic CAs by emulating the instructions with states,
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for example when thinking of agents moving on the CA and mimicking the
movement directed by instructions with states. This would of course mostly
require a lot of states and vastly increase the complexity.

3 An example: Machine Vision with massively-parallel
embedded cameras

Having proposed the new view on CA evolution, we present a real problem
scenario in this section which originates from production industry. The problem
is specified in detail and the so called Marching Pixels project is presented.
This project is part of the priority program Organic Computing of the German
Research Foundation. In the end, we show that the presented approach is capable
of evolving suitable algorithms for this industrial vision problem.

3.1 The problem: Fast detection of objects in binary images

In modern factories, machine vision is an elementary part of the production
processes. Robots have to see in order to grab, drill, grind, or in general handle
tools and work pieces. With increasing production speeds, the need for extremely
fast vision systems is ever-growing. On the other hand, it is also important that
these vision systems don’t become too large for reasons of power consumption,
price, or simply limited space for installation, e.g. on a robot’s gripper arm.

One of these vision problems is the detection of objects and their attributes
in binary images. Detection means classification of objects, for example lying
on an assembly line, out of a set of known objects. It also means detection of
defective or incomplete work pieces which the complete production system has to
sort out. Apart from the object classification, it is also important to detect some
properties of the single objects like size, edge lengths, rotation, and centroids.

When these opposing aims of low size and high speed meet, classic archi-
tectures reach their limits. This is especially true if the systems don’t have to
detect one but many objects at a time whose number is not known in advance.
A practical example for this are small pieces like nails or screw-nuts lying on a
fast moving assembly line.

3.2 The Marching Pixels approach

One system architecture that is able to cope with these opposing aims is devel-
oped in the Marching Pixels project. This architecture is presented here shortly
to give the reader an idea of it and because the evolution presented in Sect. 3.3
is based on this architecture. For more details on the system, the algorithms,
capabilities and weaknesses, and implementations in VHDL and FPGA, please
refer to earlier publications like [10], [11] or [12].

Put very short, the basic idea of Marching Pixels is to take a binary image,
load it into a massively-parallel field of simple processing elements, and to let
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agents, so called Marching Pixels (MPs), travel around this field in order to de-
tect objects and their attributes. These agents thereby exploit emergence [13]
to fulfill their goals. The advantage of this approach is that the complete archi-
tecture can be implemented on a relatively small dedicated chip and thus in a
small embedded vision system (including camera and input/output), and that
the massive parallelism grants large compute power which can be used to meet
strict real-time requirements.

This description divides an MP vision system into two parts. The first one
is an architectural layer where the field of processing elements in a whole, the
processing elements themselves in detail, and the input/output characteristics
have to be defined. On the upper layer, the algorithms executed on the single
processing elements have to be found and tested. This is where the Marching
Pixels run. It is also the layer which is close to CAs because the steering of the
Marching Pixels can be (and has been) done by means of cellular automata.

Architectural layer In this layer, the underlying hardware is described. Fig-
ure 3 shows the principle. On the left side, the processor element (PE) array on
a chip can be seen. The PEs have a specific local neighbourhood which can be
defined freely. In the figure, the PEs have NEWS neighbourhood. PEs don’t have
connectivity across the borders. Outer PEs are used for outside communication
instead.

On the right side of the figure, you can see a PE in detail. It has an optical
detector on top which captures a part of the image, i.e. one pixel in the most
simple case. This pixel is then binarised and used as input to digital processing.
In the digital part, arbitrary digital operations can be used like binary logic,
shift operations, multiplexing, or even ALUs. Apart from that, it is possible to
use Flip-Flops as local memory for each single PE. Using CAs, the state machine
is modeled here in digital hardware and the states of the cells are stored in local
memory.

Fig. 3. Architecture of processor element array and of single PE.



234 Komann and Fey

Algorithmic layer Having PEs as CA-cell-alike units with the extraordinary
ability of executing digital logic, we now can think of algorithms which solve the
previously described problem of fast object detection in binary images. In the
Marching Pixels project, we oriented on ant-like behaviour to steer agents across
the PE array (and thus the image) with the goal of visiting certain pixels and
compressing the information. In the end, the centroid pixel shall be found and
the desired information like size, rotation, or edge lengths shall be gathered.

On their way, these agents aka Marching Pixels (MPs) can mutually interact
directly or via indirect, so-called stigmergic, communication. MPs can be born,
can unite, and they can die. Exploiting these capabilities, we are able to create
several emergent algorithms with different capabilities and requirements. For
example, among others we have algorithms which detect rectangles, one which
detects convex objects, and one which detects concave objects. The state ma-
chine and memory (and thus hardware) requirements increase from one to the
next along their higher functionality. We won’t go into detail about the specific
algorithms here. Please refer to the literature mentioned at the beginning of
Sect. 3.2 for details.

3.3 Evolutionary results

If we sum up shortly, we have the problem of detection of objects in binary
images, we have a hardware structure with parallel processors that emulate the
image, and we have algorithms which steer agents around this CA-like field in
order to visit all or specific pixels. One of the major problems in this complete
system is finding algorithms suitable for specific problems. We don’t know if
the algorithms we already developed by hand are the best or even good ones.
Evolution of such algorithms is thus a promising idea. Apart from that, a de-
signer might not want to cope with the complete design process when parameters
change. A ready evolution system helps him to get results relatively fast without
much of work or brainpower.

Genetic Algorithms The results of our work on Genetic Algorithms can be
found in detail in [14] and shall be presented here very shortly. We evolved uni-
form as well as non-uniform CAs in order to solve problems like shrinking objects
to their distinct centroid pixel. Rule tables were encoded as binary strings. Qual-
ity of a rule table was measured by applying evolved rule tables to input images
with objects and comparing the final output of the CA computation with desired
output images (see Fig. 4).

The quality (fitness) function thereby consisted of two parts. The first part
counted wrong pixels resp. states after execution of the CA compared to the
desired goal images. The second part took care for weighing the distance of
wrong pixels to their correct places. The idea is that rule tables get higher
fitness ratings if correct states are closer to their correct places making it easier
for the evolutionary process to find better results.

The results of evolving CAs for this application were rather disappointing.
Evolved rule tables were sometimes able to cope with their "learned" images
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Fig. 4. Left: Simple input images of tools; Right: Calculated output images (Grey
pixels represent the objects and are not present in the original output image.
They can be seen here just for orientation).

but robustness to small deviations like image noise, smallest rotations or scaling
of the objects was not given. Not to mention universality concerning unlearned
objects.

Non-uniformity in the sense of Sipper [6] where the rules of single cells may
differ in one CA also did not achieve better fitnesses. This was mainly due to the
locality of the problem and the indeterministic appearance positions of objects.
If the position was not fixed in advance, non-uniform CAs converged to uniform
ones.

The biggest reason for these bad results was the forced limitation to few
states. We are convinced that a larger number of states of the CA cells would
have yielded better results. But the evolution time increases exponentially when
raising the number of states. This held us off giving the evolutionary process
more than three states to work with.

Genetic Programming We already proposed using Genetic Programming in-
stead of Genetic Algorithms in Sect. 2. The Marching Pixels architecture de-
scribed in Sect. 3.2 gives us not only a state machine but also memory and logic
functionality. This enables us to model the agents’ walk not only by means of
CA rule tables but to implement real agent behaviour with decisions and calcu-
lations. With Genetic Programming, we have an evolutionary tool that exploits
this possibility because it models agents well.

As described in Sect. 2, the individuals are now encoded as a set of instruc-
tions. The token list, from which evolution choses in the tests described here con-
sisted of IfFoodAhead, Prog2, Noop, TurnLeft, TurnRight, and StepForward.
A pixel which the agent should visit is denoted as food. Prog2 simply executes
the two following instructions and is required to spread the binary program tree.
Turning and stepping forward is self-explaining. Noop is required because the
IfFoodAhead instruction executes either the true or the false branch. Programs
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might need the if-branch but not the if-not-branch resulting in a Noop as second
argument for IfFoodAhead.

Quality of individuals of the evolutionary population resp. the programs
is evaluated relatively similar to Genetic Algorithms. Again, input images are
given, then the processing takes place, and afterwards, the deviation of the pro-
cessed image to the desired goal image is evaluated. The difference is that the
processing is now not a number of steps according to a CA rule table but an
execution of the programs instead. The second difference is that the goal image
is not a specific pixel but consists of the pixels which should have been visited
by an optimal agent. In this case, the agent should visit all object pixels. On its
way, the agent accumulates coordinates of the visited object pixels. The sum of
the coordinates and the number of visited pixels is later used for calculating the
centroid of the object. This capability is complex and thus given to the agent a
priori instead of also being evolved. The task of the evolutionary process is to
find a proper marching scheme for the agent.

Besides pure effectivity, another factor has to be included into the quality
function. It is a penalty increasing with the number of instructions. It this is not
added, the evolutionary process tends to create very long programs specialising
very much on the training sets. This is undesired because then execution takes
too long and the costs for implementation in hardware rise.

At first, we used squares and rectangles as test objects for the Genetic Pro-
gramming evolution. The starting point of the agent was given with the upper
left corner pixel of the object. For a human developer, the program an agent
should execute to visit all pixels of a square or a rectangle is obvious. It should
be something like either run clockwise or counterclockwise along the edges and
then towards the center directly beneath the already visited pixels forming some
spiral until all pixels are visited. Or it should be something like going right in
the first row until the right edge is found, then go south to the second row and
walk leftwards until the left edge is found; followed again by a step southwards
and the beginning from start. The idea was to check if the evolutionary process
is able to find such a program. The given set of instruction makes it possible to
find such an algorithm.

Indeed, such programs were found. From 23 tests, 20 used exactly the de-
scribed running procedure (see Fig. 5 left). They sometimes differed in the way
the agent turned around at corners but the principle was equal. The best pro-
gram evolved was IfFoodAhead StepForward TurnLeft with an agent starting
southwards in the upper left corner of the object. Another example, IfFoodAhead
StepForward TurnRight is slower at the corners if it starts there and runs south-
wards. Two programs let the agents leave the objects at corners returning into
the object afterwards and then running along the edges (see Fig. 5 middle). And
one program used an unforeseen marching scheme which was also successful.
The agent there ran straight until meeting a point where it has to turn. But
different to the other programs, it did not turn 90 degrees, but sometimes also
180 degrees after a sidewards step (see Fig. 5 right). Its program is Prog2 Prog2

Noop IfFoodAhead StepForward TurnLeft StepForward. The corresponding
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program tree is shown in Fig. 6. It can be seen that the Noop leaf as well as its
direct mother node Prog2 are useless and should be deleted. The IfFoodAhead

branch should be the direct left successor of the root. Anyhow, this is the pro-
gram evolved which survived as the fittest. None of the programs failed totally.
The smallest programs required just three instructions while the longest ones
needed nine.

Fig. 5. Left: Expected and achieved result; Middle: Two different running exam-
ples; Right: Single totally unexpected result. Black pixels belong to the object,
white pixels belong to the background, grey pixels have already been visited by
the agent.

Prog2

Prog2 StepForward

Noop IfFoodAhead

TurnLeftStepForward

Fig. 6. Program tree of the single extraordinary result of the evolution.

For a second test set, we used the tools seen in Fig. 4. At first, single tools
were used for teaching and it was checked if suitable programs are found. Some
of the programs detected their objects quite well although they mostly missed
some single food pixels. But a rate of about 95 percent found food for the best
individuals is satisfactory. The negative aspect of the programs was their length.
The best ones had about 50 instructions while the worst ones had some hundreds.
This is of course not desired and has to be worked on. From a robustness view,
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the programs still worked if the tools were scaled or rotated or if noise disturbed
the image. Fig. 7 shows an exemplary test on a bench vice. The agent starts in
the upper left corner of the image and at first eats the noise pixels at the left
side of the vice. It then enters the vice and visits all object pixels hardly leaving
the object.

Fig. 7. Simulation of an agent’s detection of a bench vice.

Then, more than one tool image was used for teaching and it was checked
if the taught tools were detected correctly. The results are largely the same as
for single objects. Some programs failed totally but the best ones did their job
well. The problem with the program sizes also persisted. Apart from that, it
showed that different objects whose shapes are similar had better results al-
though differently-shaped objects ended up with some good results, too.

At last, the best former programs were applied to untaught images. The result
was promising. Some of the algorithms were able to detect unlearned objects
creating some kind of universality. This was again easy if learned objects and
test objects looked similar. That is a somehow natural and expected result. But
also the robustness against totally different objects was good for some programs.
And these were no single exceptions. About half of the programs did satisfactory
while about one quarter did really well.

These were some quite positive results. Especially the robustness and the
universality aspects seem to be promising. But more tests have to be made with
larger training sets and more untaught challenging images. Furthermore, the
length of the evolved programs is not yet satisfying and should be reduced by
increasing the penalty for a large amount of instructions.
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The tests also showed, that it would be useful to enhance the general fitness
factors with some other weighing factors. In future, we are going to include a
penalty factor if agents leave the object pixels because it on one hand causes
higher execution time and on the other hand might result in interferences of
agents originated from different objects. It is also possible to decrease the fitness
of programs whose agents cross pixels more than once in order to decrease ex-
ecution time. The weight of each of these additional factors has to be adjusted
cautiously. They will otherwise alter the effectivity of the evolution.

4 Summary

In this paper, we proposed a new vision on massively-parallel models. The cellu-
lar automaton has been and still is very successful in some research areas. The
problem is just that it is sometimes difficult to find the correct rules for a given
problem. Evolution has helped a lot in solving this problem and is thus impor-
tant for the CA community. However, it is sometimes difficult to evolve rules
especially for complex systems because the search space for a Genetic Algorithm
grows exponentially in the number of states.

An option to solve this problem is the proposed shift of view on CAs. If
we allow ourselves to extend the cell model by logic functionality and memory,
we have a much more powerful tool to describe such complex systems. Another
benefit of such a shift is that it is much easier to evolve programs instead of rule
sets using Genetic Programming.

We showed the feasibility of this approach for the example of embedded
machine vision. Some programs have been successfully evolved for differently
sophisticated object detection problems as a test of concept. Some of the evolved
programs worked fine concerning the detection. The biggest problem was that
the number of instructions became too large for the more complex problem of
tool detection. But this might be solved by adjusting the quality function and
is part of future work.
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Abstract. Properties of a five-cell neighborhood linear cellular automa-
ton are investigated. From the eigenpolynomial of the global state transi-
tion matrix, properties of a linear cellular automaton, such as the struc-
ture of the global state transition diagram, the longest transient length
and the longest period length, are determined. The method is useful for
other linear cellular automata with some arrangements.

1 Introduction

Many versions of cellular automata (CA) with three neighborhood local state
transition rule are known. In [1], algebraic properties of CA with local state
transition rule number 90 are investigated. In [2] and [3], properties of CA’s
with cyclic boundary condition are investigated, using a polynomial expression.
In [4], properties of CA’s with fixed value boundary condition are investigated,
using algebraic integers. These studies mainly deal with three neighborhood
CA’s. But the behaviors of CA’s with five or more neighbors are full of variety
[5]. In this article, properties of a linear cellular automata (LCA) with five-cell
neighborhood local state transition rule are investigated.

2 Definitions

Let LCA-(0, 1; 0; 1, 1)n be a linear cellular automaton (LCA) defined by the
following rules. The n cells are arranged linearly, and each cell takes a value 0
or 1. The state of i-th cell at a time step t is denoted by

x
(t)
i ∈ Z2 = {0, 1}, (1)

and the global configuration at a time step t is denoted by the notation

x(t) = t(x
(t)
1 , x

(t)
2 , · · · , x(t)

n ) ∈ Zn
2 , (2)

where the notation t(x
(t)
1 , x

(t)
2 , · · · , x(t)

n ) means the transposed vector of (x
(t)
1 , x

(t)
2 ,

· · · , x
(t)
n ). The local state transition map is

λ(z−2, z−1, z0, z1, z2) = z−1 + z1 + z2 ∈ Z2, (3)
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where the sum z−1 + z1 + z2 is calculated in the finite field Z2. The local state
transition is defined by the equation

x
(t+1)
i = λ(x

(t)
i−2, x

(t)
i−1, x

(t)
i , x

(t)
i+1, x

(t)
i+2), (4)

where the boundary conditions x
(t)
−1 = x

(t)
0 = x

(t)
n+1 = x

(t)
n+2 = 0 are assumed.

That is, the fixed value zero boundary conditions are assumed. The global state
transition map of LCA-(0, 1; 0; 1, 1)n for configurations of n cells is denoted by
the notation

τn : Zn
2 → Zn

2 , τn(x(t)) = x(t+1). (5)

For example, a configuration of LCA-(0, 1; 0; 1, 1)6

x(t) = t(0, 0, 1, 0, 1, 1) (6)

changes into the configuration

τn(x(t)) = x(t+1) = t(1, 1, 1, 1, 1, 1) (7)

at the next time step. The representation matrix of τn on the standard basis is

An =


















0 1 1
1 0 1 1
0 1 0 1

0 1 0
. . .

0 1 1
1 0 1 1
0 1 0 1

0 1 0


















∈Mn(Z2). (8)

Figure 1 shows the global state transition diagram of LCA-(0, 1; 0; 1, 1)n in the
case n = 4, where column vectors are replaced to row vectors.

Figure 2 shows the global state transition diagram of LCA-(0, 1; 0; 1, 1)n in
the case n = 6, where configurations are abbreviated to small circles.

Let e1 = t(1, 0, · · · , 0) ∈ Zn
2 be a standard base of Zn

2 , and let

ei = Ai−1e1, (2 ≤ i ≤ n). (9)

Proposition 2.1. The vectors e1, e2, · · · , en are a basis of Zn
2 .

Proof. Let

ei = t(ei,1, · · · , ei,n), (1 ≤ i ≤ n),

ei,j ∈ Z2, (1 ≤ i, j ≤ n).

The following equations hold:

ei,i = 1, (1 ≤ i ≤ n)

ei,j = 0, (1 ≤ i < j ≤ n).

Therefore, the vectors e1, e2, · · · , en are linearly independent in Zn
2 .
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Fig. 1. The global state transition diagram of LCA-(0, 1; 0; 1, 1)4.

Fig. 2. The global state transition diagram of LCA-(0, 1; 0; 1, 1)6.
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The representation matrix of τn on the basis e1, e2, · · · , en is

A′n =















0 a0

1 0 a1

1 0

1
. . .

...
. . . 0

1 0 an−2

1 an−1















∈Mn(Z2), (10)

where the eigenpolynomial of An is

ϕn(t) = tn + an−1t
n−1 + an−2t

n−2 + · · ·+ a1t + a0 ∈ Z2[t],

ai ∈ Z2, (0 ≤ i ≤ n− 1).

Because a configuration x ∈ Z2 of LCA-(0, 1; 0; 1, 1)n is uniquely represented as

x = x1e1 + x2e2 + · · ·+ xnen,

xi ∈ Z2, (1 ≤ i ≤ n),

it corresponds to a polynomial

f(t) = x1 + x2t + · · ·+ xntn−1 ∈ Z2[t] (11)

uniquely under the condition that deg(f(t)) ≤ n−1 and f(An)e1 = x. Inversely,
a polynomial f(t) ∈ Z2[t] corresponds to a configuration of LCA-(0, 1; 0; 1, 1)n

by the mapping

Πn : Z[t]→ Zn
 , (12)

Πn(f(t)) = f(An)e.

A polynomial f(t) ∈ Z2[t] is uniquely represented as

f(t) = g(t) + h(t)ϕn(t), (13)

g(t), h(t) ∈ Z2[t], deg(g(t)) < n.

The kernel of Πn is the principal ideal

(ϕn(t)) = {h(t)ϕn(t) |h(t) ∈ Z2[t]}, (14)

because ϕn(An) = O from Cayley-Hamilton’s theorem. Therefore, a configura-
tion of LCA-(0, 1; 0; 1, 1)n uniquely corresponds to a residue class in

Pn[t] = Z2[t]/(ϕn(t)). (15)

We call each element of Pn[t] a polynomial representation of a configuration of
LCA-(0, 1; 0; 1, 1)n.
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Proposition 2.2. Let f(t) be the polynomial representation of a configuration
x(t) of LCA-(0, 1; 0; 1, 1)n. The polynomial representation of the next time step
configuration x(t+1) is tf(t).

Proof. Let

x(t) = x1e1 + x2e2 + · · ·+ xnen, xi ∈ Z2 (1 ≤ i ≤ n)

be a configuration of LCA-(0, 1; 0; 1, 1)n. The polynomial representation of x(t)

is
f(t) = x1 + x2t + · · ·+ xntn−1 ∈ Z2[t].

The configuration at the next time step is

x(t+1) = x1A
′
ne1 + x2A

′
ne2 + · · ·+ xnA′nen

= x1e2 + x2e3 + · · ·+ xn−1en

+xn(a0e1 + a1e2 + · · ·+ an−1en),

where the eigenpolynomial of An is

ϕn(t) = tn + an−1t
n−1 + an−2t

n−2 + · · ·+ a1t + a0 ∈ Z2[t].

The polynomial representation of x(t+1) is

x1t + x2t
2 + · · ·+ xn−1t

n−1 + xn(a0 + a1t + · · ·+ an−1t
n−1) ∈ Z2[t].

This is equal to

x1t + x2t
2 + · · ·+ xn−1t

n−1 + xntn = tf(t),

because ϕn(t) = 0 in the equivalence class Pn[t].

3 Analysis of LCA

Let
dn = max { i ∈ Z : ti |ϕn(t) }, (16)

where the notation ti |ϕn(t) means that the eigenpolynomial ϕn(t) is exactly
divisible by ti.

Assume that ϕn(t) 6= tn. The linear operation of An restricted on the sub-
space spanned by the vectors

ei, (dn + 1 ≤ i ≤ n) (17)

is regular. Therefore, the configurations

ti, (dn ≤ i ≤ n− 1)
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are cyclic configurations of LCA-(0, 1; 0; 1, 1)n. Let

Ln[t] =







{
n∑

i=dn+1

xit
i−1

∣
∣
∣ xi ∈ Z2

}

, (ϕn(t) 6= tn)

{0}, (ϕn(t) = tn)

. (18)

Any configuration f(t) ∈ Ln[t] is cyclic.
Assume that dn ≥ 1. Because the configuration tdn is cyclic, it has predecessor

configurations. Let
τ−i(tdn), (i ≥ 1)

be the predecessor configuration of tdn uniquely determined under the condition
that τ−i(tdn) ∈ Ln[t] and τ i(τ−i(tdn)) = tdn . Let

ui =

{

tdn−i − τ−i(tdn), (1 ≤ i ≤ dn)

0 (i = 0)
. (19)

The state transition of ui is

τn(ui) = tui = ui−1, (1 ≤ i ≤ dn). (20)

The set
W (0, i) = {f(t) ∈ Pn[t] | tif(t) = 0}, (0 ≤ i ≤ dn) (21)

is a subspace of Pn[t]. From the definition of ui,

ui ∈W (0, i)−W (0, i− 1). (22)

Let

Un[t] =







{
dn∑

i=1

xiui

∣
∣
∣ xi ∈ Z2

}

, (dn ≥ 1)

{0}, (dn = 0)

. (23)

Theorem 3.1. Any configuration f(t) of LCA-(0, 1; 0; 1, 1)n is uniquely repre-
sented as

f(t) = u(t) + l(t), u(t) ∈ Un[t], l(t) ∈ Ln[t].

That is,
Pn[t] ∼= Un[t]⊕ Ln[t].

Proof. Let
f(t) = x1 + x2t + · · ·+ xntn−1

be a configuration of LCA-(0, 1; 0; 1, 1)n. From the definition of ui,

f(t) =

dn∑

i=1

xdn−i+1ui +

dn∑

i=1

xdn−i+1τ
−i(tdi) +

n∑

i=dn+1

xit
i−1.
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Because
dn∑

i=1

xdn−i+1ui ∈ Un[t],

dn∑

i=1

xdn−i+1τ
−i(tdi) +

n∑

i=dn+1

xit
i−1 ∈ Ln[t],

any configuration of LCA-(0, 1; 0; 1, 1)n can be represented as an element of
Un[t] + Ln[t]. The sets Un[t], Ln[t] are subspace of Pn[t], and Un[t] ∩ Ln[t] = 0.
Therefore, Pn[t] ∼= Un[t]⊕ Ln[t].

Let Gn be a directed graph defined by the following rules. The set of all vertices
of Gn is

V (Gn) = {(u(t), l(t)) |u(t) ∈ Un[t], l(t) ∈ Ln[t]}. (24)

Each vertex of Gn is adjacent to exactly one edge as an initial vertex. For each ini-
tial vertex of Gn, the terminal vertex is determined by the map ΦGn

: V (Gn)→
V (Gn),

ΦGn
((u(t), l(t)) =

{

(0, tl(t)), (u(t) = 0)

(tu(t), l(t)), (u(t) 6= 0)
. (25)

Theorem 3.2. The global state transition diagram of LCA-(0, 1; 0; 1, 1)n is iso-
morphic to the graph Gn.

Proof. Let f(t) be a configuration of LCA-(0, 1; 0; 1, 1)n. It is uniquely repre-
sented as

f(t) = u(t) + l(t), u(t) ∈ Un[t], l(t) ∈ Ln[t].

In the case u(t) 6= 0, let

u(t) = uk +
k−1∑

i=1

xiui, xi ∈ Z2. (26)

The isomorphism Θn from the set of all configurations Pn[t] of LCA-(0, 1; 0; 1, 1)n

into V (Gn) is defined as follows. In the case u(t) 6= 0,

Θn(f(t)) = (u(t), τk(l(t))),

where the natural number k is determined by (26) uniquely for each u(t). In the
case u(t) = 0,

Θn(f(t)) = (0, l(t)).

Assume that u(t) 6= 0. From the definitions of τn and Θn,

τn(f(t)) = uk−1 +

k−2∑

i=1

xi+1ui + tl(t),

Θn(τn(f(t))) =

(

uk−1 +

k−2∑

i=1

xi+1ui, τk(l(t))

)

.
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On the other hand, from the definitions of Θn and ΦGn
,

Θn(f(t)) =

(

uk +

k−1∑

i=1

xiui, τk(l(t))

)

,

ΦGn
(Θn(f(t))) =

(

uk−1 +

k−2∑

i=1

xi+1ui, τk(l(t))

)

.

In the case u(t) = 0, the following equations hold:

τn(f(t)) = tl(t), Θn(τn(f(t))) = (0, tl(t)),

Θn(f(t)) = (0, l(t)), ΦGn
(Θn(f(t))) = (0, tl(t)).

Therefore, the following diagram is commutative.

Pn[t]
Θn−→ V (Gn)

τn



y



yΦGn

Pn[t] −→
Θn

V (Gn)

Theorem 3.3. For the eigenpolynomials ϕn(t) of An, the recurrence formulas
hold:

ϕn(t) = tϕn−1(t) + ϕn−2(t) + ϕn−3(t), (n ≥ 4)

ϕ1(t) = t, ϕ2(t) = t2 + 1, ϕ3(t) = t3 + 1.

Proof. It is confirmed by expanding the eigenpolynomial |tIn −An|.
The eigenpolynomials ϕn(t) for n = 1, · · · , 10 are as follows:

ϕ1(t) = t, ϕ2(t) = 1 + t2,
ϕ3(t) = 1 + t3, ϕ4(t) = 1 + t2 + t4,
ϕ5(t) = t + t2 + t5, ϕ6(t) = t4 + t6,
ϕ7(t) = 1 + t + t4 + t7, ϕ8(t) = t4 + t6 + t8,
ϕ9(t) = 1 + t + t5 + t6 + t9, ϕ10(t) = 1 + t2 + t8 + t10.

Note that the coefficients of ϕn(t) are elements of Z2.

Theorem 3.4. LCA-(0, 1; 0; 1, 1)n is invertible, iff n ≡ 0, 2, 3, 4 (mod7).

Proof. LCA-(0, 1; 0; 1, 1)n is invertible, iff dn = 0. This condition holds, iff n ≡
0, 2, 3, 4 (mod7). It is confirmed immediately for n = 1, · · · , 7. In the case n > 7,
it is confirmed from the recurrence formulas of ϕn(t) and by induction on n.

Theorem 3.5. LCA-(0, 1; 0; 1, 1)n has non-trivial fixed configurations, iff n ≡
2, 3 (mod 4).

Proof. The configuration 0 is the trivial fixed configuration. LCA-(0, 1; 0; 1, 1)n

has non-trivial fixed configurations, iff (t − 1)|ϕn(t). This condition holds, iff
n ≡ 2, 3 (mod 4). It is confirmed immediately for n = 1, · · · , 4. In the case n > 4,
it is confirmed by induction on n.
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Theorem 3.6. The longest transient length of LCA-(0, 1; 0; 1, 1)n is dn.

Proof. Any configuration of LCA-(0, 1; 0; 1, 1)n is uniquely represented as

f(t) = u(t) + l(t), u(t) ∈ Un[t], l(t) ∈ Ln[t].

Assume that u(t) 6= 0, and let

u(t) = uk +

k−1∑

i=1

xiui, xi ∈ Z2.

The transient length of f(t) is k. The longest transient length of LCA-(0, 1; 0; 1, 1)n

is dn.

Theorem 3.7. Let i ≥ 0 and j ≥ 1 be the smallest integers that satisfy

ti ≡ ti+j (mod ϕn(t)).

Then, i = dn, and j is the longest period length of LCA-(0, 1; 0; 1, 1)n.

Proof. If k < dn, the configuration tk is represented as

tk = uk + τ−k(tdn).

The configuration τ−k(tdn) is cyclic, but uk is nilpotent. Therefore, the con-
figuration tk is not cyclic. On the other hand, the configuration tdn is cyclic.
Therefore, i = dn, and for some integer j ≥ 1, the equation

ti ≡ ti+j (mod ϕn(t)).

holds.

Table 1 shows the longest transient lengths and the longest period lengths of
LCA-(0, 1; 0; 1, 1)n in the case 1 ≤ n ≤ 20, where n is the cell size, d(n) is the
longest transient length (LTL), and l(n) is the longest period length (LPL).

4 Conclusion

Properties of LCA-(0, 1; 0; 1, 1)n are investigated. These properties are deter-
mined essentially by the eigenpolynomials of the global state transition matrices.

– The structure of the global state transition diagram is determined.
– The condition for LCA-(0, 1; 0; 1, 1)n to be invertible is determined.
– The condition for LCA-(0, 1; 0; 1, 1)n to have non-trivial fixed configuration

is determined.
– The longest transient length is determined.
– The longest period length is determined.

The methods mentioned in this article are useful for other LCA’s with some
arrangements.
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cell size LTL LPL
n d(n) l(n)

1 1 2
2 0 2
3 0 3
4 0 6
5 1 15
6 4 2
7 0 62
8 4 6
9 0 186
10 0 16

cell size LTL LPL
n d(n) l(n)

11 0 1023
12 2 62
13 2 21
14 0 24
15 1 168
16 0 510
17 0 7905
18 0 24
19 1 84
20 2 42

Table 1. The longest transient lengths and the longest period lengths of LCA-
(0, 1; 0; 1, 1)n.
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Abstract. We take a look at transient configurations of the Abelian
Sandpile Model (ASM). If we add enough grains on the “right” sites
to this configuration we get a recurrent configuration of the ASM. In
this paper we show that it is NP-complete to decide for a transient
configuration c on a grid of size m × m and a natural number k if it
is possible to add k grains of sand to c such that we get a recurrent
configuration. We show this by reducing the problem of deciding whether
a given planar cubic graph of size n ∈ Θ(m) has a vertex cover, which is
NP-complete, to this problem.

1 Introduction

The Abelian Sandpile Model (ASM), introduced by Bak, Tang and Wiesenfeld
in [1], is the standard example for Self-Organized Criticality (SOC): Grains of
sand are added to random sites of a grid, and if one site contains four or more
grains of sand, four grains topple from this site to the four von-Neumann neigh-
bors, possibly leading to avalanches.

After some time, we reach a state of Self-Organized Criticality, where the
statistic characteristics of the configuration hardly change anymore and are such
that the sizes of avalanches triggered by added grains follow a power law. If one
considers the ASM a Markov Chain, this state is reached roughly speaking when
recurrent configurations are reached. (In fact, the SOC state usually is reached
a little before the recurrent configurations are reached.)

Interest for the algebraic properties of the ASM and especially the set of
recurrent configurations started with [3]. Among these properties is the fact that
the set of recurrent configurations together with a naturally defined addition is
an Abelian group.

There has been less interest in the set of transient configurations of the ASM.
However, the author found partial orders for the set of transient configurations
and measures which tell how “far” a transient configuration is from being recur-
rent. (cf. [7].)

The most obvious measure would be the minimal number of grains we have
to add to a transient configuration to get a recurrent configuration. However, we
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show in this paper that the equivalent decision problem is NP-complete, which
means that the computation of this measure is very hard (if P 6= NP).

2 Basics

Definition 2.1. For n ∈ N, we define the basic components of the m×m Sand-
pile Model.

1. Z = {(x, y) ∈ Z
2 : 1 ≤ x, y ≤ n} is the set of sites of the ASM.

2. For (x, y) ∈ Z, N(z) = (z +{(0,±1)}∪{±1, 0)})∩Z. (In other words, N(z)
is the von-Neumann neighborhood of z in Z without z.)

3. A configuration c assigns to each site z ∈ Z a non-negative number of grains.
4. When a site z ∈ Z fires in a configuration c, the number of grains on z is

decreased by four and for each z′ ∈ N(z) the number of grains is increased
by one.
This means the resulting configuration c′ satisfies

c′ = c− 4ez +
∑

z′∈N(z)

ez′ ,

where ez is the function which assigns 1 to z and 0 to every other site.
A site z can only fire if it contains at least four grains of sand.

5. A configuration c is stable if no site can fire, otherwise unstable. C denotes
the set of stable configurations.

6. Starting from an unstable configuration c and letting sites fire until a stable
configuration is reached leads to a unique configuration crel ∈ C (cf. [2]).
This process is called the relaxation of c and denoted Rel(c). The number of
times a site z ∈ Z fires during Rel(c) is independent of the sequence of the
firings.

7. The operation ⊕ is defined on the set of all configurations (and especially C)
by

c⊕ d = (c + d)rel.

This operation is associative and commutative.
8. A configuration c is called recurrent if there exists a configuration i ∈ C with

i 6= 0 and c ⊕ i = c. The set of recurrent configurations is denoted by R. A
configuration c ∈ C which is not recurrent is called transient.

In this paper, we will take a closer look at R and the question how many
grains of sand have to be added to a given transient configuration c such that
we get a recurrent configuration.

In other words, given the transient configuration c, we are looking for a
configuration d containing as few grains as possible such that c⊕ d ∈ R holds.

The following lemma helps us redefining this problem:
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Lemma 2.1. Let b ∈ C be the configuration with ∀z ∈ Z : b(z) = 4 − |N(z)|.
This means that b(z) = 2 if z is one of the corners of Z, b(z) = 1 if z is on the
border of Z and 0 otherwise. Then the following statements hold:

1. c ∈ R ⇐⇒ c⊕ b = c.
2. c ∈ R ⇐⇒ Each site fires once during the relaxation of c + b.
3. ∀c ∈ C : No site fires more than once during the relaxation of c + b.
4. c⊕d ∈ R ⇐⇒ Each site fires at least once during the relaxation of c+b+d.

The first two claims are proven in [5]. The last two claims are not hard to
verify.

Now we can look at the following problem: Given a transient configuration
c ∈ C, how many grains of sand must be contained in a configuration d such that
each site fires at least once during c + d + b?

This problem is equivalent to finding the least number of grains we have to
add to c such that the resulting configuration is recurrent.

In the next section, we will state some facts about the firing of sites when
most of the sites contain no more than two grains of sand, which will give us
something like an “impact radius” of grains that are added to some regions of Z.

We will then use these facts to construct a configuration cG for a planar graph
G of maximal degree 3 with n vertices such that the following two statements
hold:

1. If we add one grain of sand to each “edge” of G to get c′, each site fires during
c′ + b.

2. If d is a configuration which contains no grain of sand near an “edge” e of G
and each site fires during c+ d+ b, then d contains at least n grains of sand.

We will denote the size of a minimal vertex cover of G by minV C(G).
We make sure that a grain of sand falls onto an “edge” if a grain of sand is

added to an adjacent “vertex”, such that the first statement guarantees that we
need at most minV C(G) grains of sand in d.

The second statement tells us that we have to add a grain of sand near every
“edge” in order to add fewer than n grains of sand; from this, we will show how to
construct a vertex cover for G that contains at most as many vertices as grains
of sand have been added.

3 Dynamic of firings in regions of two

The following statements are not hard to prove, although the proofs are rather
inelegant. By “distance” there will always be meant the distance in the maximum
norm.

Lemma 3.1. Let c ∈ C be a configuration such that there is a rectangular block
B ⊆ Z which satisfies: Each site outside B in a distance of at most k from B
contains at most two grains of sand.

If we add i ≤ k grains of sand to B, no site z with distance ≥ i from B will
fire during the relaxation.
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This statement can be proved by a harmless but also charmless induction: If
one adds only one grain, the sites at the border of B can fire at most once, and
therefore the sites outside B cannot fire. We then repeat this step by substituting
B′ for B, where B′ contains the sites in B as well as the sites with distance 1 to
B.

Theorem 3.1. Let M ⊆ Z be a connected subset of Z, k, n ∈ N positive numbers
and c ∈ C a configuration such that the following statments hold:

– All sites z with distance ≤ 2n + 3 from M contain at most two grains of
sand.

– There exist rectangular blocks B1, . . . , Bk ⊆ Z such that the set of all sites
containing three grains of sand outside M is a subset of

⋃k
i=1 Bi, the distance

between two sites in different blocks Bi and Bj is always at least 2n + 3 and
the distance between a site in any block Bi and a site in M is at least 2n+3.

So, all sites containing three grains of sand are in rectangular blocks “far
away” from M .

If n grains are added to c and a site in M fires during the relaxation, then
at least one grain of sand has been added to a site with distance < 2n + 3 to M .

This can be proven by a rather uninspiring and ugly induction over k which
we skip here. Instead, we refer to intuition and Lemma 3.1:

If one adds a grain of sand to a block Bi, the block containing sites with three
grains increases in every direction by at most one, according to Lemma 3.1. This
means that no blocks Bi, Bj interact even if we add n grains of sand to each
block Bi, so there is no way that these blocks can “help” us if we want to make
a site in M fire.

If we add grains of sand outside the blocks and in a distance at least 2n + 3
from M , the influence of these additions and subsequent firings (again according
to Lemma 2) can only go as far as n from any of the sites a grain has been added
to.

Therefore, adding n grains of sand to sites in a distance of at least 2n + 3
from M will leave M unchanged.

This theorem will be very important for our construction later on, since we
will have such a configuration as in Theorem 1 when we add grains to “edges” in
a way that a given “edge” does not fire. Therefore we have to add a grain near
this “edge” or at least n grains elsewhere to make the sites of this “edge” fire.

Using this fact, we can construct a vertex cover whose size is at most the
number of grains added to the original configuration.

Theorem 3.2. Let V ⊆ Z be a Moore-connected subset of Z and B the smallest
rectangular block which contains V . Let c be a configuration with ∀z ∈ B \ V :
c(z) = 2.

If all sites in V fire during Rel(c), all sites in B fire during Rel(c).
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Proof. Suppose that this claim is wrong. Let then c be a configuration as spec-
ified, where all sites in V fire during Rel(c) and at least one site of B does not
fire during Rel(c).

Let P be the set of all sites in B that do not fire during Rel(c) and P ′ be
a maximal von-Neumann connected subset of P . We define z ∈ P ′ as the site
that lies most to the left, among those most on the top. If the site above z as
well as left to z would be in B \ P , those two sites would fire during Rel(c) and
two grains of sand would fall onto z, which afterwards also could fire. Since this
would contradict z ∈ P , z has to be on the left border or on the upper border
of B.

Without loss of generality, we assume z being on the left border of B. P ′ then
has no connection to the right border of B, since else it would intersect with V .
The sites in P ′ most on the right most on the top and most on the bottom would
then have to be on the upper respectively lower border of B. Then P ′ also would
intersect with V , which is a contradiction.

Therefore, the claim must be true.

In our construction we will divide Z into blocks of a certain size; the theorem
above will allow us to make sure that the sites of these blocks will fire when we
want them to.

4 Preliminaries for the construction

It is shown by Mohar in [6] that the problem of deciding for a natural number
k > 0 and a planar cubic graph G whether G has a vertex cover of size k is
NP-complete.

This clearly also holds for connected planar cubic graphs, which we will use
here.

As Kant shows in [4] there exists a linear time algorithm to draw a planar
cubic graph with n > 4 vertices on an n×n grid with each edge having at most
one bend. Further, at most n

2 + 1 bends exist in the drawing.
Starting from such a drawing of a connected planar cubic graph G′ with k

vertices, we first construct a no-bend drawing of a connected planar graph of
maximum degree 3 G with n ∈ Θ(k) vertices such that it is easy to compute a
minimum vertex cover of G′ if one has a minimum vertex cover of G.

Consider an edge e that has a bend in the drawing of G′. We add two vertices
to e, one of them on the bend. Possibly we have to “stretch” the drawing in one
direction such that the other additional vertex is on the grid.

After we do this for every edge containing a bend we have a no-bend drawing
of a graph G = (V, E) with n vertices in a grid whose size is at most n× n.

It is easy to verify that n ∈ Θ(k) holds. Further, if 2i vertices were added
during the process, minV C(G) = minV C(G′) + i. (The proof is fairly simple.)
Therefore it follows that if we can find minV C(G) in polynimial time we can
determine minV C(G′) in polynomial time.

We call (G, i) the extension of G′.
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Definition 4.1. Let T be a spanning tree of G, F the set of faces in the no-bend
drawing of G.

1. D = (F, E′) is the graph with (f1, f2) ∈ E′ ⇐⇒ there is an edge e ∈ E \ T
which borders on f1 and f2. We then denote (f1, f2) by d(e). D is a tree.

2. The outer face fr of the drawing shall be the root of D.
3. A face f ∈ F dominates an edge e ∈ E \ T iff f is adjacent to d(e) and the

path from f to fr in D does not contain d(e).
4. An edge e ∈ E \ T dominates a face f ∈ F iff f is adjacent to d(e) and the

path from f to fr contains d(e).
5. For e ∈ E \ T , let De be the graph D′ = (F, E′ \ {d(e)}). We call the set of

edges and faces in the connected component of De which does not contain fr

the subtree of e.

The tree D defines the order of the sites that will fire when manipulating the
configuration cG we will construct:

– During Rel(cG + b), only the sites in fr as well as the sites belonging to
vertices on the border of fr will fire.

– After the sites of the face dominating an edge e have fired, all sites on the
“edge” in the changed configuration will contain three grains of sand.

– After the sites of the edge dominating the face f have fired, all sites in f
and all sites belonging to vertices on the border of f that have not already
fired can fire.

– If one adds a grain of sand to every “edge” except one “edge” e (and these
are the only grains added), no site belonging to the subtree of e will fire.

5 Construction of cG

In this section, we construct a configuration cG ∈ C for a planar graph G of
maximum degree 3 with n vertices and a given no-bend drawing such that the
minimum number of grains that have to be added to cG in order to get a recurrent
configuration (from now on called the distance from cG to R or dist(cG)) equals
minV C(G).

Let Z be a grid of size ((6 + 3n) · (4n + 9)) × (6 + 3n) · (4n + 9), which is
divided into blocks of size (4n + 9)× (4n + 9).

5.1 Elements of construction

There will be four kinds of blocks:

1. Vertex blocks: A vertex block represents a vertex of G. The structure for
n = 2 of a vertex block is shown in Table1. In the directions of edges incident
to e there are “buds” at the end of the lines of sites which contain 3 grains.

2. Edge blocks: An edge block represents a section of an edge e ∈ E \ T . All
sites in an edge block contain two grains of sand.
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3. Tree blocks: A tree block represents a section of an edge e ∈ T . All sites
in a tree block contain two grains of sand, except the sites on the horizon-
tal/vertical (depending on the orientation of e) middle line which contain
only one grain of sand.

4. Face block: A face block represents a part of a face in the drawing of G. All
sites in a face block contain two grains of sand, except the sites on either the
horizontal or vertical middle line which contain three grains of sand.

3 0 3
3 3 3
3 3 3

3
3
3
3

3 3 3 3
0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
3 3 3 3

3
3
3
3
3
3
3

Table 1. A vertex block with edges to the top and to the left. Wherever no
number is given, the site contains two grains of sand.

An important feature of the vertex blocks is the fact that all sites except
the sites containing no grains of sand (we call these sites the edge points of the
vertex block) fire once if one of the sites containing three grains of sand fires
once. (This can be shown by using Theorem 3.2.) Afterwards the block has the
structure in Table 2. When a grain of sand is now added to one of the sites
containing three grains of sand, the sites which originally contained no grains of
sand can fire and a grain of sand falls onto the neighbor site outside the block
— which will belong to the middle of an edge block or to the middle of a tree
block.

5.2 Setting vertex, edge and tree blocks

We have a drawing of G = (V, E) without bends in an n×n grid. If the vertex v ∈
V has the coordinates (x, y), we put a vertex block at the block with coordinates
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0 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1 0
1 3 2 3 1
1 3 3 3 1
1 3 1
1 3 1
1 3 1
1 3 1
2 3 3 3 1
3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2
2 3 3 3 1
1 3 1
1 3 1
1 3 1
1 3 1
1 3 1
1 3 1
0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 0

Table 2. The same vertex block after each site except the edge points fired once

(3 + 3x, 3 + 3y) and place “buds” in the directions where the edges incident to v
go.

If an edge e ∈ T goes from vertex v to vertex v′, all blocks between the
corresponding vertex blocks become tree blocks with the line of sites containing
only one grain in the same orientation (horizontal or vertical) as e.

All other blocks between two vertices v, v′ ∈ V with (v, v′) ∈ E become edge
blocks.

This means that all vertex blocks are on coordinates which are both divisible
by three, all edge and tree blocks corresponding to horizontal edges have a second
component which is divisible by three and all edge and tree blocks corresponding
to vertical edges have a first component which is divisible by three.

5.3 Setting the orientation for face blocks

The blocks at the border of Z become face blocks, the orientation of the middle
line always orthogonal to the adjacent border; the orientation does not matter
for the blocks in the corners. The rest of the blocks in fr are set by repeatedly
choosing a block B which is neighbor to an already set face block B′ whose
neighbor block on the other side of B′ is not a vertex block, and setting the
middle line vertical if this neighbor block is above or below B and horizontal
otherwise.

We set the face blocks of other faces f by repeatedly choosing a block B
which is neighbor to a block B′ which is either an already set face block or an
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edge block for the edge e which dominates f and whose neighbor block on the
other side of B′ is not a vertex block and setting it horizontal/vertical if B′ is
on the left or right/above or below B.

We have to show that such pair of blocks B, B′ always exist in a face f as
long as not all blocks in f have been set:

Without less of generality, let B′ be below B.
If B′ is an edge block (and therefore run in the horizontal direction) then

the second component of B′ must be divisible by 3. This means that the second
component of the block above B is 1 mod 3 and therefore cannot be a vertex
block.

If B′ is a face block and the block above B is a vertex block, we can set the
blocks B2 right to B′, B3 above B2 and therefore right to B and then B with
a horizontal middle line without having a conflict with a vertex block. (This
follows from the fact that the block above B is a vertex block and all vertex
blocks have components divisible by 3.)

The configuration we get after setting all blocks is called cG.
The sites of a face f will be all sites in face blocks of f , all sites except edge

points in vertex blocks in the Moore neighborhood of a face block of f and all
sites on the side of f from the middle line in edge or tree blocks adjacent to face
blocks of f .

Note that a site of a vertex block can be a site of different faces f1, f2.

Lemma 5.1. 1. During Rel(cG + b) all sites of fr fire once.
2. Each site in the middle line (of the same orientation as e) of each edge block

belonging to an edge e ∈ E \ T contains three grains of sand after the sites
of the face f which dominates e have fired once, as do the edge points of the
adjacent vertex blocks.

3. Let e ∈ E \T be an edge, f the face dominating e and f ′ the face dominated
by e. If all sites of f have fired and all sites in the middle lines of edge blocks
belonging to e have fired, all sites of f ′ can fire afterwards.

4. Each site in the middle line (of the same orientation as e) of each tree block
for an edge e ∈ T contains three grains of sand after the sites of the faces
f and f ′ which are adjacent to e have fired, as do the edge points of the
adjacent vertex blocks.

Proof. 1. Let B1, . . . , Bk be the face blocks of fr in the sequence in which
they were set. We show for 2 ≤ i ≤ k that the sites of Bi can fire during
Rel(cG + n) after the sites of B1, . . . , Bi−1 have fired and that the sites of
B1 can fire during Rel(cG + b).
B1 lies at the (without loss of generality upper) border of Z, which means
that to each site at the upper border of B1 a grain of sand is added when
b is added to cG. Since the middle line of sites containing three grains of
sand in cG is orthogonal to the upper border, the site in the middle of the
upper border of B1 contains four grains of sand, the other sites at this border
contain three grains of sand and the other grains of the middle line contain
three grains of sand.
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Therefore all sites on the upper border of B1 as well as all sites on the middle
line can fire, and according to Theorem 2 all sites in B1 can fire.
Consider Bi with i ≥ 2. Then either Bi lies at the border of Z, in which
case the argumentation is analogous to B1, or the middle line is orthogonal
to the border next to a block Bj with j < i, according to the construction.
In the latter case, each site on this border has received a grain of sand from
Bj as the sites of Bj have toppled. As for B1 this means that all sites in Bi

can fire during the relaxation.
Now, consider the polygon made by the outer vertex, edge and tree blocks.
This polygon P has at least one convex vertex; in this vertex there has to
be a vertex block L1, since the drawing of G is without bends.
We will start with L1 and go counter-clockwise along the polygon to the
blocks L2, . . . , Lj . In case of Li being a vertex block, we will show that all
sites in Li except the edge points fire; if Li is an edge or tree block, we show
that all sites of Li on the side of fr fire.
L1 is a vertex block, therefore it contains a site with three grains of sand at
each border. One of these borders lies towards a face block of fr, since L1

is on a convex vertex of P . Therefore, this site fires and afterwards all other
sites in L1 except the edge points fire, as described above.
Now, we consider Li for i ≥ 2 and assume that all sites of Li−1 on the side
of fr have fired.
If Li is a vertex block there is an edge point on the side to Li−1 and a grain
of sand has fallen onto the site containing three grains of sand on the side
of fr next to this edge point. Therefore, all sites containing three grains of
sand in Li can fire and therefore all sites in Li except the edge points can
fire.
If Li is an edge or tree block there is a face block of fr in a direction
orthogonal to the direction where Li−1 lies. Since the sites of this face block
and the sites of Li−1 on the side of fr have fired, the sites on the border to
Li−1 on the side to fr contain three grains of sand, the sites on the border
to the face block contain three grains of sand and the site at the intersection
of these borders contains four grains of sand.
Using Theorem 3.2, we find that all sites of Li on the side of fr fire.
This proves the claim.

2. After all sites of f have have fired once, it is clear from the construction that
the sites of the middle line of edge blocks belonging to e contain three grains
of sand. Also, if no further grains of sand are added, none of these sites gets
another grain of sand, so these sites do not fire.

3. Let B1, . . . , Bk be the sequence of blocks from one vertex block adjacent to
e to the other vertex block adjacent to e along the edge blocks of e. Without
loss of generality these blocks go from left to right.
After the sites belonging to middle lines of edge blocks belonging to e (or
shorter, sites of e) have fired, the edge points of the adjacent vertex blocks
also can fire.
Since all sites of B1 except the edge points have fired, B2 has three grains
of sand on each site on the left border except the middle site.
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After the sites in the middle of B2 have fired, the sites on the left border of
B2 can fire. This means with Theorem 2 that all sites of B2 on the side of
f ′ can fire.
Let i ≥ 3. After Bi−1 has fired, a grain has been added to each site on the
left border of Bi. Again, all sites in Bi on the side of f ′ can fire.
Therefore all sites in the blocks B2, . . . Bk−1 on the side of f ′ can fire after
the sites of f and e have fired.
Let F1, . . . Fl be the sequence of face blocks of f ′ as they were set in the
construction.
Since F1 borders on an edge block of e (without loss of generality, this block
is below F1), a grain will be added to each site of the lower border of F1.
According to construction, F1 has a vertical middle line of sites containing
three grains of sand; these sites can now fire, as well as the sites on the lower
border of F1. This means with Theorem 3.2 that all sites of F1 can topple.
Let i ≥ 2. If F1 is a w.l.o.g. upper neighbor of an edge block belonging to e
and has a vertical middle line of sites containing three grains, the argumen-
tation that all sites in Fi fire is as for F1.
Else, Fi is a w.l.o.g. right neighbor of a face block Fj with j < i and a
horizontal middle line. Since all sites in Fj fire according to our induction
hypothesis, a grain of sand is added to each site on the left border of Fi. The
argumentation that all sites of Fi fire is now as for F1.
Let L1 = B1, L2, . . . , Lj = Bk be the sequence of edge, tree and vertex blocks
around f ′ that does not go over the edge blocks of e. Via induction as in the
first proof in this lemma, it can be shown that all sites of all Li that lie on
the side of f ′ fire.
This proves the claim.

4. Originally, the middle lines of tree blocks contain one grain of sand. After
the sites of the adjacent faces have fired, these sites contain three grains of
sand, as do the edge points of the adjacent vertex blocks.

Theorem 5.1. Let V ′ ⊆ V be a minimum vertex cover of G.
If one grain is added to the center cell of each vertex block corresponding to

a vertex v ∈ V ′ to get c′, all sites can fire during Rel(c′ + b).

Proof. First, we let all center sites of vertex blocks corresponding to vertices in
V ′ fire once. Then there are sites with four grains of sand on each of the four
“branches” of these vertex blocks.

Since all sites of fr fire once during Rel(cG+b), they will do so for Rel(c′+b).
Let e = (u, v) ∈ E \ T be an edge dominated by fr and u a vertex in V ′

which is incident to e.
There is a site with four grains on the branch of the vertex block belonging

to u. If we let the sites of this branch fire, a grain of sand will be added to the
edge point to e, and all sites of e can fire, since they contain three grains of sand
after the sites of fr have fired once.

Afterwards the sites of the face dominated by e can fire.
We repeat these steps (choosing an edge e whose sites have not fired yet but

is dominated by a face whose sites have fired, letting the branch of the adjacent
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vertex block a grain has been added to fire, letting the sites of e and the face
dominated by e fire) until all sites in all face blocks, edge blocks and vertex
blocks have fired (the edge points to an edge e can fire when the sites of e fire).

Afterwards, all sites in the middle lines of tree blocks contain three grains of
sand and can be set firing by letting the branches of the adjacent vertex blocks
a grain has been added fire.

Then all sites in Z have fired.

Corollary 5.1. dist(cG) ≤ minV C(G).

Proof. In Theorem 5.1, we added minV C(G) grains to cG in order to get a re-
current configuration; the minimal number of grains therefore cannot be greater.

Lemma 5.2. 1. Let e ∈ E \ T be an edge.
If a grain of sand is added to the center site of each edge block belonging to
an edge e′ 6= e which is not in the subtree of e and to each center site of each
tree block and afterwards b is added, we get a configuration c′ which satisfies
the condition for Theorem 3.1 with M being the set of sites in the middle
lines of the edge blocks of e, the sites of the adjacent vertex blocks and the
sites adjacent to these vertex blocks.

2. Let e ∈ T be an edge in the spanning tree of G.
If a grain of sand is added to the center site of each edge block and each tree
block not belonging to e and afterwards b is added, we get a configuration c′

which satisfies the condition for Theorem 3.1 with M being the set of sites in
the middle lines of the tree blocks of e, the sites of the adjacent vertex blocks
and the sites adjacent to these vertex blocks.

Proof. 1. Since there are no firings after the grains have been added to the edge
and tree blocks to get the configuration c ∈ C, each site fires at most once
during Rel(c + b).
Let R be the set of all sites z that satisfy one of the following conditions:

– z lies in an edge block belonging to e and lies on the middle line or on
the side of the subtree of e.

– z lies in a face block belonging to a face in the subtree of e.
– z lies in an edge block belonging to an edge in the subtree of e.
– z lies in a tree block adjacent to the subtree of e either on the middle

line or on the side of the subtree of e.
– z lies in a vertex block which is adjacent only to faces in the subtree of

e.
The border of R consists of the sites of e, the sites of edges e′ ∈ T and sites
adjacent to vertex blocks; we will call this border R′. Note that all convex
vertices of R′ are at the end of edges.
Suppose that some of the sites in R′ fire during Rel(c + b) and let z be the
first site to fire.
Each site of R′ initially contains at most two grains of sand, which means
that two grains of sand must have fallen onto z before it fired.
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Since R′ is a closed polygon, no neighbor of z could have fired before z fired
and no site inside R can fire before a site of R′ has fired, z must be a convex
vertex of R′.
This means that z has two neighbors in R′ and an edge point as third
neighbor. This edge point z′ cannot have fired before z, since its other three
neighbors could only have given z′ three grains of sand, which are not enough
to let z′ fire.
Therefore, at most one grain of sand can have been added to z′ before it
fired, which is a contradiction.
Therefore no site in R′ (and therefore R) fires during Rel(c + b).
On the other hand it can be shown that all sites outside R fire during Rel(c+
b), similarly to the proof of Theorem 5.1.
This means that all sites of e and all sites in R on the border to vertex blocks
adjacent to R contain three grains of sand. Further, the only sites containing
more grains in c⊕ b than in c are the sites in R′: No grain fell onto a site in
R \ R′ and each site in Z \ R lost four grains during firing at most gaining
four grains from firing neighbors or the addition of b.
Therefore all sites with three grains of sand outside M as given above are

– center sites of edge blocks or tree blocks on the border of R (blocks of
size 1× 1 which have a distance of at least 2n + 3 to any site in another
face, edge, tree or vertex block or on the border of the same edge block);

– middle lines of face blocks (blocks of size 1 × (4n + 9) which have a
distance of at least 2n + 3 to any site in another face/edge/tree/vertex
block or on a border parallel to the middle line);

– sites in or adjacent to a vertex block (blocks of size (4n+11)× (4n+11)
which have a distance of at least 2n+3 to any site in a face/edge/tree/vertex
block not adjacent to the vertex block and to any site in the middle line
of a face block).

We call the set containing the sites of a vertex block B and the sites adjacent
to B the extended vertex block of B.
Because
– no extended vertex block not in M is nearer to M , a center site of an

edge or tree block, the middle line of a face block or another vertex block
than 2n + 3,

– no adjacent set of middle lines of face blocks is nearer to M , a center
site of an edge or tree block, the middle line of another face block or a
vertex block than 2n + 3,

– no center site of an edge or tree block is nearer to M , a center site of
another edge or tree block, the middle line of a face block or a vertex
block than 2n + 3,

the claim is proven.
2. Let c be again the configuration we get when adding the grains to each edge

and tree block not belonging to e. As in the proof to Theorem 5.1, all sites
not belonging to the middle lines of the tree blocks of e or being edge points
to e fire during the relaxation.



266 Schulz

On the other hand the line from one edge point to the next via e is a straight
line beginning and ending with a site containing no grains of sand and having
only sites containing one grain of sand in between. It is easy to show that
no site in such a line can fire during Rel(c + b).
Since all other sites than the ones in this line fire, each site in such a line
contains three grains of sand in c′.
Analogously to the proof above, it is easy to see that all sites containing
three grains of sand are in blocks which have at least the distance 2n + 3 to
one another and to M . (The blocks are of the same categories as above.)
Therefore the claim is proven.

Corollary 5.2. Let e ∈ E be an edge. If for a configuration d the configuration
cG⊕d is recurrent and d contains at most n grains of sand, d contains a grain of
sand at a site with a distance at most 2n+3 from the middle line of an edge/tree
block belonging to e or from a vertex block belonging to a vertex incident to e.

Proof. If cG ⊕ d ∈ R holds we know that each site fires at least once during
Rel(cG + d + b).

This also means that all sites that did not fire during the relaxation in
Lemma 5.2 will fire if one further adds d to the resulting configuration c′, since
if all sites fire during Rel(cG + d + b), they will fire during Rel(cG + d′ + b + d),
where d′ is the configuration with one grain at the center site of the edge blocks
specified in Lemma 4.

We have shown that the sites of e do not fire during the relaxation in
Lemma 5.2.

Theorem 3.1 now tells us that these sites only can fire if one of the at most
n grains added to the configuration has to be added “near” the middle line of e
or near one of the vertex blocks adjacent to e.

Corollary 5.3. dist(cG) ≥ minV C(G).

Proof. Let d be a configuration containing a minimal number of grains |d| such
that cG ⊕ d ∈ R.

We know that minV C(G) grains are sufficient and therefore know that |d| <
n. This means that there is a grain “near” each “edge” e ∈ E.

A site can only be “near” (i.e. having at most the distance 2n + 3 from) two
edges if it is “near” a vertex incident to both edges.

We number the set E = {e1, . . . , e|E|} and construct the set V|E|, starting
with V0 = ∅ and defining Vi+1 = Vi ∪ {vi+1}, where vi+1 is a vertex incident to
ei+1 = (u, v), chosen by the following rules:

If there is a grain in |d| “near” u, vi+1 = u. Else, there must still be a grain
“near” ei+1 and vi+1 = v.

It is easy to see that V|E| is a vertex cover of G, since for every edge (u, v) u
or v is in V|E|.

Further, we get at most one vertex for every grain of sand in d near one
of the edges or vertices: During the construction of V|E| we can assign to each
grain “near” an edge ei the vertex vi without getting conflicts, since a double
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assignment can only take place if a grain was “near” two edges, in which case it
was “near” a common incident vertex v which gets assigned to the grain both
times.

Therefore dist(cG) = |d| ≥ minV C(G).

Theorem 5.2. The problem to decide for a configuration c ∈ C and a natural
number k whether dist(c) ≤ k is NP-complete.

Proof. If one had a deterministic algorithm with polynomial time complexity to
solve this decision problem, one could construct the configuration cG and the
number k + i for the extension (G, i) of a cubic planar graph G′ as described
above and decide in a polynomial time complexity whether k + i grains are
sufficient to add to cG in order to get a recurrent configuration. This is the case
iff minV C(G) ≤ k + i which is the case iff minV C(G)≤k.

Since the problem to decide this last question is NP-hard, the decision prob-
lem for dist is NP-hard.

Also, the decision problem whether k grains of sand are enough to get a
recurrent configuration by adding these grains to a configuration c ∈ C lies
in NP since one can check with polynomial time complexity whether a given
configuration d with k grains satisfies (c + d)rel ∈ R. (cf. [2])

Therefore, the decision problem we proposed is NP-complete.

Corollary 5.4. Let c be a configuration not necessarily in C and k ∈ N a natural
number.

It is NP-hard to decide whether a configuration d with k grains exists such
that each site fires at lˆeast once during Rel(c + d).

Proof. Let c′ ∈ C be a transient configuration and c = c′ + b. Then the decision
problem for c is equivalent to the problem of deciding whether a configuration
d with k grains exists such that c′ ⊕ d ∈ R.

Therefore the problem is NP-hard.

6 Conclusion

We have shown for the two-dimensional ASM that it is NP-complete to decide
whether k grains of sand can be added to a transient configuration in order to
get a recurrent configuration.

If we look at n-dimensional Sandpile Models (where sites can fire when they
contain at least 2n grains of sand and lose them to their von-Neumann neigh-
bors), we can use an analogous construction to show that the problem analyzed
in this paper is NP-complete for these sandpiles, too. (In fact, an easier con-
struction for the three-dimensional Sandpile Model has been introduced in [8].)
Further, it is quite easy to see that this problem lies in P for the one-dimensional
Sandpile Model. This means that we know for all n whether the problem is NP-
complete.

Further research could look at this problem for other families of graphs (e.g.
trees, for which this problem also lies in P).
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Abstract. From the definition of a cellular automaton (S, Q, f, ν) with
S a discrete cellular space, Q a finite set of cell states, f an n-ary local
function f(x1, ..., xn) and ν a neighborhood function ν : {1, ..., n} → S,
we pick up a pair (f, ν) called the local structure. By defining the local
structure, new aspects of changing the neighborhood can be seen. For
instance, the following lemma is given; If (f, ν) and (f ′, ν′) are two re-
duced local structures which are equivalent, then there is a permutation
π such that νπ = ν′. As a corollary the previous theorem in the MCU
paper is proved; By changing the neighborhood, infinitely many different
CA are induced from any single local function. The general notions of
equivalence and isomorphism of CA are reexamined and classification of
CA with respect to reversibility, injectivity and surjectivity is discussed
in the context of changing the neighborhood. This paper is a successor
of Nishio’s MCU2007 paper.

1 Introduction

Most studies on cellular automata (CA for short) first assume some standard
neighborhood (von Neumann, Moore) or its modifications and then investigate
the global behaviors and mathematical properties or look for a local function
that would meet a given problem. In 2003, however, H. Nishio and M. Margen-
stern began a general study of the neighborhood in its own right, where the
neighborhood N can be an arbitrary finite subset of the space S and particu-
larly discussed the problem if N generates (fills) S or not [7]. On the other hand,
as for the dynamics of CA, it has been shown that some properties depend on
the choice of the neighborhood, while others do not [5]. In particular, reversibil-
ity (injectivity and surjectivity) were examined by means of Java program and
simulator, which were coded for the case of arbitrary neighborhoods [9][6]. On

⋆ corresponding author



Changing the neighborhood of CA 271

the other hand, T. Worsch and H. Nishio (2007) treated a new construction for
achieving universality of CA by changing the neighborhood [12, 11].

This paper is a successor of Nishio’s MCU2008 paper [6] and newly intro-
duces a notion of the local structure and reveals new aspects of changing the
neighborhood of CA.

The paper is structured as follows; Section 2 gives the definitions of the
local structure (f, ν) and related terms. In Sect. 3 we give some basic results
including a lemma: If (f, ν) and (f ′, ν′) are two reduced local structures which
are equivalent, then there is a permutation π such that νπ = ν′. A corollary to
this lemma gives another simple proof for the first theorem shown in [6]: By
changing the neighborhood function, infinitely many different CA functions are
induced from any single local function. The results are generally given without
proofs, which will be found, say, in Nishio and Worsch (2008) [8]. Section 4
treats another notion of isomorphism of local structures and it is shown that
the similar corollaries hold. In Sect. 5 classification of CA (local structures) is
discussed from the stand point of changing the neighborhood.

2 Definitions

2.1 Cellular automaton CA (S, Q, f , ν)

A cellular automaton (CA for short) is defined by a 4-tuple (S, Q, f, ν):

– S: a discrete cellular space such as Z
d, hyperbolic space ...

– Q: a finite set of the states of each cell.
– f : Qn → Q: a local function in n ≥ 1 variables.
– ν: an injective map from {1, ..., n} to S, called a neighborhood function, which

connects the i-th variable of f to ν(i) . That is, (ν(1), ..., ν(n)) becomes a
neighborhood of size n.

In order to study effects of changing the neighborhood (function), we pick
up the pair (f, ν) called a local structure of CA and investigate its mathematical
properties. For the sake of easy understanding, in the following we assume that
S = Z

d , d ≥ 1 .

2.2 Local structure (f, ν)

Definition 2.1. [neighborhood]
For n ∈ N, a neighborhood (function) is a mapping ν : Nn → Z

d, where
Nn = {1, 2, . . . , n}. This can equivalently be seen as a list ν with n components;
(ν1, . . . , νn), where νi = ν(i), 1 ≤ i ≤ n.

The set of all neighborhoods of size n will be denoted as Nn.
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Definition 2.2. [local structure, reduced]
A pair (f, ν) of a local function f : Qn → Q and a neighborhood ν ∈ Nn is called
a local structure. We will sometimes use τ for representing a local structure. We
call n the arity of the local structure.

A local structure is called reduced, if and only if the following conditions are
fulfilled:

– f depends on all arguments.
– ν is injective, i.e. νi 6= νj for i 6= j in the list of neighborhood ν.

Each local structure induces the global function F : QZ
d → QZ

d

or the
dynamics of CA. Every element c ∈ QZ

d

is called a (global) configuration. For
any global configuration c ∈ QZ

d

and x ∈ Z
d, let c(x) be the state of cell x in c.

Then F is given by

F (c)(x) = f(c(x + ν1), c(x + ν2), ..., c(x + νn)).

2.3 Equivalence

Definition 2.3. [equivalence]
Two local structures (f, ν) and (f ′, ν′) are called equivalent, if and only if they
induce the same global function. In that case we sometimes write (f, ν) ≈ (f ′, ν′).

Lemma 2.1.
For each local structure (f, ν) there is an equivalent reduced local structure

(f ′, ν′).

Note that for a local structure, the equivalent reduced local structure is
not unique. As a simple example consider the local function f(x1, x2) over
GF (2) : (x1, x2) 7→ x1 + x2 (mod.2). Since the order of the arguments xi does
not matter for the value f(x1, x2), the local structures (f, (0, 1)) and (f, (1, 0))
are equivalent. At the same time both are obviously reduced.

2.4 Permutation of local structure

Definition 2.4. [permutation of local structure]
Let π denote a permutation of the numbers in Nn.

– For a neighborhood ν, denote by νπ the neighborhood defined by νπ
π(i) = νi.

– For an n-tuple ℓ ∈ Qn, denote by ℓπ the permutation of ℓ such that ℓπ(i) =
ℓ(π(i)) for 1 ≤ i ≤ n.

For a local function f : Qn → Q, denote by fπ the local function fπ : Qn →
Q such that fπ(ℓ) = f(ℓπ) for all ℓ.

In the first part of the definition we have preferred the given specification to
the equally possible νπ

i = νπ(i), because the former leads to a slightly simpler
formulation of the following lemma.
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3 Results

Lemma 3.1.
(f, ν) and (fπ, νπ) are equivalent for any permutation π.

We are now going to show that for reduced local structures, the relationship
via a permutation is the only possibility to get equivalence.

Lemma 3.2.
If (f, ν) and (f ′, ν′) are two reduced local structures which are equivalent, then

there is a permutation π such that νπ = ν′.

Lemma 3.3.
If (f, ν) and (f ′, ν′) are two reduced local structures which are equivalent, then

there is a permutation π such that (fπ, νπ) = (f ′, ν′).

By choosing different neighborhoods which are not permutations of each
other, one immediately gets the following corollary, which claims the same thing
as Theorem 1 of H.Nishio, MCU2007 [6]: By changing the neighborhood function
ν, infinitely many different global CA functions are induced by any single local
function f3(x, y, z) which is not constant. Proof was given for 1-dimensional CA
by concretely showing biinfinite words which correspond to different neighbor-
hoods.

Corollary 3.1.
For each reduced non-constant local function f , there are infinitely many reduced
neighborhoods ν, such that the local structures (f, ν) induce pairwise different
global CA functions.

4 Isomorphism

Since the above definition of equivalence is too strong, we will consider a weaker
notion isomorphism which allows permutation of the set of cell states. In this
respect, we should notice some historical definitions of isomorphism and homo-
morphism of CA [4][2], though their research topics is different from ours.

In the same space S, consider two CA A and B having different local struc-
tures (fA, νA) and (fB, νB), where fA and fB are defined on possibly different
domains; f : Qn

A → QA and fB : Qn′

B → QB.

Definition 4.1.
If |QA| = |QB|, then we can consider a bijection ϕ : QA → QB. Two CA A and
B are called isomorphic under ϕ denoted by A ∼

ϕ
B, if and only if the following

diagram commutes for all global configurations. Note that bijection ϕ naturally
extends to ϕ : QZ

d

A → QZ
d

B .
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cA
ϕ−−−−→ cB

FA



y



yFB

c′A
ϕ−−−−→ c′B

where cA (cB) is a global configuration of A (B) and c′A (c′B) is the next config-
uration of cA(cB).

Both equivalence and isomorphism of local structures are evidently equiva-
lence relations.

From the definitions of equivalence and isomorphism among local structures,
we have

Lemma 4.1.
If (fA, νA) ≈ (fB, νB), then (fA, νA) ∼

ϕ
(fB , νB) for any ϕ. The converse is not

always true.

For the isomorphism too, the following lemma is proved in the same manner
as Lemma 3.2.

Lemma 4.2 (Lemma 3.2’).
If (fA, νA) and (fB, νB) are two reduced local structures which are ϕ-isomorphic
under a bijection ϕ : QA → QB, then there is a permutation π such that νπ

A = νB.

5 Classification of CA

Classification is a typical problem in the CA study and there are several stand
points of classification. For example, CA are classified by the complexity of dy-
namical behavior — fixed points, limit cycles, chaotic and so on, see Chapter 8
of [2] for old references. Note that those past papers assume a standard neigh-
borhood like von Neumann neighborhood and classify the set of local functions.
We will investigate, however, the classification problem from a different point
of view — by changing the neighborhood. As discussed above, without loss of
generality we shall restrict ourselves to the reduced local structures. The decision
problem of equivalence and isomorphism of local structures is evidently decid-
able.

Fix a state set Q such as |Q| ≥ 2 and think of all local functions f : Qn → Q
of arity n and arbitrary neighborhoods ν of size n in Z

d, d ≥ 1.

5.1 Linear CA

CA map F : C → C is linear if and only if F (αc+βc′) = αF (c)+βF (c′), where
c, c′ ∈ C and α, β ∈ Q. A local function f is linear if f =

∑n
i=1 aixi, ai ∈ Q, 1 ≤

i ≤ n.
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Lemma 5.1.
Let Fτ be the global map induced by a local structure τ = (f, ν). Then Fτ is
linear if and only if f is linear while ν is arbitrary.

Proof: If part is obvious. Only if part is shown by counter example. Let Q =
GF (2) and local function of arity 2: f(x1, x2) = x1 ·x2. Assume c(0) = 0, c(1) = 1
and c′(0) = 1, c′(1) = 0. Then F (c)(0) = F (c′)(0) = 0 i.e. F (c)(0)+F (c′)(0) = 0,
while F (c + c′)(0) = 1. �

5.2 Reversible, injective and surjective CA

First we consider reversible 6 Elementary CA, see page 436 of [10].

000 001 010 011 100 101 110 111
R15 1 1 1 1 0 0 0 0
R51 1 1 0 0 1 1 0 0
R85 1 0 1 0 1 0 1 0

R170 0 1 0 1 0 1 0 1
R204 0 0 1 1 0 0 1 1
R240 0 0 0 0 1 1 1 1

Rules 15, 51 and 85 are equivalent (and isomorphic) each other. Rules 170,
204 and 240 are equivalent (and isomorphic). However, rules 15 and 240 (resp. 51
and 204, 85 and 170) are not equivalent but isomorphic under ϕ : 0 7→ 1, 1 7→ 0.
Summing up, all reversible ECA are isomorphic.

Remarks The paper by L. Chua et. al. [1] as well as one by Guan et.al. [3]
focuses on certain geometrical symmetries of the unit cubes corresponding to
local functions of ECA and defines the global equivalence which classifies 256
ECA into 88 classes. For instance, it classifies rule 15 and 85 as globally equiva-
lent but not 51. This is because our isomorphism considers all permutations of
neighborhoods, while their global equivalence does not.

If |Q| = 3, reversibility is not preserved from changing the neighborhood. See
Proposition 9. in [6].

Characterization or classification of local structures which induce not injec-
tive and surjective CA is an interesting problem, but we have not yet obtained
definite results. As a computational example, we can tell something about rule
30 and 6 permutations of π0 = (−1, 0, 1), see below. By using a Java program
catest, we see that 6 local structures {(30, πi), i = 0, .., 5} are all not injective,
while (30, π0) and other 3 ones are surjective but (30, π1) and (30, π3) are not.

6 permutations of (−1, 0, 1)

π0 = (−1, 0, 1), π1 = (−1, 1, 0), π2 = (0,−1, 1),

π3 = (0, 1,−1), π4 = (1,−1, 0), π5 = (1, 0,−1).
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6 Concluding remarks

In this paper we defined the local structure of CA and characterized equivalence
of CA principally based on the permutation π of local structures. Classification
of local functions was discussed from the point of view of changing the neigh-
borhood. A brief comparison with the past works made by some authors was
made. There are several problems to be solved: look for an efficient algorithm
for deciding if two reduced local structures are equivalent or isomorphic, are
there irreversible ECA which become reversible by permuting or changing the
neighborhood? and many more.
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Abstract. Brownian Cellular Automata are asynchronously timed mod-
els that allow certain configurations—like signals—to fluctuate in the cell
space over time in random semi-controlled ways. We present such a model
and prove its computational universality by showing primitive configura-
tions on the cell space from which computational structures can be con-
structed. The proposed model has 3-state cells, which are governed by
three transition rules. Key to the model’s operation is the exploitation of
random fluctuations to search for solutions in computational state space.
We show how to do this, and how to speed up the searching process such
that it becomes competitive with traditional computation methods on
CA. Future designs of computers based on devices with nanometer-scale
feature sizes may require fluctuating behavior of signals, like in the pro-
posed model, as an important ingredient to achieve efficient operation.

1 Introduction

Cellular Automaton (CA) models are increasingly attracting interest as architec-
tures for computers based on nanometer-scale electronic devices. Having a regu-
lar structure, they offer much potential for fabrication by molecular self-assembly
techniques [19]. Even in such architectures, though, many issues remain to be ad-
dressed, such as reducing power consumption and improving fault-tolerance. The
first issue, reducing power consumption, has attracted various proposals, from
using reversible computation in CA (e.g. [14]) to timing the updates of cells
asynchronously [19]. The second issue, improving fault-tolerance, has focused on
limiting the effects of noise and fluctuations (e.g. [9]).

Already considered a problem in the current pre-nanocomputer era, noise
and fluctuations are expected to become a major factor interfering with the
operation of nanometer-scale electronic devices, to the extent that they cannot
be coped with by traditional techniques, which are limited to the suppression of
noise and fluctuations and the correction of errors caused by them. This raises
the question whether there are more powerful techniques that can exploit noise
and fluctuations as an important ingredient in the operation of nanocomputers.

Operation at room temperatures is the prevailing state of affairs in VLSI
technology, and, to be competitive, nanoelectronics will have to conform to that.
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The noise and fluctuations accompanying room temperatures, however, will af-
fect the fidelity of operations taking place at nanometer scales—reason to develop
strategies to exploit them, rather than suppressing them.

One of the first proposals to use Brownian motion of signals in computation
originates with Bennett [4]. It takes the form of a mechanical Turing machine,
in which signals move around randomly, searching their way through the ma-
chine’s circuit topology. Later proposals have employed fluctuations with the
eye of making a trade-off between energy use and reliability [16, 11], but these
approaches tend to require extensive error correction, and may thus fall in the
realm of more-or-less traditional methods. Noise and fluctuations have also been
used in the simulated annealing process of a Boltzmann machine implemented by
Single Electron Tunneling electronics [22]. This method utilizes fluctuations to
search in an energy landscape, thus showing some similarities with the Brownian
search in Bennett’s Turing machine. It is, however, focused on neural networks,
rather than on arithmetics-based computation.

This paper presents an asynchronously timed CA in which computation is
realized through cell configurations that implement circuits in which signals
fluctuate randomly in forward and backward directions, as if they were sub-
ject to Brownian motion. The fluctuations are employed in a search process
through computational state space that eventually culminates into signals ap-
pearing at designated output terminals, which then indicates the termination
of the computation. Though the randomness of the fluctuations looks just like
that—randomness—it actually forms a powerful resource that can be employed
to backtrack circuits out of deadlocks and to equip the circuits with arbitration
ability. The fluctuations add to the functionality of the circuits to the extend that
only two very simple primitive modules suffice as the basis from which more com-
plicated circuits can be constructed. As a result, the CA requires merely three
states and three transition rules, which is far less than achieved thus far in lit-
erature for computationally universal asynchronous CA models (see for example
the asynchronous CA in [18], which requires six transition rules as well as cells
with many states).

Brownian CA have the potential to become the basis for architectures of
nanocomputers. Not only are they governed by a very small number of transi-
tion rules—thus offering the possibility of simple physical realizations—they also
behave somewhat similar to natural phenomena, in which Brownian motion plays
a major role. This is particularly clear in biological systems [5, 23]. Molecular
motors, for example, use Brownian motion to generate movement that require
only tiny amounts of energy—a feat unparalleled by the macro-scale man-made
motors based on current technology. If electronic circuits can exploit fluctuations
with a similar efficiency, they may be able to operate closer to the thermal limit,
which delineates the areas at which signal values can still be discriminated be-
tween. Operation closer to the thermal limit may result in the consumption of
decreased amounts of power—an important issue in VLSI that will only grow in
importance as feature sizes of electronic devices decrease.
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This paper is organized as follows. Section 2 introduces the concept of Brow-
nian circuits, because they are the basis from which the Brownian CA is con-
structed. Two primitive modules are introduced, and it is shown that they form
a universal set of primitives from which any arbitrary Brownian circuit can
be constructed. The Brownian CA model based on these two primitive mod-
ules is presented in Section 3, and some basic configurations are shown. More
complicated configurations are shown in Section 4. We finish this paper with
Conclusions and a Discussion in Section 5.

2 Brownian circuits: the Hub and the Conservative Join

Brownian circuits are token-based. Tokens are discrete indivisible units that are
used as signals in circuits and systems. A typical example of token-based sys-
tems are Petri-nets (e.g. see [7]), which are commonly used for modeling circuits
and systems. Token-based circuits are especially promising for physical imple-
mentations in which signals have a discrete character. Single Electron Tunneling
(SET) circuits [15] form an example, as well as molecule cascades [10], which
consist of individual molecules moving one by one into lower-energy states, and
which are triggered by each other, like domino stones.

The token-based circuits considered in this paper are Delay-Insensitive, which
means that such circuits are robust to any finite delays of signals with respect to
the correctness of their output. A delay-insensitive circuit allows arbitrary delays
of its signals anywhere in the circuit—be it in wires or in operators—and the
delays do not compromise the operation of the circuit. Delay-insensitive circuits
are not governed by a clock, so they are part of the class of asynchronous circuits
[8].

Like synchronously timed circuits, which can be constructed from a limited
set of primitives (e.g. NOT-gates and AND-gates), delay-insensitive circuits can
also be constructed from a fixed set of primitives, be it a different one. An
example of universal primitive elements for delay-insensitive circuits is the set
consisting of the so-called Merge, Conservative Tria (CTria) and Conservative
Sequencer (CSequencer) (see Fig. 1). These primitive elements have in common
that they conserve tokens. In other words, the number of input tokens equals the
number of output tokens in each primitive. The class of delay-insensitive circuits
that conserve tokens is called Conservative Delay-Insensitive (CDI) [17].

When the movements of tokens in wires and modules fluctuate between go-
ing forward and backward, we say that the tokens undergo Brownian Motion.
Circuits that have such fluctuating tokens are called Brownian Circuits [20, 13].
This paper assumes that Brownian circuits conserve their tokens. Since we are in
the framework of delay-insensitive circuits, any delays to tokens due to Brownian
motion will not affect the correctness of a circuit’s operation. The frequent un-
doing of operations may make the overall efficiency of the circuit worse, though.

The added value of allowing Brownian motion of tokens is that, due to the
reverse movements in a Brownian circuit, it is possible to undo transitions, in-
cluding those that lead to deadlocks. Deadlocks may occur in token-based delay-
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Fig. 1. Primitive elements for delay-insensitive circuits that conserve tokens. (a)
Merge merges two streams of inputs I1 and I2 into one output stream O. (b)
CTria joins two input tokens resulting in two output token as follows. Upon
receiving an input signal from each of the two wires Ii (i ∈ {1, 2, 3}) and Ij

(j ∈ {1, 2, 3} \ {i}), it outputs a signal to the wires O6−i−j,i and O6−i−j,j .
If there is only a signal on one of the input wires, it is kept pending, until a
signal on one more input wire appears. (c) CSequencer facilitates arbitration of
shared resources between parallel processes. An input signal on wire I1 (resp.
I2) together with an input signal on wire CI but without an input signal on
wire I2 (resp. I1) are assimilated, resulting in an output signal on wire O1 (resp.
O2) and on wire CO. If there are input signals on both I1 and I2 at the same
time as well as an input signal on CI , then only one of the signals on I1 and
I2 (possibly chosen arbitrarily) is assimilated together with the signal on CI ,
resulting in an output signal on the corresponding O1 or O2 wire and on wire
CO. The remaining input signal will be processed at a later time, when a new
signal is available on wire CI .

insensitive circuits, and it usually requires special functionality in the circuits to
resolve them, but this causes an increased complexity in primitives and circuits.
Random fluctuations of tokens can provide this functionality as part of their
nature, thus allowing for simpler primitives and circuits.

How simple can the primitives for Brownian circuits be? The two building
blocks used in this paper can be shown to form a computationally universal set
from which a wide variety of CDI circuits can be constructed [13].

The first building block is the Hub, which contains three wires that are bidi-
rectional (Fig. 2). There will be at most one signal at a time on any of the Hub’s
wires, and this signal can move to any of the wires due to its fluctuations.

The second building block is the Conservative Join (CJoin), which has two
input wires and two output wires, all bi-directional (Fig. 3). The CJoin can
be interpreted as a synchronizer of two signals passing through it. Signals may
fluctuate on the input wires, and when processed by the CJoin, they will be
placed on the output wires where they may also fluctuate. The operation of the
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W1

W2 W3

W1

W1

W2 W2W3 W3

Fig. 2. Hub and its possible
transitions. A token is denoted
by a black blob. Fluctuations
cause a token to move between
any of the Hub’s three wires
W1, W2, and W3 in any order.

O1

I1 I2

O1

O2 O2

I1 I2

Fig. 3. CJoin and its possible transi-
tions. If there is a token on only one in-
put wire (I1 or I2), this token remains
pending until a signal arrives on the
other wire. These two tokens will then
result in one token on each of the two
output wires O1 and O2.

CJoin may also be reversed, and the forward / backward movement of the two
signals through it may be repeated an unlimited number of times. Due to this
bidirectionality, there is strictly speaking no distinction between the input and
output wires to the CJoin, though we still use the terminology of input and
output, since the direction of the process is eventually forward.

It is possible to construct the modules in Fig. 1 from the Hub and the CJoin.
The Merge follows directly from the Hub, and is thus trivial so no figure is
given for it. The constructions for the CTria and the CSequencer are given in
Figs. 4 and 5. Search based on random fluctuations plays an important role
in the designs for the CTria and the CSequencer. In the CTria in Fig. 4, for
example, a signal input to I3 is unaware of whether the other required input
signal to the CTria will be to I1 or to I2, as a result of which both possibilities
need to be checked. Since the I3 input signal will fluctuate between the two
corresponding CJoins (at the lower half of the circuit in Fig. 4), it will only be
processed by the one CJoin that has a second input signal available. In other
words, the two input signals to a CTria search for each other according to a
random (Brownian) process, and when they happen to be at the input terminals
of one and the same CJoin at a certain time, they will be operated upon by
the CJoin. As long as the two input signals fail to find each other at a CJoin,
no operations by any CJoin will take place. A similar search process of input
signals for a “matching” CJoin takes place in the CSequencer in Fig. 5, where
the input signal from CI fluctuates between the two CJoins. In conclusion, the
three modules in Fig. 1 can be constructed from Hub and CJoin modules, and
this underlines the universality of the Hub and the CJoin for the class CDI.

There is yet another module that operates on tokens, but that is not strictly
necessary to achieve universality. This module is the Ratchet, which restricts the
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O13

O21

O23

Fig. 4. CTria constructed from Hubs and
CJoins

I2

I1

O2

O1

CI

CO

Fig. 5. CSequencer con-
structed from Hubs and
CJoins

W W

Fig. 6. Ratchet and its possible transition. The token on the wire W may fluc-
tuate before the ratchet as well as after the ratchet, but once it moves over the
ratchet it cannot return. The ratchet thus imposes a direction on a (originally)
bi-directional wire.

movement of tokens through itself to one direction. It acts as a kind of diode,
thus effectively transforming a bidirectional wire into a unidirectional wire (see
Fig. 6). The ratchet is used to speed up searching in circuits. Since searching is
unable to backtrack over a ratchet, it will consume less time as a result. Use of the
ratchet, however, comes at a price: it cannot be placed at positions that interfere
with the search process in a circuit, so its use should be carefully considered.

1 2 3

Fig. 7. The three transition rules of the Brownian Cellular Automaton. Rule 1
describes signal propagation on a wire, Rule 2 describes signal propagation over
a wire crossing, and Rule 3 describes the processing of two signals by a CJoin.
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1

1

1

1

Fig. 8. Wire with a signal on it, and a typical sequence of transitions governing
the Brownian motion of the signal. The labels on the arrows indicate which of
the three rules is applied.

3 The Brownian cellular automaton model

The Brownian CA model used in this paper is based on a 2-dimensional cell
space, in which cells have one of three states, encoded by gray scales. White
(state 0) indicates the background used in the cell space, gray (state 1) indicates
the wires and operators laid out on the cell space, and black (state 2) indicates
signals. The model assumes a von Neumann neighborhood for the cells, i.e. the
states of the north, south, west, and east neighbors of a cell are taken into
account in the cell’s update, as well as the state of the cell itself. The cells are
updated according to three transition rules, which are shown in Fig. 7.

The rules are rotation symmetric, meaning that their equivalents rotated
by multiples of 90 degrees are also transition rules. Unlike transition rules in
traditional CA with von Neumann neighborhood, the rules change the state of
not only a cell, but may also do so for its four neighbors.

Updates of the cells take place asynchronously, in the way outlined in for
example [2]: at each time step one cell is selected randomly from the cell space
as a candidate to undergo a transition, with a probability between 0 and 1. If the
state of a selected cell and the states of its neighboring cells match the states in
the Left-Hand-Side of a transition rule, the corresponding transition is carried
out.

To implement CDI circuits on the cell space, we first describe some basic
configurations. We begin with a wire and a signal on it (Fig. 8). A signal has
no direction, and due to Rule 1 it can fluctuate forward and backward. This
characteristic, which has no counterpart in CA models presented to date, results
in an extremely simple representation of a signal, in which no distinction is
made between a signal’s head and its tail. This is one of the important factors
contributing to the small number of states and the small number of transition
rules in the Brownian CA model.

Curves are used to change directions of signals (see Fig. 9), and movement
forward and backward on them is driven by Rule 2. Both left curves and right
curves can be constructed in this way.

The fluctuations of signals place a large time overhead on the computation
process, and to deal with that, ratchets are placed at strategic positions in cir-
cuits. They guarantee a consistent forward bias of a fluctuating signal toward the
output terminals of the circuit, as we have seen in Section 2. The configuration
for a ratchet is described in Fig. 10.
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2
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Fig. 9. Curve with a signal on it, and a typical sequence of transitions governing
the Brownian motion of the signal.

2

2
1

Fig. 10. Wire with a ratchet and a signal on it, and a typical sequence of tran-
sitions governing the Brownian motion of the signal. After the signal undergoes
the transition by Rule 1, it cannot go back.

Most circuits have some wires that cross each other, and the implementation
of this on asynchronous CA models requires some arbitration mechanism to de-
cide which one of the two signals on a crossing may pass the crossing first. On an
asynchronous CA, arbitration can be implemented through a specialized circuit,
like in [12], or through equipping signals themselves with arbitration functional-
ity through additional transition rules, like in [1]. Brownian CA models, on the
other hand, have a much simpler mechanism: the Brownian motion of signals al-
lows them to arbitrate their crossings on their own, without there being special
functionality required (Fig. 11). When the transition rule for crossing signals (i.e.
Rule 2) does not apply due to both signals being at the crossing, the Brownian
motion of the signals will eventually move one of them backwards, away from
the crossing, thus opening the way for the second signal to cross, after which the
first signal will also be able to cross.

The implementation of the Hub on the cell space is based on Rule 2 (Fig. 12).
A signal may fluctuate between all three wires of the Hub, with the central cell
being used to temporarily hold the signal in an intermediate location. A 4-wire
version of the Hub is also possible, and we leave its design as an exercise to the
reader.

Finally, we have the cell configuration for the CJoin in Fig. 13. This configu-
ration relies on Rule 2 to place signals near the center of the CJoin, after which
Rule 3 conducts the CJoin operation.

4 Implementations of the CTria and the CSequencer

Having established the cell configurations for the CDI circuit elements, we can
now construct the configurations for the CTria and the CSequencer on the cell
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2

2

1

1

Fig. 11. Crossing wires with two signals on them trying to cross each other, and
a typical sequence of transitions governing the Brownian motion of the signals.
Initially the two signals cannot cross, since they block each other (left), but the
Brownian motion to which they are subject will inevitably move one of them
backward (center), freeing the way for the other to cross (right). Eventually,
both signals will have moved over the crossing, though this may require many
iterations of the signals moving forward and backward.

2
2

2

2

2

2

Fig. 12. Hub with a signal on it, and a typical sequence of transitions governing
the Brownian motion of the signal. The signal may fluctuate between the three
wires of the Hub.

space. The CTria in Fig. 14 is a straightforward design, which closely reflects
the circuit in Fig. 4. More compact designs are possible, but they would be less
educational, so we leave them out here. The input and output wires of the CTria
in Fig. 14 are all equipped with ratchets in order to decrease the search time of
the signals inside the circuit. Once in the circuit (i.e. beyond the ratchets at the
input wires), input signals search for a matching CJoin in the circuit; they are
not allowed to go back through the ratchets, which significantly restricts their
search space and, related to it, reduces their search time. Upon being processed
and output by a CJoin, the signals pass the ratchets at the output wires, after
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Fig. 13. CJoin with two signals being input to it, and a typical sequence of
transitions governing the operation of the primitive. Both signals need to be
present for Rule 3 to apply.

O31 O32
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O23

O21 O12

O13

Fig. 14. Construction of the CTria from
Hub and CJoin modules on the cell space

I1

I2

O1

O2

COCI

Fig. 15. Construction of
the CSequencer from Hub
and CJoin modules on the
cell space

which they are unable to return to the inside of the circuit. Again, this reduces
the search time.

The CSequencer is designed with the same philosophy in mind. Its topology
closely reflects the circuit in Fig. 5, but, like with the CTria, educational value
is the first priority, not compactness. Ratchets are again placed at the input and
output wires to reduce the search times of the signals in the circuit.
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5 Conclusions and discussion

Noise and random fluctuations are increasingly considered factors limiting the
pace at which integrated electronics develops, prompting some researchers to
investigate whether they can be exploited in ways resembling those in biological
systems [5]. We have presented a model that uses Brownian motion as a resource
to search through computational state space in token-based asynchronous cir-
cuits, and have implemented a novel CA based on such circuits. The resulting
Brownian CA is remarkably simple, underlining the power of Brownian motion
when used as a resource in computation.

Brownian motion-based computing schemes may find applications in future
nanocomputing designs in which signals have a discrete and undivided character,
such as Single-Electronic Tunneling technology [15]. Preliminary research has
already confirmed the feasibility of designs of the Hub and the CJoin based on
this technology through computer simulations [21].

The Brownian CA model proposed in this paper uses transition rules in
which a cell’s state is updated in a transition that simultaneously changes the
states of the cell’s four neighbors, making the model different than the usual
von Neumann-type CA. Though the simultaneous update of a cell and its four
neighbors in a single operation may seem to require sophisticated circuitry in
the implementation of the CA, there is evidence that such an update rule may
actually have its counterparts in molecular systems [3]. Physical couplings be-
tween neighboring cells may underlie the mechanisms through which such locally
synchronized interactions take place.

The asynchronous nature of the update process in the proposed Brownian
CA may be physically more plausible than the globally synchronous updating
mechanisms employed in traditional CA models, as it is difficult to keep all
cells synchronized in large cell spaces [19]. Some improvements in the proposed
update method may still be required, however, since it may be just as difficult to
restrict the update of randomly selected cells to a single cell at a time, as is done
in the model. Ideally, updates of cells should be completely random, without any
restrictions other than that cell states match the states in the Left-Hand-Sides
of transition rules—an update method used in [12].

This paper shows that, notwithstanding the randomness associated with
Brownian motion, useful computation can still be conducted on the CA model.
Computations are subject to search processes, however, and an important ques-
tion then becomes how much time will be required for searching. It is well-known
that the mean displacement of a particle through Brownian motion is propor-
tional to the square root of time [6]. We may thus expect that a token on one end
of a wire of length L will require a time of the order O(L2) before it reaches the
other end of the wire, if the token is subject to Brownian motion. Though this
is a significant overhead, it can be limited by keeping the distances short over
which Brownian motion acts on tokens. In other words, the placement of ratchets
on wires at preferably constant-order distances from each other will significantly
speed up computations, since the time required for a token to propagate over
a wire then reduces to a linear order. Most circuits will probably allow such an
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arrangement; for example, the configurations for the CTria and the CSequencer
modules in Fig. 14 and 15, respectively, have ratchets at all the input wires as
well as at all the output wires, and the distances between the input and output
ratchets is relatively short. Consequently, though search takes place in both these
modules, the processes are not very time-consuming. Simulations conducted on
a computer have confirmed this.
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Abstract. Traditional Random Boolean networks (RBN) consist of nodes
within a single network, each updating synchronously, although asyn-
chronous versions have also been presented. In this paper the dynamics
of multiple, mutually coupled traditional RBN are investigated. In par-
ticular, the effects of varying the degree of inter-network connectivity
and differing intra-network connectivity are explored. The effects from
different inter-network evolution rates are then considered, i.e., asyn-
chronousity at the network level is examined. Finally, state memory is
included within the nodes of coupled RBN and shown to alter the dy-
namics of the networks under certain circumstances.

1 Introduction

Random Boolean networks (RBN) [16] were originally introduced to explore
aspects of biological genetic regulatory networks and can be viewed as a gener-
alization of binary cellular automata (CA) [23]. Since then they have been used
as a tool in a wide range of areas such as self-organisation (e.g., [17]), computa-
tion (e.g., [10]), robotics (e.g., [21]) and artificial creativity (e.g. [9]). Traditional
RBN consist of N nodes, each connected to K other randomly chosen network
members, with each performing a randomly assigned Boolean update function
based on the current state of those K members in discrete time steps. Such up-
dates are typically executed in synchrony across the network but asynchronous
versions have also been presented (after Harvey and Bossomaier [13]), leading
to a classification of the space of possible forms of RBN [11]. All of this work
has assumed a single network. However, many systems of interest may be viewed
as consisting of multiple networks, each with their own internal structure and
“coupling structure” to their external world partners. Examples include economic
markets, social networks, ecologies, and within organisms such as neural-immune
networks. Following Morelli and Zanette [19], in this paper the dynamics of mul-
tiple, coupled RBN are explored with a view to presenting an abstract tool with
which to explore the dynamics of such systems. The initial results presented
here indicate that the relative rate of network evolution is the most significant
factor in determining network behaviour. Similarly, the inclusion of a memory
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mechanism such that updates are not made based purely upon the current state
of network nodes but rather upon an historical view considering their previous
states can also significantly alter network behaviour.

2 Random Boolean networks

As noted above, within the traditional form of RBN presented by Kauffman, a
network of N nodes, each with K connections to other nodes in the network, all
update synchronously based upon the current state of those K nodes. Since they
have a finite number of possible states and they are deterministic, such networks
eventually fall into a basin of attraction. It is well-established that the value of
K affects the emergent behaviour of RBN wherein attractors typically contain
an increasing number of states with increasing K. Three phases of behaviour
are suggested: ordered when K=1, with attractors consisting of one or a few
states; chaotic when K > 3, with a very large numbers of states per attractor;
and, a critical regime around K=2, where similar states lie on trajectories that
tend to neither diverge nor converge and 5-15 % of nodes change state per
attractor cycle (see [17] for discussions of this critical regime, e.g., with respect
to perturbations). Figure 1 shows examples of ten randomly created N =1000
networks, each started from 10 random initial configurations, for varying K. The
fraction of nodes which change state per update cycle is recorded and shown in
the figures. Thus it can be seen that this number is typically very low for low K
but increases rapidly with K > 2, as expected.

3 Coupled RBN

Kauffman also recast RBN as a model of fitness adaptation for evolving species
— the NK model — whereby each node represents a gene and its fitness contri-
bution is based upon K other genes, each possible configuration being assigned
a random value. It is shown how K effects fitness landscape topology. Later,
Kauffman made the point that species do not evolve independently of their eco-
logical partners and presented a coevolutionary model of fitness adaptation [18].
Here each node/gene is coupled to K others locally and to C within each of
the S other species with which it interacts — the NKCS model. Each species
within such models experiences constant changes in the shape of its fitness land-
scape due to the evolutionary advances of its coupled neighbours until mutual
equilibria are reached. The NKCS model has been used to explore a number
of aspects of natural coevolution, such as symbiosis [e.g., [7]] and collective be-
haviour [e.g., [6]], along with coevolutionary adaptation in general [e.g., [4]] and
coevolutionary computation [e.g., [5]]. A similar extension can be made to the
RBN framework such that S+1 networks exist, wherein each node is connected
both to K randomly chosen nodes within its own network and C randomly cho-
sen nodes in each of the S other networks. However, unlike the radical change
from the NK model to the NKCS model, the effects of adding C connections
appears roughly equivalent to increasing K in a single network. That is, given
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Fig. 1. N =1000 RBN and various K, showing fraction of nodes which change
state per step.
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Fig. 2. Two N =1000 RBN, with various K and C.
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that all connections are randomly assigned and all updates are synchronous, any
of the S+1 networks simply behave as if they have K + (S × C) connections
within a standard RBN, as shown in Fig. 2 for two networks of the type used
above. It should be noted that the global network is now of size (S+1)N. Morelli
and Zanette [19] used probabilistic connections between two RBN, wherein they
explored synchronisation between the networks with K=3 (see Villani et al. [22]
for a related study).

4 Non-Symmetrical K

After Morelli and Zanette [19], Hung et al. [14] examined two coupled disordered
cellular automata with probabilistic connectivity of varying K using elementary
rule 22. They report a change in the synchronisation dynamic when the internal
coupling K is different in each network. Indeed, in the broader view, there is
no reason to assume that the degree of connectivity within a given network,
i.e., its basic internal structure, will be the same as that of its coupled partner
network(s). Kauffman and Johnsen [18] also showed changes in behaviour due to
heterogeneous values of K for the coevolving populations of the NKCS model. In
particular, they describe how low K fitness increases for high C when partnered
with a high K species before equilibrium but that only low K fitness increases
under low C.

Figure 3 shows examples of how under low inter-network coupling, i.e., C=1,
the differing intra-network coupling has an effect on dynamics. Here the lower
K partner (for K < 4) experiences an increase in the fraction of nodes which
change state per update cycle compared to the symmetrical case and the higher
K partner (for K > 1) experiences a slight decrease despite the overall increase
in connectivity. The effects are lost on the higher K partner when C is increased.

5 Coupled RBN with different evolution rates

In all of the aforementioned examples of multiple-network scenarios it is likely
that in many cases some networks will be changing at different rates relative to
each other: technological networks may change faster than ecological ones, for
example. Therefore a new parameter R can be introduced which specifies the
number of update cycles a given network undertakes before another performs
one update cycle. Thus the updates of individual networks become deterministi-
cally asynchronous, somewhat akin to deterministic asynchronous single network
RBN [11]. In these RBN, nodes update if a defined number of cycles have passed
since their last update. It is known that within single network deterministic
asynchronous RBN the amount of nodes updated per cycle and the frequency
of such updates can significantly change the overall behaviour despite the con-
nectivity and update rules remaining constant [12]. Figure 4 shows how this can
also be true within multiple coupled RBN, in this case for two networks of the
type used above. Indeed, for low K, as R increases, it can be seen that network
behaviour exhibits a phase transition-like phenomenon such that the effects of
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Fig. 3. Two N =1000 RBN, with example pairings of K and C for non-
symmetrical K.
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Fig. 4. Two N =1000 RBN, with various K, C and R. Mean fraction of change
after 100 cycles per configuration. Note a negative number implies a slower
relative rate R, e.g., -10 is when a network updates 10 times slower than the
other network.
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the inter-network coupling C are increasingly lost. That is, for a given intra-
network connectivity K, as R increases, the fraction of nodes which change state
per update cycle reduces to those seen in the traditional uncoupled RBN case
(compare to Fig. 1). The relative rate required to reach the equivalent single
network behaviour increases with K. However, for networks with predominantly
chaotic behaviour, i.e., K > 3, no change in behaviour is seen from varying R
for any C, as might be predicted.

6 Memory

In standard RBN the update occurs based on the current state of the K nodes: no
previous node state is explicitly considered. Alonso-Sanz and Cárdenas [2] have
recently implemented a simple form of state memory within K=4 RBN such that
nodes use a weighted mean value of previous state to apply the update rules to.
They describe how such memory has a dampening effect wherein the fraction of
nodes changing state per update cycle is reduced. A similar mechanism has been
explored within the multiple network RBN. Here a memory mechanism is imple-
mented such that the total historic average state of a node is used for updates,
with this memory parameter m maintained using the well-known Widrow-Hoff
Delta rule with learning rate β: mt+1 = mt +β(st−mt ). Where st is the current
state of the node, β=0.1, m0 is 0.5 and thereafter the input to the Boolean func-
tions considering the node is said to be logical ’1’ when mt > 0.5 and logical ’0’
otherwise. Figure 6 shows how, using symmetrical K networks as in Fig. 2 and
4 , a similar general inertia effect as reported by Alonso-Sanz and Cárdenas [2]
can be seen. As in Fig. 4 , increasing R decreases the fraction of nodes which
update per cycle down to the same fraction obtained without inter-network cou-
pling C (and with memory). These rates of change are always lower than for
the equivalent non-memory networks. Note also the effect shows for all K tried,
unlike in Fig. 4. Further, the dynamics of networks which are slower than their
partner(s) are significantly altered by the inertia effect for lower K. Here, as R
decreases, the fraction of nodes changing state per update increases towards the
level of networks with high overall coupling, i.e., K + (S × C), and no memory,
as shown in Fig. 4 . That is, the sharp phase transition-like effect seen without
memory is dampened by the memory mechanism.

This dampening effect is somewhat unexpected since the inclusion of memory
can be seen as increasing the degree of coupling within RBN — coupling is in
both time and space. A minimal memory mechanism has also been explored
within RBN [3] here such that updates are based on the current and previous
state of nodes only, i.e., an explicit memory of one time-step. Thus, in the single
network case, for a given K there exists 22K possible states per node. Figure 5
shows the effects of this simple memory on a single network and how, for K > 1,
the behaviour for a given K is indeed like that found for the equivalent 2K
network (compare with Fig. 1). In the K=1 case, the time taken to reach an
attractor is increased but the fraction of nodes which update per cycle does
not increase. It therefore appears that within the ordered regime the degree of
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Fig. 5. The effects of a minimal memory mechanism of one time-step for various
K in a single RBN. Also showing the effects from altering how the previous step
is considered.
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typical isolation of the nodes is such that the increase in temporal connectivity
has no significant effect on attractor length. The last two results in Fig. 5 show
how altering the simple mechanism such that the previous node state is only
considered if both the current and previous states are logical 1 (i.e., mode)
reduces the effects of the temporal coupling. The memory mechanism of Alonso-
Sanz and Cardenas [2], like that used in Fig. 6, is a majority vote over the total
previous states. It therefore seems that the longer the period over which this
sampling of logical 1 activity is taken, the greater the reduction of the effects of
the coupling in time and, perhaps more surprisingly, in space also.

7 Conclusions

This paper has explored a recently introduced extension of the RBN framework:
multiple, coupled networks. Such multi-network systems represent a way in which
to model a variety of systems of interest, both artificial and natural. It has been
confirmed that synchronously updated networks behave in roughly the same
way as single networks when the total connectivity in the former is equal to
that in the latter, i.e., when K + (S × C) = Ksingle. An effect of coupling
is to increase the overall N of the global network which may be significant
since the typical time taken to reach an attractor and the number of states per
attractor increases with N [17]. However, previous work exploring the effects
of enforcing a topological structure within traditional RBN with scale free sub-
networks (e.g., [20],[1],[24]) has suggested that the number of attractors and their
length can be greatly decreased in comparison to the uniform case. The same
appears to be true here since, for example, there is no significant increase in the
time to reach attractors between the single RBN in Fig. 1 and their equivalent
in terms of connectivity in Fig. 2. It has been shown that when the internal
connectivity of the coupled networks is different the dynamics are changed such
that, for example, high K networks coupled to low K networks experience a
drop in the typical amount of state change per cycle in comparison to their
uncoupled level, i.e., despite an increase in overall coupling. When the updating
is asynchronous, a phase transition-like phenomenon is seen for low intra-network
connectivity wherein the effects of inter-network coupling are essentially removed
for sufficiently different rates of updating. Finally, the effects of state memory
have been explored. Results confirm previous reports of a dampening effect,
which is shown to alter the aforementioned phase transition-like phenomenon
such that it exists for networks with higher intra-network connectivity since the
inertia keeps them out of the chaotic phase of RBN.

A number of analytical results with respect to the number of states within
an attractor have been presented for traditional RBN: Median number = 0.5×
2N/2 for K=N (e.g. [17]); Median number =

√
N for K=2 [8]; and, Median

number =
√

π/2
√

N for K=1 [15]. The equivalent K=N case is when K + (S ×
C) = (S + 1)N . Given that full connectivity removes any topology effects, the
median number will be 0.5 × 2((S+1)N)/2. With non-symmetrical K values, the
relative difference in the K values of the partners must be considered. In the
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Fig. 6. Two N =1000 RBN, with various K, C and R with state memory. Mean
fraction of change after 100 cycles shown per configuration for each network.
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asynchronous case, it seems the relative update rate R proportionally reduces
the effects of the S × C inter-network connections. Future work will seek to
explore both aspects formally. Other areas of immediate interest include varying
network topologies, using asynchronous RBN of various types, and exploring
other forms of memory mechanism and producing analytical results from their
inclusion.

Other forms of coupled discrete dynamical system are currently being ex-
plored.
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Abstract. We consider one-dimensional cellular automata which are
extended by dynamically reconfigurable buses (RCA). It is shown that
up to a constant factor it does not matter whether bus segments are
directed or not. For both variants of the model their time complexity
can be characterized in terms of the reversal complexity of one-tape TM.
The comparison of RCA with tree CA shows that the former are in the
second machine class and that they can be transformed in some normal
form with an only polynomial overhead of time.

1 Introduction

Dynamically reconfigurable architectures have received growing attention during
the last years. A lot of different models have been investigated. They all have
in common that some kind of processors are exchanging information on global
buses the structure of which can be modified in each step by each processor by
segmenting and/or fusing bus segments locally. It is the characteristic of a bus
that information travels over arbitrary distances in constant time.

Bus automata were one of the first models introduced by Rothstein [9]. While
it used finite automata, most of the models considered later [1, 2, 5, 6, 10, 11]
differ in two respects: processors are RAM with a memory of non-constant size
and the models are two- or even higher-dimensional.

In this paper we are interested in the case of one-dimensional systems of
finite automata with reconfigurable buses which we call reconfigurable cellular
automata for short. Even though such systems do not have a large bisection
width, they are in the second machine class.

This paper is an abridged version of [13]. It is organized as follows. In Sect. 2
reconfigurable cellular automata are introduced. In Sect. 3 polynomial time simu-
lations between RCA and tree CA (TCA) are established and their consequences
are discussed. In Sect. 4 the relation of (both variants of) RCA to sequential TM
is investigated.

2 Basic notions

A reconfigurable cellular automaton with k bus segments (k−RCA) consists of a
one-dimensional array of finite automata (cells) working synchronously according
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to the same local rule. Q denotes the set of states of one cell and B the bus
alphabet. Cells are connected by bus segments. In the case of bidirectional bus
segments there are k such segments between each two immediately neighboring
cells and we write R2CA. In the case of unidirectional bus segments there are k
bus segments for information transmission from cell i to i + 1 and k segments in
the opposite direction. The model is denoted as R1CA.

One step of each cell consists of four phases:

1. Configure: Depending on the local state, arbitrary subsets of (locally avail-
able) bus segments are connected.

2. Send: Depending on the local state, on each such subset the cell may send
a symbol b ∈ B or send nothing.

3. Receive: On each bus segments the cell may observe a symbol sent by a cell
participating in the bus.

4. New state: Depending on the old state and the symbols received (if any)
the cell enters a new state.

In the case of R2CA a symbol sent spreads along all bus segments belonging
to the bus on which it was sent. In an R1CA a symbol only spreads along
the directions of the segments. One can distinguish different conflict resolution
strategies for write conflicts on a bus. In all constructions sketched below, one
can always avoid such conflicts algorithmically.

3 RCA are in the second machine class

In this section R2CA will be shown to belong to the second machine class, i.e. the
problems solvable by them in polynomial time are exactly those in PSPACE. This
will be done by describing polynomial time simulations of and by tree-shaped
CA (TCA). That trees as an underlying topology of one kind or the other are a
powerful tool has been shown by several authors. Wiedermann [12] was probably
the first; see also [4, 8].

Theorem 3.1. Let t be a function satisfying the requirements of Lemmata 3.1
and 3.2. Then:

R2CA−TIME(Pol(t)) = TCA−TIME(Pol(t)) .

Remark 3.1. It immediately follows that RCA−TIME(Pol(n)) =PSPACE, i.e.
R2CA are in the second machine class.

For the proof of the theorem one can use the following two lemmata.

Lemma 3.1. Let t be a function such that a TCA can mark the cells in a subtree
of height O(t). Then:

R2CA−TIME(t) ⊆ TCA−TIME(O(t3)) .
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Fig. 1. Mapping cells of an R2CA (circles) to cells of a TCA (rectangles).

Sketch of proof. The cells of an R2CA R are mapped to cells of a TCA T as
indicated in Fig. 1. The simulation of one step of R is done in a number of steps
proportional to the square of the height of the tree. Since that is the logarithm
of the maximum number of cells used by R, it needs time O(t2).

(Technical details will be provided in a full version of the paper.) ⊓⊔

Lemma 3.2. Let t be a function such that an R2CA can mark 2t cells in time
O(t2). Then:

TCA−TIME(t) ⊆ R2CA−TIME(O(t2)) .

Sketch of proof. The cells of a TCA T are mapped to cells of an R2CA R as
indicated in Fig. 2. The simulation of one step of T is done in a number of
phases. Each phase takes a constant number of steps and is used to simulate the
exchange of data between two successive layers of cells of T . Thus the overall
time for the simulation of one step of T is proportional to the height of T . Since
the height of the used part of the tree can be bounded by the number of steps
of T , the total running time of R is at most O(t2).

011001 101000 010 100 110011001 101000 010 100 110
Fig. 2. Mapping TCA cells to R2CA cells for a tree of height 2.



Cellular automata with dynamically reconfigurable buses 309

Details of the construction which are concerned with technicalities as for ex-
ample segmenting the buses at the right places, handling of inputs, and marking
of certain segments of cells of R are omitted. ⊓⊔

Corollary 3.1. Given an arbitrary R2CA R one can use Lemmata 3.1 and 3.2
to construct a R2CA R′ (via a TCA) which simulates R in polynomial time and
has certain “nice” properties:

1. In R′ there are only 2 bus segments between neighbors (instead of k).
2. All buses of R′ are linear (while buses of R may fork or form cycles).
3. In R′ only exclusive sends happen (while in R common sends or even conflicts

may occur).

4 A characterization of RCA time by TM reversal

Below we write T1TM to denote TM with one work tape, one read-write head
on it, and without a separate input tape.

Theorem 4.1. If f satisfies the requirements of Lemma 4.1, then:

R2CA−TIME(Θ(f)) = R1CA−TIME(Θ(f)) = T1TM−REV(Θ(f)) .

One should observe that (somewhat surprisingly) the characterization is in terms
of reversal complexity of TM with only one work tape and without an input tape.
Usually this model is considered to be too weak and multi-tape machines are
used in connection with reversal complexity [3].

A proof of Theorem 4.1 can be given by establishing 3 set inclusion in a
circular way “from left to right”. One is trivial. The two other cases are treated
in Lemmata 4.1 and 4.2 below.

Lemma 4.1. Let f be a function such that a T1TM can mark 2t tape squares
using O(t) reversals. Then an f time-bounded R1CA can be simulated by an
O(f) reversal-bounded T1TM.

Sketch of proof. One has to show how to simulate one step of an R1CA R with
a constant number of reversals of a TM T . This requires a trick similar to one
which is useful in the (omitted part of) the proof of Lemma 3.1.

⊓⊔

Lemma 4.2. An f reversal-bounded T1TM can be simulated by an O(f) time-
bounded R2CA.

Sketch of proof. Let T be a T1TM. Without loss of generality one may assume
that T moves its head in every step. We show how a whole sweep of T between
two head reversals can be simulated in constant time by a R2CA R.

If only an R1CA were required one could use Rothstein’s idea [9]: Consider
e.g. a sweep from left to right. The symbols of successive tape squares are stored
in successive cells of R. For each state q of T there is a bus segment lq entering
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from the left neighboring cell and a bus segment rq leaving to the right. For all
q and b, if T upon entering a square with symbol b in state q from the left will
leave it to the right in state q′ after having changed the symbol to b′, then a cell
storing b connects lq with rq′ .

Then the cell responsible for the tape square on which the last reversal hap-
pened sends a signal on the segment rq corresponding to the state on which T
leaves the square. Since the bus segments are unidirectional the signal spreads
along exactly one path from left to right, “activating” in each cell exactly that
l-segment belonging to the state T is in when entering the corresponding tape
square. Depending on the state and its stored symbol each cell can enter a new
state representing the new tape symbol.

The direct transfer of this idea to R2CA results in a failure. Since bus seg-
ments are not directed any longer, in each cell which connects at least two lq1

and lq2 to the same rq′ the signal arriving on one of the l-segments will spread
“backwards” along the others. As a result it may happen that some cells observe
the signal on every bus segments.

But it is possible to find the “wrongly” active bus segments in a constant
number of phases, each of which only needs a constant number of steps.

⊓⊔

5 Summary

It has been shown that one-dimensional RCA are in the second machine class.
Their time complexity can be characterized in terms of reversal complexity of
one-tape Turing machines. Via simulations by and of TCA one can obtain a
normal form of RCA with k = 2, only linear buses and exclusive sending on the
buses working with a polynomial overhead of time.

One notes that the proof techniques cannot be carried over to the two-
dimensional case. This case deserves further investigation, as do restrictions on
the maximum allowed bus length or the assumption of a non-constant lower
bound for the transmission of information on long buses (in order to make the
model more realistic).
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Abstract. We present a class of device, termed Asynchronous Logic
Automata (ALA), for practical reconfigurable computing that may be
categorized as an asynchronous lattice gas automaton, as a Petri net,
as a field-programmable gate array, and as charge-domain logic. ALA
combine the best features of each: locality, consistent asynchronous be-
havior, easy reconfiguration, and charge-carrier conservation. ALA are
thus “closer to physics” (at least, the physics used in classical compu-
tation) than classical computers or gate arrays with global interconnect
and clocking, and may therefore be physically implemented with more
desirable properties such as speed, power, and heat dissipation.

1 Introduction

Physics, above the atomic level, is inherently local, and computation, like every
other process, relies on physics. Thus, programming models which assume non-
local processes, such as data buses, random access memory, and global clocking,
must be implemented at a slow enough speed to allow local interactions to sim-
ulate the non-local effects which are assumed. Since such models do not take
physical locality into account, even local effects are limited to the speed of the
false non-local effects, by a global clock which regulates all operations.

In computing today, many observers agree that there is a practical physical
speed limit for the venerable von Neumann model (see for instance [1]), and
that the bulk of future speed increases will derive from parallelism in some form.
Chipmakers are currently working to pack as many processors as they can into
one box to achieve this parallelism, but in doing so, they are moving even further
from the locality that is necessary for a direct implementation as physics. At the
other end of the abstraction spectrum, while sequential programming models
can be generalized to use multiple parallel threads, such models are often clumsy
and do not reflect the physical location of the threads relative to each other or
memory.

In addition, research has long suggested that asynchronous (or “self-timed”)
devices consume less power and dissipate less heat than typical clocked de-
vices [2]. However, traditional microarchitectures require significant book-keeping
overhead to synchronize various functional blocks, due to the nature of their in-
structions, which must be executed in sequence. Most asynchronous designs to
present have derived their performance benefits from clever pipelining and power
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distribution rather than true asynchrony – known as “globally asynchronous, lo-
cally synchronous” design – and often this is not enough to offset the overhead [3].

These shortcomings are accepted because of the tremendous body of existing
code written in sequential fashion, which is expected to run on the latest hard-
ware. However, by removing the assumption of backwards compatibility, there
is an opportunity to create a new, disruptive programming model which is more
efficient to physically implement. In particular, such a model could scale favor-
ably to an arbitrary number of parallel elements, to larger problem sizes, and
to faster, smaller process technologies. Potentially, this may have eventual im-
pact across the computing industry, particularly in high-performance computing.
In addition, it could conceivably be an enabling technology for the Singularity
(see [4]).

In Sect. 2, we describe the Logic CA, a synchronous cellular automaton which
is the basis of the ALA. In Sect. 3, we introduce the ALA as a modification of
the Logic CA. In Sect. 4, we discuss the relationship to past work, and in Sect. 5
we identify future work.

2 Logic CA

Asynchronous Logic Automata (ALA) are based on an earlier model, a cellular
automaton (CA), known as the Logic CA. It may be convenient to understand
first the Logic CA, which has closer ties to previous work (e.g. [5]), particularly
if the reader is familiar with these types of constructions.

The Logic CA consists of cells with 8 neighbors and 9 bits of state. The
state bits are divided into 8 configuration bits and 1 dynamic state bit. The
configuration bits are further divided into 2 gate bits which choose among the
four allowed Boolean functions ({AND, OR, XOR, NAND}) and 6 input bits
which choose among the 36 possible pairs of (potentially identical) inputs chosen
from the 8 neighbors (1

2 · 8 · (8− 1) + 8). At each time step, a cell examines the
dynamic state bit of its selected inputs, performs the selected Boolean operation
on these inputs, and sets its own dynamic state to the result.

Mathematically, an instance of the Logic CA can be described as a series of
global states St (t ∈ N0) each composed of local states st,(i,j) ∈ {0, 1} (i, j ∈ Z)
and a set of constant configuration elements

c(i,j) ∈ C =
(
{AND, OR, XOR, NAND} × ({−1, 0, 1}2 − {(0, 0)})2

)

= {AND, OR, XOR, NAND}
×{(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}
×{(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}

(note that there is a bijection between C and {0, 1}8, 8 bits) such that
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st+1,i,j =







if (c(i,j))1 = AND st,(i,j)+(c(i,j))2 ∧ st,(i,j)+(c(i,j))3

if (c(i,j))1 = OR st,(i,j)+(c(i,j))2 ∨ st,(i,j)+(c(i,j))3

if (c(i,j))1 = XOR st,(i,j)+(c(i,j))2 ⊕ st,(i,j)+(c(i,j))3

if (c(i,j))1 = NAND ¬(st,(i,j)+(c(i,j))2 ∧ st,(i,j)+(c(i,j))3)

Although the Logic CA is useful for many applications, we identified two
major problems with it, leading to the development of ALA:

1. Lack of Reversible/Adiabatic Logic. The system does not employ con-
servative logic [6] or adiabatic computing [7], which is necessary to truly
represent physical resources.

2. Global Clock. The clock is global – clearly a non-local effect. Cellular
automata are not fundamentally required to have a global clock to perform
universal computation [8, 9].

3 Asynchronous logic automata

We have discovered a new approach, inspired by both lattice-gas theory [10] and
Petri net theory [11], that resolves the above problems.

By “lattice gas” we mean a model similar to cellular automata in which the
cells communicate by means of particles with velocity as opposed to broadcasted
states. Practically, this means that the information transmitted by a cell to each
of its neighbors is independent in a lattice gas, where in a cellular automaton
these transmissions are identical. By convention, a lattice gas also has certain
symmetries and conservation properties that intuitively approximate an ideal
gas [12], and in some cases, numerically approximate an ideal gas [13].

Meanwhile, Petri nets are a broad and complex theory; we are primarily
concerned with the subclass known as “marked graphs” (a detailed explanation
can be found in [14]). In short, a marked graph is a graph whose edges can
be occupied at any given time by zero or more tokens. According to certain
conditions on the tokens in edges neighboring a node of the graph, the node
may be allowed to “fire” (at any time as long as the conditions are met), by
performing some operations on the tokens (such as moving a token from one of
its edges to another or simply consuming a token from an edge).

Our new approach merges these with the existing Logic CA as follows. We
remove the global clock and the bit of dynamic state in each cell, and replace the
neighborhood broadcasts with a set of four edges between neighboring cells, each
containing zero or one tokens, thus comprising a bit of state (see Fig. 1). Between
each pair of cells, in each direction, we have a pair of edges, one to represent
a “0” signal, and the other a “1” signal. Note that each pair of edges could be
considered one edge which can carry a “0” token or a “1” token. Instead of each
cell being configured to read the appropriate inputs, this data is now represented
by an “active” bit in each edge. Then, each cell becomes a stateless node (except
the gate type) in this graph, which can fire on the conditions that all its active
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Fig. 1. Edges of one cell in the new approach

inputs are providing either a “0” token or a “1” token and that none of its active
output edges is currently occupied by a token of either type. When firing, it
consumes the input tokens, removing them from the input edges, performs its
configured function, and deposits the result to the appropriate output edges (see
Fig. 2 for an example of a 2-input, 2-output AND gate firing). As it is a marked
graph, the behavior of this model is well-defined even without any assumptions
regarding the timing of the computations, except that each computation will fire
in some finite length of time after the preconditions are met. The model now
operates asynchronously, and removes the need not only for a global clock, but
any clock at all.

We have also introduced explicit accounting for the creation and destruction
of tokens instead of implicitly doing both in every operation, as with traditional
CMOS logic. For instance, in Fig. 2, since there are equally many inputs and
outputs, no tokens must be created or destroyed. While the model still uses
the same irreversible Boolean functions, these functions can be thought of as
being simulated by conservative logic which is taking in constants and dispersing
garbage [6], enabling an easy pricing of the cost of non-conservatism in any given
configuration.

In addition, this model adapts much more easily to take advantage of adia-
batic logic design; for instance, when a cell is being used only to ferry tokens from
one place to another (e.g. an inverter, shown in Fig. 3), it can do so physically,
instead of using a traditional, charge-dumping CMOS stage.

Figures 4 and 5 show the general concept of how such cells could be imple-
mented using so-called “bucket brigade”, or charge-domain logic [15].

Note the following possible ALA variations:
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Fig. 2. A cell firing; note that despite the loss of information, tokens are con-
served in this example

1. No Diagonals. Connections may only be present between vertically or hor-
izontally adjacent cells, to simplify circuit layout.

2. Multiple Signals. More than four token-storing edges may connect neigh-
boring cells, allowing the conveyance of more parallel information in the
same period of time.

3. More Functions. The class of possible functions executed by each cell need
not be limited to {AND, OR, XOR, NAND} but may include any function
f : {0, 1, ∅}n → {0, 1, ∅}n where n is the number of neighbors of each cell
(for n = 8 there are 43046721 possible functions). A cell executing function
f may fire if f ’s present output is not ∅n and every non-empty element of the
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Fig. 3. A bit travels left to right through an inverting cell

Fig. 4. Transistor-level effects of configured wire and inverter cells

output points to either an inactive or empty set of output edges. Then each
of those output edges would become populated with the value specified by
f ’s output. There is a tradeoff between the number of functions allowed and
the number of configuration bits in each cell needed to specify the function.

4 History

The history begins with the cellular automata (CAs) of von Neumann [5], de-
signed to explore the theory of self-replicating machines in a mathematical way
(though never finished). Note that this was some time after he completed the
architecture for the EDVAC project [16], which has come to be known as “the
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Fig. 5. Expansion of “switch” block from Fig. 4

von Neumann architecture.” Many papers since then can be found examining
(mostly 2-state) CAs, and there are a few directions to prove simple CA univer-
sality – Alvy Ray Smith’s [17], E. Roger Banks’ [18], and Matthew Cook’s more
recent Rule 110 construction [19]. However, while interesting from the point of
view of computability theory, classical CAs clearly over-constrain algorithms to
beyond the point of practicality, except in a small class of problems related to
physical simulation (for instance, see [13]).

Another related sub-field is that of field-programmable gate arrays (FP-
GAs). Gate arrays have evolved over time from sum-product networks such as
Shoup’s [20] and other acyclic, memory-less structures such as Minnick’s [21] to
the complex, non-local constructions of today’s commercial offerings, yet skip-
ping over synchronous and sequential, but simplified local-effect cells.

The tradition of parallel programming languages, from Occam [22] to Er-
lang [23] to Fortress [24] is also of interest. Although they are designed for
clusters of standard machines (possibly with multiple processors sharing access
to a single, separate memory), they introduce work distribution techniques and
programming language ideas that are likely to prove useful in the practical ap-
plication of our work.

Finally, the Connection Machine [25] was designed with a similar motivation
– merging processing and memory into a homogeneous substrate – but as the
name indicates, included many non-local connections: “In an abstract sense, the
Connection Machine is a universal cellular automaton with an additional mech-
anism added for non-local communication. In other words, the Connection Ma-
chine hardware hides the details." We are primarily concerned with exposing the
details, so that the programmer can decide on resource trade-offs dynamically.
However, the implementation of Lisp on the Connection Machine [26] introduces
concepts such as xectors which are likely to be useful in the implementation of
functional programming languages in our architecture.

One key element of our approach that is not present in any of these models
is that of formal conformance to physics:
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– classical CAs are an “overshoot” – imposing too many constraints between
space and time above those of physics;

– gate arrays have become non-local and are trending further away from local
interactions;

– practical parallel languages accept the architecture of commercial computers
and simply make the best of it in software; and

– the Connection Machine allows non-local communication by hiding physical
details.

Also, at least as important as this is the fact that our model operates precisely
without a global clock, while the four models above do not. This decreases power
requirements and heat dissipation, while increasing overall speed.

5 Future work

The primary disadvantage to practical fabrication and use of ALA in their
present form is the need to simultaneously initialize all cells with the config-
uration data before useful computation can be performed. We are currently
investigating various approaches to solving this problem, such as a protocol for
loading the data in to uninitialized space from the edges, by specifying a for-
warding direction after each cell is configured and then propagating a final start
signal when initialization is finished and computing can begin. We are also de-
veloping a hierarchical, module-based design environment for computing this
configuration data on a traditional PC.

6 Conclusion

We have presented a new model which merges lattice gases, Petri nets, charge-
domain logic, and reconfigurable logic. This model represents a simple strategy
for asynchronous logic design: making the operations asynchronous at the bit
level, and not just at the level of pipelines and functional blocks. It is also
a potentially faster, more efficient, and lower-power alternative to traditional
FPGAs, or to general-purpose computers for highly parallelizable tasks.
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Abstract. We consider a finite Cellular Automaton (CA) with parti-
cles where in each site, a bit encodes presence or absence of a particle.
Starting from an arbitrary initial configuration, our goal is to move the
particles between neighbor sites until each particle is placed at the same
distance from its neighbors. This problem, called “regular placement”
problem, is the CA-equivalent of load-balancing in parallel computing.
We present a CA rule that solves this problem in the 1D case, and is
convergent, i.e, once the regular placement is achieved, the configuration
does not change anymore. The rule is inspired from the Lloyd algorithm,
computing a centroidal Voronoi tesselation. The dynamic of the rule
is described using self-explanatory spatio-temporal diagram. They show
that particles move upon reception of signals carrying the energy of the
system. Each signal bounces or pass through particle, until it eventu-
ally reaches the border and vanishes. When signals have all vanished,
particles are regularly placed.

1 Introduction

A cellular automaton (CA) is a discrete space, called cellular space. It is defined
by a lattice of sites having their own state, and evolving in discrete time according
to a rule, which determines the next state of each site depending on its current
states along with the current states of its neighbors. A configuration is the set
of every states at a given time [14, 3].

This article tackles the following problem: given an initial configuration with
an arbitrarily finite set of sites holding a particle each, find a rule that moves
the particles continuously until convergence in a configuration where they are
uniformly placed in the cellular space.

⋆⋆ We acknowledge support from EPRC grant EP/F003811/1 on general purpose spa-
tial computation.
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This problem is a discrete version of a more general problem considering the
placement of a set of points, which can be robots, telephone antenna, or real
points in a 3D or visualization algorithm. The uniformity constraint is well de-
fined by formulating the problem as a particular occurrence of the Least Squares
Problem (LSP): find a set of points minimizing the squared distance to near-
est point averaged through the considered region [9, 4, 2]. It is proved that
LSP optimal solutions correspond to Centroidal Voronoi Tesselations (CVT),
which means that the set of points correspond to the centers of mass of the
Voronoi regions that they generate [4]. In other words, nearest neighbors tend
to be equidistant, and achieve a regular arrangement [12]. Figure 1 5 gives a
clear view of the input and the desired output with a 2D euclidean space, and
the relation with the Voronoi tesselation. In a CVT, it is clear that points are
uniformly distributed.

(a) (b) (c) (d)

Fig. 1. (a) 20 randomly positioned generators; (b) Voronoi tesselation of these
generators, the circles are the centers of mass of Voronoi regions; (c) a centroidal
Voronoi tesselation, circle and crosses are merged since generators are centers
of mass of theirs Voronoi regions; (d) the generators of the centroidal Voronoi
tesselation.

Nevertheless, the classic study of CVT does not consider a given initial set
of points to whom the algorithm is stuck, but rather an integer n allowing the
algorithm to generate its own initial set of n points. Furthermore, our problem
imposes small movements on the points. These constraints also hold for prob-
lems like self-deployment of mobile sensors [13], or in the area coverage problem
in robotics where the initial set of points correspond to physical objects already
positioned.

Our real motivation is the following: solving our full constrained problem in
a robust and efficient way is crucial for a model of massive parallelism called
blob computing, developed by the authors [6, 5]. In this model, the architec-
ture is a CA and each site can host a thread of computation (with finite state).
Threads can create new threads, so it is important to constantly homogenize
thread density to avoid congestion. We associate one particle to each thread and

5 generated from the Christian Raskob’s Java applet that can be found at: http:

//www.raskob.de/fun/d/CentroidalVoronoi.tgz
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make the thread’s state move to follow the particle move. Then, the problem of
homogenization of thread density becomes equivalent to the problem considered
in this article. More generally, it is a way to implement dynamic load balancing,
which is a central problem in parallel computing.

There are two main way of computing CVT: Lloyd’s algorithm [9] which
is iterative and move each points to the center of mass of its Voronoi region
until a convergence condition, and the McQueen method [10], also called the k-
mean method, which is also iterative but determine the CVT without computing
any Voronoi tesselation. A huge variety of variants from Lloyd and McQueen’s
method exist [4], and a parallel implementation is introduced in [8].

The CA presented here is a simplified spatial discretization of the Lloyd’s
algorithm, since the considered problem is a specific case of the CVT. The space
is unidimensional and discrete, and the density is constant. These restrictions
make the problem look very simple. Let x1 . . . xk be the particles, and p1 . . . pn

the sites. The particle xi should be placed more or less to sites p(i− 1
2 ) n

k
. However,

the problem is not trivial as we bound the memory of the sites independently
from the number of sites n or the number of points k. It implies that one cannot
use the preceding centralized algorithm that computes the precise target desti-
nation for each points. Instead, each site must continuously probe the density in
its neighborhood, and move its point towards the region of lower density. Also,
finite state prevent to use a unique id for each point.

The same problem can be considered in 2D or 3D, which leads to more
difficulty and is an ongoing work. Adamatzky [1], followed by Maniatty and Szy-
manski [15], already describe how to compute the Voronoi tesselation in a static
way on a CA. These works can be extended to allow dynamic computation of
the Voronoi tesselation, as the generators (or particles) move. The finite state
constraint is achieved by emitting waves from the generators, but this prevents a
simple definition of the convergence. Using the same principle of waves emission,
dynamic Voronoi tesselation can be computed on excitable media [1, 7]. The
determination of the center of mass in a local manner can also be done using
vector field [11] or other techniques, which leads to a CVT when coupled with a
dynamic Voronoi tesselation algorithm.

Our CA is obtained by coupling two symmetric layers running the same CA
rule. We present the rule in the 1D context: in this restricted case, we are able to
provide a proof of the correctness. Two versions of the automaton are presented,
one that uses integer numbers and, as a consequence, has an infinite number of
states, and another one that uses properties of the first one to formulate it with
a bounded number of states, namely 7 states per layer. Last we further modify
the rule to guarantee that the CA converges.
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2 Cellular automaton with integer numbers

In this section, we start by describing the global approach of the algorithm
used in our cellular automaton, showing the link with Lloyd’s algorithm and its
organization in two layers executing the same rule. Then we describe each layer
independently, to finish by showing more precisely how the two layers interact to
form the CA rule. The CA rule introduced in this section manipulates integers.

2.1 The global approach

The algorithm used in our cellular automaton to solve the given problem is in
the same spirit as the Lloyd’s algorithm. The former consists in repeating the
following stages until the resulting set of points is good enough:

1. Compute the Voronoi regions {Vi}ki=1 of the current set of points {Pi}ki=1

2. Compute the new set of point {Pi}ki=1 as the centers of mass of {Vi}ki=1

In the 1D case, the Voronoi regions are intervals, allowing to represent them
by their boundaries as a set {Wj}k+1

j=1 such that Vi = [Wi, Wi+1]. Considering
that the Voronoi region boundaries, called walls for brevity, are bisectors which
are middle points in the 1D case, and that the center of mass of an interval with
uniform density is its middle point, both concepts leads to the same computation:

1. {Wj}k+1
j=1 ←Middles({Pi}k+1

i=0 ) = { 1
2 (Pi + Pi+1)}ki=0

2. {Pi}ki=1 ←Middles({Wj}k+1
j=1 ) = { 1

2 (Wj + Wj+1)}kj=1

Our approach consists of using two symmetric layers: one layer encodes the
points positions and compute their middles, while the other encodes the walls
positions and compute their middles. Also, the points positions are updated
in the first layer according to the middles computed by the second layer and
the walls positions are updated in the second layer according to the middles
computed by the first layer.

To express the symmetry, we introduce the term source that refers to the
points regarding to the first layer, or the walls regarding to the second layer. It
is clear that each layer runs the same rule, that we call “layer rule”. This rule
receive the middles of the other layer as destinations for its sources, and update
its own middles according to the current positions of its source.

This layer rule behavior is obtained by computing for each site its distance to
its nearest source. From these distances, the middles are obtained by detecting
local non-strict maximum sites, called summits. Because of local propagation,
this computation takes several transitions to complete, but instead of waiting
for an exact set of middles, we update the two layers at each transition. It
saves synchronization mechanisms and allows the points and the walls to be
updated as soon as possible, leading to continuous displacement of both sets of
middles/summits.
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2.2 Description of the layer rule

We begin by describing the layer rule. For the moment, we only describe the
computation of the distances to the nearest source and consider that the source
position is provided by a Boolean which is true in sites holding a source.

The distance to the nearest source is the length of the shortest path to a
source. A classical way to compute these distances is to consider, for each site,
the length of paths starting from each neighbors, take the shortest one, and put
the additional step to this path to obtain the shortest path from the considered
site to a source. In terms of distance, it gives the following well-known rule:

ct+1(i) =

{
0 if the site i contains a source
1 + min{ct(j)}j∈neighbors(i) otherwise. (1)

Let us study this rule under different conditions. Firstly, we consider the
classical case where the sources do not move. This leads to the execution shown
in Fig. 2:

t = 1 t = 2 t = 3 t = 4

Fig. 2. Evolution of the rule (1) through 4 instants. The source’s positions are
indicated by the balls under the distances whose values are represented by differ-
ent levels. The configuration has 0 in every sites at time 0. The last configuration
is [3, 2, 1, 0, 1, 2, 2, 1, 0, 1, 0, 1, 2, 3, 2, 1, 0, 1, 1, 0, 1, 2, 3, 4].

We consider the following definition of the summits:

summit(c)(x) = c(x) ≥ max(c(x − 1), c(x + 1)) ∧ c(x) > 0, (2)

which only says that they are local non-strict maximum having a non-null value.
The summits span the whole intervals between the sources at time 1, and are
shrunk into intervals of size 1 or 2 during the execution. If we consider that a
summit of size 2 has for position the center of its interval, we obtain that the
summit’s positions correspond to the middles as required.

Let us consider now the case of a displacement occurring on a source. First,
we take two sources, execute the rule (1) until convergence, and then move the
right source one site to the right. Figure 3(a) shows the execution of rule (1) from
the obtained configuration. At time t = 1, the displacement is visible where the
right source (right ball) is one unit on the right of the null distance site. For
brevity, we call these null distance sites valley, because of their local minimum
status.

Considering the definition of summits given in Eq. 2, that execution leads to
the creation of a spurious summit. This is because the previous site of the source
has two neighboring sites with value 1. So it jumps to the value 2 immediately
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(a)

(b)
t = 1 t = 2 t = 3 t = 4 t = 5

Fig. 3. (a) Execution of the rule (1) after a source displacement. The down arrow
indicate the spurious summit position. (b) Execution of the rule (3). The down
arrow indicate the −ǫ positions

after loosing its source. In order to conserve the equivalences between summits
and middles, we need to modify the rule to prevent those spurious summits
to be created. The rule (3) is like (1) with the additional line: TI(c, s)(i) =
1− ǫ if ¬s(i)∧ c(i) = 0, which detects the sites that have just lost a source, and
gives them the value 1 − ǫ. This value is strictly between the values of its two
neighbors at the next instant (0 for the neighbors receiving the source, 1 for the
other) which prevent the detection of a summit. Figure 3(b) shows the execution
of the rule (3).

TI(c, s)(i) =







0 if s(i),
1− ǫ if ¬s(i) ∧ c(i) = 0,
1 + min(c(i− 1), c(i + 1)) otherwise.

(3)

The rule (3), named TI , exhibits every needed properties and corresponds
to our layer rule. It uses integer numbers, leading to an unbounded number of
states. We will consider later an other versions TF that directly inherits from
this rule and has a finite number of state. We also delay the precise description
of the dynamics of the rule (3) for the moment, to concentrate now on the way
that rule is combined with itself when considering the two layers described in
Sect. 2.1.

2.3 The CA rule: coupling two layer rules

We have described the layer rule which compute the middles from the sources
for a layer. To obtain the CA rule, we need to combine two layers and make each
uses the summits of the other to update its sources position. Let us see now how
the sources are represented.

In the layer rule, we have considered that it is possible to have a Boolean
indicating the source presence in each site. A first natural idea is to encode this
Boolean directly in the state of each site. The updating of this Boolean should
then move the source to the middles smoothly (less than one site per instant).
However, since the behavior of the layer rule makes the summits move smoothly,
the sources will do more than follow the summits: they will be equal to the sum-
mits of previous instant. So we simplify the CA rule by directly providing the
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summits of each layer as the sources of the other.

So the two layers are represented by two integer numbers p and w on each
site. p is considered to be the distance to the nearest point, and w to be the
distance to the nearest wall. In the rest of the article, pt(i) denote the value of
p in the site i at time t, and wt(i) denote the value of w in the site i at time
t. The two layers evolutions are coupled in the following single CA rule where
T = TI (and also TF and TC in the following sections):

{
pt+1 = T (pt, summit(wt)),
wt+1 = T (wt, summit(pt)),

(4)

The final concern is the initial configuration. The layer p associates a valley to
sites that correspond to particles, and the distance 1 to every other sites. Thus,
the summits of the layer p are large intervals and will be shrunk as showed in
Fig. 2. The layer w has the value 1 where p has the value 0, and vice-versa,
thus creating an initial correspondence between the valleys of each layer with
the summits of the other.

{
p0(i) = 0 if i ∈ {Pj}kj=1, 1 otherwise,
w0(i) = 1 if i ∈ {Pj}kj=1, 0 otherwise.

The behavior on the border of the cellular space is defined by the reflection
boundary condition, which means that if the space size is n, ct(−1) = ct(1) and
ct(n) = ct(n−2) for c = p and c = w. The resulting cellular automaton, coupling
the two layer, exhibits really interesting behavior, some happening in each layer
separately, and others being the result of the coupling. Those behaviors reflects
how the cellular automaton works, and are explained in the following sections.

3 Dynamics of the cellular automaton

In this section, we explain the behavior of our cellular automaton. We identify
signals traveling between particles and walls and causing their displacements in
the cellular space. From the interaction between the particles, the walls and the
signals, we abstract the behavior of our two-layered cellular automaton into a
consistent spatio-temporal diagram showing how the cellular automaton evolves
as a whole. In the following sub-sections, we consider maximum intervals where
the value on a layer is constant. They include only valleys and summits, enabling
to detect summits locally as explained in Sect. 2.2. The slopes are the remaining
parts between the valleys and the summits. Figure 4 illustrates these definitions.

3.1 Nature of the signals

It is possible to define signals firstly by identifying a preserved information, and
secondly by showing the way they move in the cellular space. In those two re-
spects, Fig. 3 already gives a lot of information on the signals characterizing the
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Fig. 4. Different parts of a layer of the CA. Slopes are always strict. They can
have a null size, but we consider that there is always a slope between a valley
and a summit

rule (3). In fact, the spurious summit on row (a), as well as the special pattern
created by the −ǫ on row (b) are conserved and move from the valley, that cre-
ates that, all the way to the summit that absorbs them. Figure 5(a) illustrates
that fact by showing explicitly the transformation occurring on the slopes: they
are just translated to obtain the next configuration. The vector of translation6

is (1, 1) for increasing slopes, and (−1, 1) decreasing slopes.

Figure 3 also shows that creation of a signal is done by a displacement of a
valley and its absorption results in the displacement of a summit. From interac-
tions of w and p layers (Eq. 4), the summit’s displacement in one layer causes the
valley’s displacement in the other layer, since the summits of each layer become
the valleys of the other. Thus, signals absorbed in one layer are transferred to
the other layer. Figure 5(b) gives an abstract view of the translation occurring in
the whole cellular automaton, along with the transfers from summits to valleys
of the cellular automaton. It can be summarized by a virtual network wall ⇋

point ⇋ . . . wall. . .⇋ point ⇋ wall.

(a) (b)

Fig. 5. (a) on the left, a configuration; on the right, the configuration after
transformation. The same vectors are represented on both side to highlight the
occurring translation. (b) The underlying movement of signals in the whole sys-
tem: the set of all translation, plus the transfer of signal from the displacement
of a summit to the displacement of the correspond valley (down arrows in dotted
lines)

6 A translation (dx, dy) has to be interpreted as ct(x + dx) = ct−1(x) + dy
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3.2 Signals and energy

Figure 5(a) shows that patterns move in this virtual network. Since the pattern
move in x-axis but also in the y-axis, the conserved information is the differential
in the pattern. So the signals are located between two sites i and i + 1, and are
related to ct(i + 1)− ct(i).

Figure 3(1) shows a configuration obtained with two sources fixed until con-
vergence. So no signals should be in it. This remark complete our definition of
the signals: it is the difference between the current differential and the desired
one. The desired differential is 1, -1 or 0, depending on whether the two sites are
in a positive slope, a negative or a two-sites non-strict maximum or minimum.
Care should be taken that the minimums are defined by the source presence in-
stead of the valley, allowing to take into account the signals during their transfer
from one layer to the other. Figure 6 shows schematically the correlation between
the displacement of a valley, the generated signal, and the displacement of the
corresponding summit.

(a) (b) (c) (d)

Fig. 6. Effect of a valley displacement to the left(a,b) and to the right(c,d) on
positive(a,c) and negative(b,d) slopes, and the resulting summit displacement.
The signs of the signals are represented by the clockwiseness of the arcs showing
the slopes modification.

By studying the sign of signals created by a valley’s displacement, it is pos-
sible to see that the signals is positive if the displacement is rightwards, and
negative if it is leftwards. Also, a valley’s displacement towards a direction cre-
ates a displacement of a summit in the same direction. So the sign of signals
fully corresponds to directions.

Let us now consider all the signals together. We define the energy of the
system has the sum of the absolute values of signals. The preceding reasoning
shows that energy does not increase. In fact, it decrease because signals reaching
the border of the CA vanish without creating additional displacement. Also,
signals of opposite value do not create additional displacement when they meet
on a summit, since they should create movement in opposite direction. So they
annihilate each other and the energy also decreases in this case. When the energy
becomes zero, all slopes are exactly 1 or -1, and the distances between any valley
(resp. summits) and its two neighbor summits (resp. valleys) are the same, thus
achieving a regular placement.
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Figure 7 exhibits a whole execution by showing only the valleys of both layers
(points and walls) and the signals traveling in the space and interacting with
the valleys. The initial configuration is a compact set of points placed slightly to
the left of the center of the space. The final configuration (bottom of the second
column) shows a regularly placed set of points.

Fig. 7. Spatio-temporal diagram representing the points (dark gray), the walls
(light gray) and the signals traveling through the space (black)
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4 Cellular automaton with finite state

The rule (3) uses integer numbers. The number of used states is a factor of the
size of the space. We show now that its possible to use only a fixed number of
states. The thing to notice is that most of the time, the difference between the
values of two consecutive sites is small. If this difference is bounded, only a fixed
number of local configuration is needed.

To obtain the finite state cellular automaton, we modify the rule to bound
the difference of values of two neighbor sites, without breaking the dynamics
of the cellular automaton. Then we bound the number of state by storing the
value of the state modulo a certain number. In the rest of this section, the rule is
written with ǫ = 0.5 and every values are doubled in order to have only integers.
Using this convention, the rule (3) becomes:

TI(c, s)(i) =







0 if s(i),
1 if ¬s(i) ∧ c(i) = 0,
2 + min(c(i− 1), c(i + 1)) otherwise.

4.1 Bounding the differences

We already showed that every differences are just translated in the slope, and
are created in the valleys when they move. It means that we only have to take
care of what happens in the valleys to bound every differences in the system.
When a site looses its sources, the difference created is always 0.5 ∗ 2 = 1. The
difficult case is the site winning a source. Figure 8 shows that if a source moves
in the same direction repeatedly, arbitrary large differences are created.

(0) (1) (2) (3a)

Fig. 8. Effects of a source moving two times in the same direction

Those large differences are due to the direct assignment to 0 of a site having
a source. They disappear if we allow a site to smoothly decrease of α at a time,
with α = 1 or 2. So rule part: TI(c, s)(i) = 0 if s(i), of the rule (3) becomes:
TF (c, s)(i) = max(0, c(i)− α) if s(i) of the rule (5).

TF (c, s)(i) =







max(0, c(i)− α) if s(i),
1 if ¬s(i) ∧ c(i) = 0,
2 + min(c(i− 1), c(i + 1)) otherwise.

(5)

However, as Fig. 9(3b) shows, rule (5) can create a valley with a non-null
distance. Therefore, we need to modify this rule so that a valley keeps its value
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(2) (3b) (3c)

Fig. 9. Situation after (2) using a modified rule: (3b) with smooth decrease, and
(3c) with smooth decrease and preservation condition

as long as the smooth decrease is not finished. The condition (6) is true when a
valley has to be preserved. The rule (7) implement this valley preservation.

Figure 10 shows that the run with α = 2 is almost the same as the integer
CA. A close inspection reveals only a dozen of spots where the delay implied by
the rule (7) are represented by a discontinuity in the signal.

condF (c, s)(i) = c(i) = 0 ∧max(c(i− 1), c(i + 1)) > α (6)

T ′F (c, s)(i) =

{
c(i) if condF (c, s)(i),
TF (c, s)(i) otherwise. (7)

4.2 Bounding the number of states

The maximum difference is k = 4, when α = 2 and k = 3 when α = 1. The
rule (7) can be left as is if one store the state (mod 2k+1), and add a preliminary
stage where v = 3k + 1− c(i):

c′(i)← k,

c′(i− 1)← (c(i− 1) + v) mod (2k + 1),

c′(i + 1)← (c(i + 1) + v) mod (2k + 1).

The effect of this stage is to translate the state values in order to have a
correct order relationship between them. Of course, the result of the rule has to
be translated back. Those translations do not affect the behavior of the cellular
automaton since every notion of summits, signals and so on, are build on top of
the differential, which is conserved thanks to the translation process.

The number of state is 2k + 1. For α = 1, k = 3 and the number of state for
w is 7 and for p also 7. For α = 2, k = 4 and we need 9 states, but it is quicker.

5 Convergence with probabilistic cellular automaton

The analysis done on energy shows that is decreases. Because it is a positive
integer, it converges, but the limit could be non zero. This does happen in some
very specific case, as shown in Fig. 11(a).

Depending on whether a summit spans one or two cells, a signal arriving
at a summit can go trough it or bonce on it. This can lead to cycles when a
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Fig. 10. Spatio-temporal diagram with the same initial configuration as previ-
ously, but with the finite state rule

positive signal followed by a negative signal alternatively bounce between two
points/walls as show in Fig. 11(a).

Being of opposite signs, those two signals would annihilate each other, if
they could meet. To provoke this meeting, we non-deterministically slow down
the bouncing of negative signals going rightwards, so that the other positive
signal can eventually catch up with the negative.

It suffices to replace condF by condF ∨ (condC ∧ rand(0, 1) < p) in rule (7),
where condC defined in (8) is true when the creation of the valley, (corresponding
to the bouncing) can be delayed and rand(0, 1) < p is true with probability p.
Figure 11(b) shows the results.
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condC(c, s)(i) = c(i) ≤ 1 ∧ s(i) ∧ s(i + 1) (8)

6 Conclusion

In this paper, we have presented and explained a 1D CA rule running on two
layers with 7 states, and show that it uniformizes a set of points. As shown in the
space time diagrams, the rule converges to a final configuration, characterized
by an integer d such that any two consecutive points lies at distance d′ where
|d−d′| ≤ 1. We analyze the mechanism of the rule to explain this behavior. Our
future work will simplify the rule, report a more formal proof of convergence,
study the time performance, and generalize to 2D CA.
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(a) (b)

Fig. 11. (a) Spatio-temporal diagram of an initial situation with two particles
producing a limit cycle. (b) With the probabilistic rule, the signal is sometimes
retained. When it meets its opposing signals, it annihilates with it.
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Abstract. We introduce a new algebraic transition system called an
abstract collision system (ACS). We investigate its properties of compu-
tations. An abstract collision system is a kind of extension of a billiard
ball system. Further, it is considered as an extension of not only a cellular
automaton but also a chemical reaction system. Defining collision sets,
we formalise ACS as a mathematical algebraic system. Next, we reformu-
late a billiard ball system using ACS. We also investigate the simulations
of one-dimensional cellular automata and cyclic tag systems using ACS.
Since simulations are defined by concrete mathematical functions, we can
estimate simulation steps by formulae of system parameters.

1 Introduction

Recently, there are many investigations about new computing frameworks which
considered as the replacement of current electric computer devices and digital
computers. One of main frameworks is the collision-based computing [1] includ-
ing cellular automata and reaction-diffusion systems. We introduce an algebraic
discrete model to describe these kind of models formally and investigate and
compare them using theoretical formulations.

When we consider a collision-based computing, a transition is caused by
movings(changing) and collisions (reactions). A moving (changing) is a transition
of a single object. A collision (reaction) is caused by a set of objects. Conway
introduced ‘The Game of Life’ using two-dimensional cellular automaton [2].
In ’The Game of Life’, some patterns in cells called ’glider’ is objects. Their
collisions are brought by transitions of the cellular automaton. He showed it
can simulate any logical operations using ’glider’s. Wolfram and Cook [5, 3]
found ’glider’ patterns which act collisions in the one-dimensional elementally
cellular automata CA110. Cook introduced an cyclic tag system (CTS) as a
Turing universal system and proved that CTS is simulated by CA110. Recently,
Morita [4] introduced a reversible one-dimensional cellular automata simulating
CTS. In this model, an object is represented by a state itself.

In this paper, we introduce an abstract collision system(ACS). It is a kind of
extension of a billiard ball system. Since it is defined as an abstract system, it
seems to be considered as an extension of an cellular automaton and chemical
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0 1 2 3 0 1 2 3

Fig. 1. Moving

reaction systems. First, we show an example of a one-dimensional billiard ball
system as ACS. A ball has a velocity, a label and a position. We consider discrete
time transitions. A ball moves to left or right according its velocity within an
unit time. Let (2, A, 1) be a ball with the velocity 2, the label ’A’ and the position
1. At the next step, the ball becomes (2, A, 3) (cf. Fig. 1).

That is the velocity and the label are same and only the position is changed
to 3. Some balls may crash in some unit time and exchange their velocities.
In our paper, we do not describe a crash using positions and velocities. We
define a set of balls which cause collisions and assign the result of the collisions.
For example, a collision set is {(2, A, 1), (−1, B, 2)}. We define the result of the
collision by a set {(2, B, 3), (−1, A, 1)} and write it as f({(2, A, 1), (−1, B, 2)})
= {(2, B, 3), (−1, A, 1)} (cf. Fig. 2).

0 1 2 3 4 0 1 2 3 4

Fig. 2. Collision

For a collision sets C, we prepare a local function f : C → 2S where S is a
set of balls and 2S is the set of all subsets of S. An abstract collision system is
defined by a triple (S, C, f) where S is a set of balls, C a set of collisions, and
f : C → 2S.

Let V = {−1, 2}, S = {(u, A, x) |x ∈ Z, u ∈ V } ∪ {(v, B, y) |y ∈ Z, v ∈ V },
and C = { {(2, A, 1), (−1, B, 2)}, {(2, A, 2), (−1, B, 3)}, {(2, A, 1), (−1, B, 3)},
{(2, A, 1), (2, A, 2), (−1, B, 3)} } ∪{{s}|s ∈ S}. We define a function f : C → 2S

as follows:

c f(c)

{(2, A, 1), (−1, B, 2)} {(2, B, 3), (−1, A, 1)}
{(2, A, 2), (−1, B, 3)} {(2, B, 4), (−1, A, 2)}
{(2, A, 1), (−1.B, 3)} {(2, B, 3), (−1, A, 2)}

{(2, A, 1), (2, A, 2), (−1, B, 3)} {(2, A, 3), (2, B, 4), (−1, A, 2)}
{(u, A, x)} {(u, A, x + u)}
{(v, B, y)} {(v, B, y + v)}
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An abstract collision system is defined by (S, C, f) and an example of state
transitions are figured in Fig. 3.

0 1 2 3 4 5 6 7

Fig. 3. Transition

We note that {(4, A, 2), (−1, B, 6)} does not cause a collision, because it is
not in the collision set C in the example of ACS.

Since an abstract collision system is formalised as an mathematical algebraic
system, properties of computations (transitions) are proved rigorously. On the
other hand, transitions of an abstract collision systems may have differences
from real physical phenomenon. The differences are depend on the definition of
a collision set C and a local function f : C → 2S, so we must choose proper C and
f for each real collision phenomenon. We believe we can describe not only one-
dimensional billiard ball system but also some general reaction-refusion process
and it could be useful to investigate there computation properties.

In Sect. 2, we introduce an abstract collision system using the definition
of a collision set. Properties about collision sets are investigated. Further, we
reformulate a billiard ball system using our abstract collision system and prove
their properties.

In Sect. 3, we simulate a billiard ball system by one-dimensional cellular
automaton using our abstract collision system. When a transition of a billiard
ball system is simulated by only one transition of a cellular automaton, the
relationship between the number of state in a cellular automaton and the number
of balls in a billiard system are investigated.

In Sect. 4, we simulate a cyclic tag system using our abstract collision system.
The essential idea is similar to the results by Cook [3] and Morita [4]. Our model
is defined by functions and formulae, so we can easily describe simulation steps
using formulae. Combining the result of this section and the previous section,
a cyclic tag system is simulated by one-dimensional cellular automaton. The
number of state requiring to simulate a cyclic tag system is investigated. But
the minimum state number to simulate a cyclic tag system has not been taken
yet.
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2 An abstract collision system

In this section, we define an abstract collision system.

Definition 2.1 (Set of collisions). Let S be a non-empty set. A set C ⊆ 2S

is called a set of collisions on S iff it satisfies the following conditions:

(SC1) s ∈ S ⇒ {s} ∈ C.
(SC2) X1, X2 ∈ C, X1 ∩X2 6= φ⇒ X1 ∪X2 ∈ C.
(SC3) A ∈ 2S , p ∈ A⇒ [p]AC := ∪{X | X ∈ C, p ∈ X, X ⊆ A} ∈ C.

We note that the condition (SC3) can be omitted if C is a finite set.

Proposition 2.1. Let C be a set of collisions on S. For any A ∈ 2S and p, q ∈ A,
we have the following:

(1) [p]AC 6= φ.
(2) [p]AC ∩ [q]AC 6= φ⇒ [p]AC = [q]AC .

Proof. (1) Since {p} ∈ C, p ∈ {p} and {p} ⊂ A, we have {p} ⊂ [p]AC . Hence
[p]AC 6= φ.

(2) We assume [p]AC ∩ [q]AC 6= φ. Since [p]AC , [q]AC ∈ C, p ∈ [p]AC ∪ [q]AC ∈ C and
[p]AC ∪[q]AC ⊆ A, we have [p]AC ∪[q]AC ⊆ [p]AC . Hence [p]AC = [p]AC ∪[q]AC . Similarly,
we have [q]AC = [p]AC ∪ [q]AC . Hence [p]AC = [q]AC .

Definition 2.2 (An abstract collision system). Let S be a non-empty set
and C be a set of collisions on S. Let f : C → 2S. We define an abstract collision
system ACS by ACS = (S, C, f). We call the function f and the set 2S a local
transition function and a configuration of ACS, respectively. We define a global
transition function δACS : 2S → 2S of ACS by δACS(A) = ∪

{
f([p]AC ) | p ∈ A

}
.

Example 2.1. Let S = {A1, A2, A3, B1, C1, C2},
C = {{A3, B1}, {A1}, {A2}, {A3}, {B1}, {C1}, {C2}}
and f : C → 2S be f({A3, B1}) = {C1}, f({A1}) = {A2}, f({A2}) = {A3},
f({A3}) = {A3}, f({B1}) = {B1}, f({C1}) = {C2}, f({C2}) = {A1, B1}.

Then we have {A1, B1} 7→ {A2, B1} 7→ {A3, B1} 7→ {C1} 7→ {C2} 7→
{A1, B1} (cf. Fig. 4).

Proposition 2.2. For a given relation RS on S, we define C[RS ] by

C[RS ] := ∩
{

C
∣
∣
∣
∣

C is a set of collisions on S such that
(x, y) ∈ RS ⇒ {x, y} ∈ C

}

.

Then C[RS ] is a set of collisions on S.

Proof. (1) Let s ∈ S and C be a set of collisions on S. Then we have {s} ∈ C
by (SC1). Hence {s} ∈ C[RS ].

(2) Let X1, X2 ∈ C[RS ] with X1∩X2 6= φ. Let C be a set of collisions on S such
that (x, y) ∈ RS ⇒ {x, y} ∈ C. Since X1, X2 ∈ C, we have X1 ∪X2 ∈ C by
(SC2). Hence X1 ∪X2 ∈ C[RS ].
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a,b

a,a,b

a,a,a,bc

c,c

},{ 11 BA

},{ 12 BA

},{ 13 BA}{ 1C

}{ 2C

Fig. 4. An example of an abstract collision system.

(3) Let A ∈ 2S and p ∈ A. Let C be a set of collisions on S such that (x, y) ∈
R ⇒ {x, y} ∈ C. Since C[RS ] ⊆ C, we have [p]AC[RS] ⊆ [p]AC ∈ C by (SC3).
Hence [p]AC[RS] ∈ C[RS].

Next we define a discrete billiard system as a special case of an abstract collision
system.

Definition 2.3. Let L be a finite set, V be a finite subset of Z and B = V ×L×Z.
We call each element of L a label. We define a relation RB on the set B by
((vl, al, xl), (vr , ar, xr)) ∈ RB ⇔ 0 < xr−xl

vl−vr
≤ 1

Definition 2.4 (Shift). For any X ∈ 2B and d ∈ Z, the d-shift of X, which is
denoted by X + d, is defined by

X + d := {(v, a, x + d) | (v, a, x) ∈ X} .

We define a relation Rshift on B by (X1, X2) ∈ Rshift ⇔ there exists d ∈ Z

such that X2 = X1 + d.

Proposition 2.3. This relation Rshift is an equivalence relation.

Proof. Since

(1) X = X + 0,
(2) X2 = X1 + d⇒ X1 = X2 + (−d) and
(3) X2 = X1 + d1, X3 = X2 + d2 ⇒ X3 = X1 + (d1 + d2),

it is clear that Rshift is an equivalence relation.

Definition 2.5. For the above set B and the relation RB, consider a set ∪{b |
[b] ∈ C[RB]/Rshift} of representative elements.
It is not determined uniquely. However, we select one of such sets and denote it
by F [B].
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Definition 2.6 (A discrete billiard system). A discrete billiard system is
defined by BS = (B,F [B], fF [B]), where fF [B] : F [B]→ 2B satisfies
fF [B]({(v, a, x)}) = {(v, a, x + v)}.

Definition 2.7. We define f̂BS : C[RB]→ 2B as follows:

f̂BS(X + d) = fF [B](X) + d for X ∈ F [B], d ∈ Z. (1)

We define a global transition function δBS : 2B → 2B of BS by that of an
abstract collision system (B, C[RB], f̂BS).

Remark 2.1. Let L be a set of labels. Let B and F [B] be those in the above
definition. Let F ⊆ F [B] and fF : F → 2B. Then we can define fF [B] : F [B]→
2B by

(1) fF [B](X) = fF (X) for X ∈ F .
(2) fF [B](X) = {(v, a, x + v) | (v, a, x) ∈ X} for X ∈ F [B] \ F .

In the following examples, we use F and f : F → 2B instead of F [B] and
fF [B] : F [B]→ 2B, respectively.

Example 2.2. Let L = {A, B}, V = {−1, 2} and B = V ×L×Z. Then F1 ⊆ F [B],
where

F1 =







{(2, A, 1), (−1, B, 2)},
{(2, A, 1), (−1, B, 3)},

{(2, A, 1), (2, A, 2), (−1, B, 3)}






. (2)

Let fF1 : F1 → 2B be

fF1({(2, A, 1), (−1, B, 2)}) = {(2, B, 3), (−1, A, 1)},
fF1({(2, A, 1), (−1, B, 3)}) = {(2, A, 3), (−1, B, 2)},

fF1({(2, A, 1), (2, A, 2), (−1, B, 3)}) = {(−1, A, 2), (2, A, 3), (2, B, 4)}.
(3)

Then we have

{(2, A, 1), (−1, B, 2), (2, A, 4), (−1, B, 6)}
7→ {(−1, A, 1), (2, B, 3), (−1, B, 5), (2, A, 6)} (4)

(cf. Fig. 3).

Example 2.3. Let V = {0, 1}, L = {ε, Y, N, T, H, A, R, R′} and B = V × L× Z.
Then F2 ⊆ F [B], where

F2 =







{(1, H,−1), (0, Y, 0)}, {(1, H,−1), (0, N, 0)},
{(1, A,−1), (0, Y, 0)}, {(1, A,−1), (0, N, 0)},
{(1, A,−1), (0, T, 0)}, {(1, R′,−1), (0, Y, 0)},
{(1, R′,−1), (0, N, 0)}, {(1, R′,−1), (0, T, 0)},
{(1, R,−1), (0, Y, 0)}, {(1, R,−1), (0, N, 0)},
{(1, R,−1), (0, T, 0)}







. (5)
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Table 1. The local function fF2({(1, al,−1), (0, ar, 0)}).

ar

Y N T
H {(0, ε, 0), (1, A, 0)} {(0, ε, 0), (1, R′, 0)} − −−−

al A {(0, Y, 0)(1, A, 0)} {(0, N, 0), (1, A, 0)} {(0, ε, 0), (1, ε, 0)}
R′ {(0, Y, 0)(1, R′, 0)} {(0, N, 0), (1, R′, 0)} {(0, ε, 0), (1, R, 0)}
R {(0, ε, 0), (1, R, 0)} {(0, ε, 0), (1, R′, 0)} {(0, T, 0), (1, ε, 0)}

Moreover, we define a local transition function fF2 : F2 → 2B by Table 1 below.

We define fF [B] : F [B]→ 2B by

fF [B](X) =







fF2(X) if X ∈ F2,

fF [B](X
′) ∪ {(v0, ε, x0 + v0)} if X = X ′ ∪ {(v0, ε, x0)},

{(v, a, x + v) | (v, a, x) ∈ X} otherwise.
(6)

Transition examples of this discrete billiard system is described the following
remark (cf. Fig. 5, Fig. 6 and Fig. 7).

We study about simulations in the following sections. The above example is very
important to show that a discrete billiard system simulates a cyclic tag system.

Remark 2.2. If a ball with label H collides with another ball with label Y or N ,
it produces a ball with label A (Acceptor) or R′ (Rejector), respectively (Fig. 5).
A ball with label A passes through all balls with label Y or N . If it collides a ball
with label T , they disappear, that is, They change into balls with ε (Fig. 6).
On the other hand, a ball with label R′ passes through all balls with label Y or
N . If it collides a ball with label T , it produces a ball with label R. This ball
with label R sweeps out all balls with label Y or N until it encounters a ball
with label T (Fig. 7).

3 Cellular automata and ACS

In this section, we study about the simulation. First we show that a billiard
system with special properties can be simulated by a cellular automaton.

Definition 3.1 (A cellular automaton). Let Q be a non-empty finite set of
states of cells. Let f : Q3 → Q be a local transition function. A three-neighbor
cellular automaton is defined by CA = (Q, f). A configuration of CA is a map-
ping q : Z → Q. The set of all configurations is denoted by Conf(Q). The
global transition function g : Conf(Q)→ Conf(Q) of CA is defined as follows:
g(q)(i) = f(q(i− 1), q(i), q(i + 1)).

Definition 3.2. Let BS = (B, F [B], fB) be a discrete billiard system, where
B = L×V ×Z. We define a function pt : 2B×Z→ 2V×L by pt(A, x0) = {(v, a) |
(v, a, x0) ∈ A}.
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R

R

Fig. 5. A ball with label H collides with another ball with label Y or N , then
it produces a ball with label A or R, respectively.

Proposition 3.1. Let L be a non-empty finite set, V := {0, +1} B := V ×
L × Z and BS be a discrete billiard system (B,F [B], fF [B]). We assume that
the function fF [B] satisfies fF [B]({(1, b, x− 1), (0, a, x)}) = {(0, a′, x), (1, b′, x)},
(a, b, a′, b′ ∈ L). Then there exists a cellular automaton CA = (Q, f) and a
function π : 2B → Conf(Q) such that g ◦ π = π ◦ δBS, where g is a global
transition function of the cellular automaton CA and δBS is that of the discrete
billiard system BS.

Proof. We assume that # /∈ L. Let Q be Q = {q#}∪{q0a, q1a | a ∈ L}∪{q0a+1b |
a, b ∈ L}. A local transition function f : Q3 → Q is defined by Table 2, where
qright ∈ Q.

Table 2. The local function of the CA.

f(qleft, qcenter , qright) qcenter

q# q0a q1a q0a+1r

q# q# q0a q# q0a

qleft q0l q# q0a q# q0a

q1b q1b q0a′+1b′ q1b q0a′+1b′

q0l+1b q1b q0a′+1b′ q1b q0a′+1b′

We define π : 2B → Conf(Q) by

π(A)(x) =







q# if pt(A, x) = φ,

q0a if pt(A, x) = {(0, a)},
q1a if pt(A, x) = {(1, a)},
q0a+1b if pt(A, x) = {(0, a), (1, b)}.
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Fig. 6. A ball with label A passes through all balls with label Y and N , and
delete a ball with label T , which is a terminal symbol of word.

It is easy to show that g ◦ π = π ◦ δBS .

2B(BS)
π
> Conf(Q)(CA)

2B

δBS

∨

π
> Conf(Q)

g
∨

4 Cyclic tag systems and ACS

In this section, we study a discrete billiard system and a cyclic tag system. We
show that a discrete billiard system can simulate any cyclic tag systems.

Definition 4.1. Let Σ be a finite set. We call w = w1w2 · · ·wn word on Σ.
We denote n by Len(w), which is called the length of w. Let λ be a word with
Len(λ) = 0. We denote Σ∗ by Σ∗ = {w | w is a word on Σ}.



348 Ito, Inokuchi, Mizoguchi

R

R

R

R

R

R

R’

R’

R’

R’

R’

Fig. 7. A ball with label R′ passes through all balls with label Y and N , and it
produces the ball with label R when it collides a first ball with label T . The ball
with label R sweeps out all balls with Y and N until next the ball with label
T . So all balls between first and second balls with label T are deleted (changed
into balls with label ε).

Definition 4.2. We define a function obs : ACS → L∗. It arranges labels of
all balls sorted by their position. That is, X = {(vi, ai, xi) | ai ∈ L, xi ∈ Z, i =
1, 2, . . . , n}, and x1 ≤ x2 ≤ · · · ≤ xn, xi = xi+1 ⇒ vi ≤ vi+1. then we define
obs(S) = a1a2 · · · an.

Definition 4.3 (A cyclic tag system). A cyclic tag system is defined by
C = (k, {Y, N}, (p0, . . . , pk−1)), where k ∈ N and (p0, . . . , pk−1) ∈ ({Y, N}∗)k.
A pair (w, m) is called a configuration of C, where w ∈ {Y, N}∗ and i ∈
{0, 1, . . . , k − 1}.
We denote the set of all configurations of C by ConfCTS(C) = {Y, N}∗ ×
{0, 1, . . . , k − 1}. A transition function δC : ConfCTS(C) → ConfCTS(C) is
defined by

δC(Y w′, m) = (w′pm, m + 1 mod k),

δC(Nw′, m) = (w′, m + 1 mod k).
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Example 4.1. Consider a cyclic tag system C = (2, {Y, N}, (Y Y Y, N)) and initial
configuration (Y, 0). Then we see that

δC
1(Y, 0) = (Y Y Y, 1),

δC
2(Y, 0) = (Y Y N, 0),

δC
3(Y, 0) = (Y NY Y Y, 1).

We consider Example 2.3 again. By arranging balls to some special form, this BS
can simulate a CTS. From now on, let B, F [B] and fF [B] : F [B]→ 2B be those
of Example 2.3. Let BS be a discrete billiard system BS = (B,F [B], fF [B]). We
define EB by EB := {(v, ε, x) | v ∈ V, x ∈ Z}.

Lemma 4.1. We have δBS(X) \ EB = δBS(X \ EB) \ EB .

Proof. Let EX
B := EB ∩X and X ′ = X \EX

B , then we have δBS(X) = δBS(X ′ ∪
EX

B ) = δBS(X ′)∪ δBS(EX
B ). Since EX

B ⊆ EB and δBS(EX
B ) ⊆ EB , then we have

δBS(X ′)∪δBS(EX
B )\EB = δBS(X ′)\EB. Hence δBS(X)\EB = δBS(X ′)\EB =

δBS(X \ EB) \ EB .

Definition 4.4. Let C be a cyclic tag system
C = (k, {Y, N}, (p0, . . . , pk−1)) and (w, m) ∈ {Y, N}∗ × {0, 1, . . . , k − 1}, We
denote Pi ∈ {Y, N}∗ by Pi = p(m+i mod k). For X ∈ 2B, we define X ∈
ARR(C, w, m) by

X \ EB

=
{

(1, H, x
(i)
H ) | i = 1, 2, . . .

}

⋃
{

(0, wj , x
(0)
j ) | w = w1 · · ·wn, j = 1, 2, . . . , n

}

⋃
{

(0, T, x
(0)
T )
}

⋃

{

(0, (Pi)j , x
(i)
j ),

(0, T, x
(i)
T )

∣
∣
∣
∣

i = 1, 2, . . . ,
Pi = (Pi)1(Pi)2 · · · (Pi)ni

, j = 1, 2, . . . , ni

}

,

(7)

where x
(i)
j satisfies

x
(i)
j > 0 for any i, j,

x
(i)
j < x

(i)
j+1 < x

(i)
T ,

x
(i)
T < x

(i+1)
0 .

(8)

Moreover, x
(i)
H (i = 1, 2, . . .) are determined by the following recursive formula:

x
(1)
H = 0, x

(i+1)
H = x

(i)
H − x

(i)
T . (9)

We put
head(X, i) := x

(i)
H for i = 1, 2, . . . ,

term(X, i) := x
(i)
T for i = 0, 1, 2, . . . .

(10)
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Remark 4.1. By using Eq. (10), we can rewrite Eq. (9) by

head(X, 1) = 0,
head(X, i + 1) = head(X, i)− term(X, i).

(11)

Lemma 4.2. Let C be a cyclic tag system, (w, m) be a configuration of C. Then
it follows that X, Y ∈ ARR(C, w, m)⇒ obs(X) = obs(Y ).

Proof. Since X, Y ∈ ARR(C, w, m), both X and Y satisfy Eq. (7) and Eq. (8).
Therefore Definition 4.2 shows this lemma.

Lemma 4.3. Let C be a cyclic tag system, (w0, m0) be a configuration of C.
Assume that X ∈ ARR(C, w0, m0). Put T = term(X, 1)− head(X, 1). Then we
have

(1) X ′ := δBS
T (X) ∈ ARR(C, w1, m1),

(2) head(X ′, i) = head(X, i + 1) + T for i = 1, 2, . . .,
(3) term(X ′, i) = term(X, i + 1) for i = 0, 1, 2, . . .,

where (w1, m1) = δC((w0, m0)).

Proof. It is sufficient to consider the two cases of w0 = Y w′ and w0 = Nw′.
At first, we show the former. Since X ∈ ARR(C, Y w′, m0), we can write

X \ EB

=
{

(1, H, x
(i)
H ) | i = 1, 2, . . .

}

⋃
{

(0, Y, x
(0)
1 )
}

⋃
{

(0, w′j , x
(0)
j )

∣
∣
∣
∣

w′ = w′1w
′
2 · · ·w′n′ ,

j = 1, 2, . . . , n′

}

⋃
{

(0, T, x
(0)
T )
}

⋃
{

(0, (Pi)j , x
(i)
j ), (0, T, x

(i)
T )

∣
∣
∣
∣

i = 1, 2, . . . ,
Pi = (Pi)1 · · · (Pi)ni

, j = 1, 2, . . . , ni

}

.

We have T = term(X, 1) − head(X, 1) = x
(1)
T − x

(1)
H . Note that Remark 2.2

provides us with

δBS
T (X) \ EB

=
{

(1, H, x
(i+1)
H + T ) | i = 1, 2, . . .

}

⋃
{

(0, w′j , x
(0)
j ) | w′ = w′1 · · ·w′n′j = 1, 2, . . . , n′

}

⋃
{

(0, (P1)j , x
(1)
j ), (0, T, x

(1)
T )

∣
∣
∣
∣

P1 = (P1)1 · · · (P1)n1 ,
j = 1, 2, . . . , n1

}

⋃







(0, (Pi+1)j , x
(i)
j ),

(0, T, x
(i+1)
T )

∣
∣
∣
∣
∣
∣

i = 1, 2, . . . ,
Pi+1 = (Pi+1)1 · · · (Pi+1)ni+1 ,

j = 1, 2, . . . , ni+1






.
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Since (w1, m1) = (w′P1, m0 + 1 mod k), we get

δBS
T (X) \ EB

=
{

(1, H, x
(i+1)
H + T ) | i = 1, 2, . . .

}

⋃
{

(0, (w1)j , x
(0)
j ) | w1 = (w1)1 · · · (w1)n1 , j = 1, 2, . . . , n1

}

⋃
{

(0, T, x
(1)
T )
}

⋃







(0, (Pi+1)j , x
(i)
j ),

(0, T, x
(i+1)
T )

∣
∣
∣
∣
∣
∣

i = 1, 2, . . . ,
Pi+1 = (Pi+1)1 · · · (Pi+1)ni+1 ,

j = 1, 2, . . . , ni+1






.

Hence
head(X ′, i) = x

(i+1)
H + T = head(X, i + 1) + T,

term(X ′, i) = x
(i+1)
T = term(X, i + 1)

(12)

(the second and third statements of lemma). Moreover, it is easy to show that
head(X ′, 1) = 0 and head(X ′, i + 1) = head(X ′, i)− term(X ′, i). Hence we can
conclude that X ′ = δBS

T ∈ ARR(C, w1, m1). By a similar way, we can show the
latter.

Theorem 4.1. Let C be a cyclic tag system and X0 ∈ ARR(C, w0, m0). Then,
we have δ

T (t)
BS (X0) ∈ ARR(C, wt, mt),

where

T (0) = 0, (13)

T (t) = term(X0, t)− head(X0, t), (14)

(wt, mt) = δC
t((w0, m0)).

Proof. We show this by using mathematical induction. In the case of t = 0, it is
clear. Let Xt := δBS

T (t)(X0). We assume that

(1) Xt ∈ ARR(C, vt, mt),
(2) head(Xt, i) = head(X0, t + i) + T (t) and
(3) term(Xt, i) = term(X0, t + i).

It is sufficient to show that

(1) Xt+1 ∈ ARR(C, wt+1, mt+1),
(2) head(Xt+1, i) = head(X0, t + 1 + i) + T (t + 1) and
(3) term(Xt+1, i) = term(X0, t + 1 + i).

Since

T = term(Xt, 1)− head(Xt, 1)

= term(X0, t + 1)− (head(X0, t + 1) + T (t))

= (term(X0, t + 1)− (head(X0, t + 1))− T (t)

= T (t + 1)− T (t),
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term(X,0)head(X,1) term(X,1)

X =

T(1)=term(X,1)-head(X,1)

T(1)

Fig. 8. A discrete billiard system simulates 1 step of a cyclic tag system. This
figure shows the proof of the former case of Lemma 4.3.

we have

Xt+1 = δ
T (t+1)
BS (X0)

= δ
T (t+1)−T (t)+T (t)
BS (X0)

= δ
T (t+1)−T (t)
BS ◦ δ

T (t)
BS (X0)

= δT
BS(Xt) ∈ ARR(C, wt+1, mt+1) (by Lemma 4.3) .

Furthermore, it follows that head(Xt+1, i) = head(Xt, i+1)+T = (head(X0, (t+
i)+1)+T (t))+T = head(X0, t+1+i)+T (t+1) and term(Xt+1, i) = term(Xt, i+
1) = term(X0, t + i + 1).

Corollary 4.1. For each cyclic tag system C, we consider a function
ConfCTS(C) → 2B which satisfies inC ((w, m)) ∈ ARR(C, w, m). It is not de-
termined uniquely. However, we choose one of such functions and fix it. Let
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(w, m) be a configuration of C. Then we have

obs ◦ δBS
T (t) ◦ inC((w, m)) = obs ◦ inC ◦ δC

t((w, m)), (15)

where δBS is the global transition function of BS, δC is the transition function
of C and T (t) is formulated by

X0 = inC(w, m),
T (0) = 0,
T (t) = term(X0, t)− head(X0, t).

(16)

Proof. Theorem 4.1 shows that δBS
T (t) ◦ inC((w, m)) ∈ ARR(C, w′, m′) and

inC◦δC
t((w, m)) ∈ ARR(C, w′, m′), where (w′, m′) = δC

t((w, m)). By Lemma 4.2,it
follows Eq. (15).

ConfCTS(C)
in

> 2B

ConfCTS(C)

δC
t

∨

in
> 2B

δBS
T (t)

∨
obs

> L∗

We give a example of the simulation.

Example 4.2. For a given cyclic tag system C = (2, {Y, N}, (Y Y Y, N)) and ini-
tial configuration (Y, 0), we have

inC(Y, 0) =







. . . , (1, H,−x6 − x8), (1, H,−x6), (1, H, 0),
(0, Y, x1), (0, T, x2),

(0, Y, x3), (0, Y, x4), (0, Y, x5), (0, T, x6),
(0, N, x7), (0, T, x8),

(0, Y, x9), (0, Y, x10), (0, Y, x11), (0, Y, x12), . . .







.

By the expression of T (t), we have T = x6 − 0 = x6. Hence we can compute

δBS
T (inC(Y, 0))

=







. . . , (1, H,−x8), (1, H, 0), (0, ε, x1), (0, ε, x2),
(0, Y, x3), (0, Y, x4), (0, Y, x5), (0, T, x6), (0, ε, x6),

(0, N, x7), (0, T, x8),
(0, Y, x9), (0, Y, x10), (0, Y, x11), (0, T, x12), . . .







.

Therefore, the left hand side is · · ·HHY Y Y TNTY Y Y T · · · .
On the other hand, we can compute

inC ◦ δC((Y, 0)) = inC((Y Y Y, 1))

=







. . . , (1, H,−y4), (1, H, 0),
(0, Y, y1), (0, Y, y2), (0, Y, y3), (0, T, y4),

(0, N, y5), (0, T, y6),
(0, Y, y7), (0, Y, y8), (0, Y, y9), (0, T, y10), . . .







.

Hence we can see that the right hand side is
· · ·HHY Y Y TNTY Y Y T · · · . Therefore, we get Eq. (15).
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Corollary 4.2. Let C be a cyclic tag system. There exists a cellular automaton
CA = (Q, f) and π̄ : {Y, N}∗ × {0, 1, . . . , k − 1} → Conf(Q) such that g ◦ π̄ =
π̄ ◦ δC , where g is a global transition function of the cellular automaton CA and
δC is that of the cyclic tag system C.

5 Concluding remarks

In this paper, we defined a new computation model named an abstract collision
system, and defined a discrete billiard system as a special case of an abstract
collision system. We studied the relation between the model and another compu-
tation models, such as a cellular automaton and a cyclic tag system. We proved
that a discrete billiard system could simulate any cyclic tag system. Since a
cyclic tag system is universal for computation, so does a discrete billiard system.
Moreover, we proved that there was a natural correspondence between a discrete
billiard system (with some conditions) and a cellular automaton. More precisely,
a cellular automaton can simulate a discrete billiard system which simulates a
cyclic tag system. This means that a cellular automaton can simulate a cyclic
tag system. Hence we can conclude that a cellular automaton is universal for
computation.
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Abstract. Patterns, originating from different sources of perturbations,
propagating in a precipitating chemical medium do usually compete for
the space. They sub-divide the medium onto the regions unique for an ini-
tial configuration of disturbances. This sub-division can be expressed in
terms of computation. We adopt an analogy between precipitating chem-
ical media and semi-totalistic binary two-dimensional cellular automata,
with cell-state transition rule B2/S2 . . . 8. We demonstrate how to im-
plement basic logic and arithmetical operations, i.e. computability, by
patterns propagating in geometrically constrained Life rule B2/S2 . . . 8
medium.

1 Introduction

Non-standard computation deals with implementation of programmable process-
ing of information by unorthodox ways (e.g. computing with traveling localiza-
tions [2]) and in novel, or unusual, materials, (e.g. chemical reaction-diffusion me-
dia [4]). All non-standard computational systems can be classified as geometrically-
constrained (fixed, stationary, architecture, e.g. wires, gates) and architectureless
(collision-based, or ’free space’4 [1]) computers.

Conway’s Game of Life [11] is the best-known example of a universal collision-
based computer [8, 2]. Its universality [18] can be proved and demonstrated by
many ways, either simple functionally complete set of logical functions, as in [8],
or via construction of large and complicated simulators of Turing machine [9, 25]
and register machine [8].

4 ‘Free space computing’ is a term coined by Jonathan Mills.
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The Life, and Life-like rules, are know to support myriad of traveling local-
izations, or gliders; stationary localizations, or still lives; breathing stationary
localizations, or oscillators [11, 29, 12, 20, 24, 5, 30]. In its original form, where
transition from living state, ‘1’, to ‘death’ state, ‘2’, does exist, the Life automata
resemble excitable media, including excitable reaction-diffusion systems. There
is also a family of Life-life rules, where ‘cells never die’, or the state ‘1’ is an
absorbing state. This is the family of Life without Death, invented by Griffeath
and Moore in [12]. In the Life without Death automata we can still observe
propagating localizations, formed due to rule-based restrictions on propagation
similar to that in sub-excitable chemical media and plasmodium of Physarum
polycephalum [7], but no complicated periodic structures or global chaotic be-
havior occurs.

The Life without Death family of cell-state transition rules is the Game of
Life equivalent of the precipitating chemical systems. This is demonstrated in
our computational-phenomenological studies of semi-totalistic and precipitating
CA [5], where we selected a set of rules, identified by periodic structures, which
is named as Life 2c22 [21].5 The clans closest to the family 2c22 are Diffusion
Rule (Life rule B2/S7) [17], these clans also belong to the big cluster known as
Life dc22.

The Life families with indestructible patterns allow us to study a computa-
tional potential of the propagating precipitating systems. We employ our previ-
ous results on chemical laboratory prototypes of XOR gates in reaction-diffusion
chemical media [3], and design a binary adder in the CA equivalent of the
precipitating medium. In Sect. 2 we overview basic patterns emerging in rule
B2/S2 . . .8. Logical gates and a binary full adder are constructed in Sect. 3.

2 Life rule B2/S2 . . . 8

The Life rule B2/S2 . . .8 is described as follows. Each cell takes two states ‘0’
(‘dead’) and ‘1’ (‘alive’), and updates its state depending on its eight closest
neighbors as follows:

1. Birth: a central cell in state 0 at time step t takes state 1 at time
step t + 1 if it has exactly two neighbors in state.

2. Survival: a central cell in state 1 at time t remains in the state 1 at
time t + 1 if it has more then one live neighbor.

3. Death: all other local situations.

Once a resting lattice is perturbed, few cells assigned live states, patterns
formed and grow quickly. Most interesting behavior occurs when at least 20%
of cells are initially alive. A general behaviour of rule B2/S2 . . .8 can be well
described by a mean field polynomial and its fixed points (see Fig. 1) [23, 14],
as follow:

5 http://uncomp.uwe.ac.uk/genaro/diffusionLife/life_2c22.html
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pt+1 = 28p2
tq

7
t + 28p3

tq
6
t + 56p4

tq
5
t + 70p5

tq
4
t + 56p6

t q
3
t + 28p7

tq
2
t + 8p8

t qt + p9
t .

Fig. 1. Mean field curve for B2/S2 . . .8.

High densities of domains dominated by state 1 correspond to p = 0.9196 to
p = 1 (also we can consider p = 0.6598 to p = 0.7252, all they are stable fixed
points). Interesting behavior can be found in extreme unstable fixed points when
p = 0.00036 to p = 0.001. The unstable fixed points may represent gliders and
small oscillators.

(a) (b) (c) (d)

Fig. 2. Basic periodic structures in B2/S2 . . .8: (a) glider period one, (b) oscil-
lator period one, (c) flip-flop, and (d) still life configuration.

Minimal localizations, or basic periodic structures, in rule B2/S2 . . .8 include
gliders, oscillators, flip-flops, and still life (stationary localization) configurations
(Fig. 2).

A relevant characteristic was that the rule B2/S2 . . .8 supports indestructible
patterns, which can not be destroyed from any perturbation, they belong to the
class of stationary localizations, still lives [10, 22]. The minimal indestructible
pattern is show in Fig. 2d. More heavier, in a number of live cells, patterns are
provided in Fig. 3.



Computation by competing patterns: Rule B2/S2345678 359

Fig. 3. Indestructible Still Life family patterns derived in rule B2/S2 . . .8.

external perturbation (random) internal perturbation (virus)

external perturbation (glider collisions) internal perturbation (glider collision)

Fig. 4. Indestructible Still Life colonies ‘tested’ by internal and external pertur-
bations. Each pair of snapshots represents an initial condition (on the left) and
a final, i.e. stationary, configuration (on the right).

In CA rule B2/S2 . . .8 one can setup colonies of the indestructible structures
as sets of block patterns, which are capable for resisting internal and external
perturbations, see examples in Fig. 4. The indestructible patterns symbolize a
precipitation in CA development. We use these patterns to architecture channels,
or wires, for signal propagation.

The Still Life blocks are not affected by their environment however they do
affect their environment. As demonstrated in Fig. 4, bottom scenarios, gliders
colliding to the Still Life walls are transformed into propagating patterns, which
fill the automaton lattice.

Localizations colliding to Still Life blocks become delocalised.
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We use this feature of interactions between stationary and mobile localiza-
tions in designing logical circuits.

3 Computing with propagating patterns

We implement computation with patterns propagating in the Life rule B2/S2 . . .8
is follows. A computing scheme is build as channels, geometrically constrained
by Still Life indestructible blocks, and T -junctions6 between the channels. Each
T -junction consists of two horizontal channels A and B (shoulders), acting as
inputs, and a vertical channel, C, assigned as an output. Such type of circuitry
have been already used to implement xor gate in chemical laboratory precipi-
tating reaction-diffusion systems [3, 4], and precipitating logical gates in CA [16].
A minimal width of each channel is calculated as three widths of the Still Life
block (Fig. 2d) and width of a glider (Fig. 2a).

(a) (b)

Fig. 5. Feedback channels constructed with still life patterns (a) show the initial
state with the empty channel and a glider (top) and final state representing value
0 (low), and (b) show non-symmetric patterns representing value 1.

Boolean values are represented by gliders, positioned initially in the middle
of channel, value 0 (Fig. 5a, top), or slightly offset, value 1 (Fig. 5b, top). The
initial positions of the gliders determine outcomes of their delocalisation. Glider,
corresponding to the value 0 delocalised into regular identified by a symmet-
ric pattern, like frozen waves of excitation, patterns (Fig. 5a, bottom). Glider,
representing the value signal value 1, delocalises into the less regular patterns
(Fig. 5b, bottom) identified by a non-symmetric pattern although eventually it
became periodic on a long channel but not symmetric.

The patterns, representing values 0 and 1, propagate along the channels and
meet at the T -junctions. They compete for the output channel, and, depending
on initial distance between gliders, one of the patterns wins and propagates along
the output channel. Figure 6 shows final configurations of basic logical gates.

6 T -junction based control signals were suggested also in von Neumann [28] works.
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NOR

NAND

OR

AND

I/0

O/0

I/1

O/1

I/0 I/1

O/1

I/0 I/1

O/1

I/0 I/1

O/0 O/0 O/0 O/1

I/0 I/1I/0 I/1I/0 I/1I/0 I/1

O/0O/1 O/0 O/0

I/0 I/1 I/1I/0 I/1I/0 I/1I/0

O/1 O/1 O/0O/1

I/0 I/1 I/1I/0 I/1I/0 I/1I/0

XOR

O/0

O/0

XNOR

I/0 I/1 I/1I/0 I/1I/0 I/1I/0

O/1 O/0 O/1

I/0 I/1 I/1I/0 I/1I/0 I/1I/0

O/0

O/1 O/1O/0

Fig. 6. Logic gates implemented at the Life rule B2/S2 . . .8. Input binary values
A and B are represented for In/0 or In/1, output result C is represented by Out/0
or Out/1.

The gates can be cascaded into more ‘useful’ circuits, e.g. binary adders. See
a scheme representation based in T -junctions from its traditional circuit of a
binary half-adder in Fig. 7.

Final configurations of the one-bit half-adder are shown in Fig. 8. The circuity
can be extended to a full adder (Fig. 9). Configurations of the adder, outlined
with Still Life blocks, and description of computation stages, are shown in Fig. 10.
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AND

XOR
A

B
sum

carry out

XOR AND

A

B

A

B

sum

preserving
carry out

o sum

carry out

?

Fig. 7. Half adder circuit (top) and scheme of its implementation by propagating
patterns geometrically constrained medium (bottom).

The full adder consists of 16 T -junctions, linked together by channels; signals
are synchronized in the system.

The full adder occupies 1, 118× 1, 326 cells lattice, and 66,630 cells are acti-
vated in 952 generations, during the computation. A data-area of the full adder
is shown in Fig. 11.

4 Conclusions

We have demonstrated how to implement basic logical and arithmetical computa-
tion by propagating precipitating patterns7 in geometrically constrained media.
Also, we shown computation universality of Life rules, on example of the rule
B2/S2 . . .8, by implementing basic logical gates and binary adders. Source codes
and specific initial condition (.rle files)8 to reproduce and verify our results are
available at http://uncomp.uwe.ac.uk/genaro/DiffusionLife/B2-S2345678.
html

Future work will concern with explicit construction of a Turing machine,
computer design, solitons [15], systems self-copying [19] and detailed study and
classification of indestructible still life patterns in Life dc22. The implementations
can also be analysed in a context of space complexity and different orders of
7 The propagating patterns are generated by gliders; compare to the production of

complex objects in Life during gliders’ collisions http://www.pentadecathlon.com/
8 Implementations and constructions were developed with Golly system available from
http://golly.sourceforge.net/
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O/0

O/0 O/0

O/1O/0

O/1

O/1 O/0

I/0

I/0

I/1

I/0

I/1

I/1

I/0

I/1

I/1

I/0 I/1

I/1

I/0

I/1

I/0

I/0

(a) (b)

(c) (d)

Fig. 8. Half adder implemented in Life rule B2/S2 . . .8. Operations represent
sums (a) 0 + 0, (b) 0 + 1, (c) 1 + 0, and (d) 1 + 1; carry out is preserved in
this case.

CA [27], comparison to other complex consturctions in Life domain [9, 25],
including the isotropic neighborhood [26].
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Abstract. We are investigating ways in which advanced unconventional
computation methods may provide novel approaches to music technol-
ogy. In this paper we report on a new technique to synthesise sounds from
Cellular Automata (CA) models of reaction-diffusion chemical comput-
ers. We render the behaviour of CA into sounds using statistical analysis
of CA cells as their values change in time. We estimate the probabil-
ity distributions of the cells values for each cycle of the automaton by
histogram measurements of the images produced by plotting the val-
ues of the CA cells as a matrix of coloured pixels. We have studied the
behaviour of a CA model proposed by Gerhard and Schuster under a va-
riety of different settings in order to gain a better understanding of the
histograms, with a view on predicting the types of sounds that different
CA behaviours would produce.

1 Introduction

The field of Computer Music is as old as Computer Science. Computers have
been programmed to play music as early as the early 1950’s when Geoff Hill
programmed the CSIR Mk1 computer in Australia to play popular musical
melodies [1]. Nowadays, the computer is becoming increasingly ubiquitous in
all aspects of music. Uses of computer technology in music range from systems
for musical composition to systems for distribution of music on the Internet.
The implementation of such applications often demands the skillful combination
of software engineering and artistic creativity. Whereas most current research
into computers and music focuses on the development of media technology for
delivering music to consumers (e.g., MP3 format, Internet search engines, and so
on) our research focuses on the development of technology for musical creativity;
that is, technology to aid musicians to create content for the media. We are par-
ticularly interested in investigating ways in which unconventional computation
methods may provide novel approaches to music technology, particularly for the
design of new musical instruments. In this paper we report on a new technique
to synthesise sounds from Cellular Automata (CA) models of reaction-diffusion
chemical computers [2].
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In this paper, the CA model used to illustrate our new synthesis technique
is based on an automaton proposed by Gerhard and Schuster [3], where states
of a cell are interpreted metaphorically as follows: the state characterized by a
minimum value 0 is called healthy. The state given by a maximum value V − 1
is called ill. All other states in between are called infected. The transition rules
are expressed as follows:

– RULE 1: IF mx,y[t] = 0 THEN mx,y[t + 1] = int( A
r1) + int( B

r2)

– RULE 2: IF 0 < mx,y[t] < V − 1 THEN mx,y[t + 1] = int( S
A ) + K

– RULE 3: IF mx,y[t] = V − 1 THEN mx,y[t + 1] = 0

where the value of a cell at a time step t is denoted by mx,y[t]; x and y are
the horizontal and vertical coordinates of the location of the cell in the CA grid.
A and B represent the number of infected and ill cells in the neighbourhood,
respectively; r1 and r2 are constants (which can be set to different values); S
stands for the sum of the values of all cells in the neighbourhood; and V is the
number of possible values that a cell can adopt. A desirable property of this CA
model is its cyclic nature, which allows us to work with different ranges of cell
values (also referred to in this paper as colours).

2 Rendering spectrograms from cellular automata
histograms

In a nutshell, our method for rendering sounds from CA involves a mapping
from CA histograms onto sound spectrograms. We devised a method to render
the behaviour of CA into sounds using statistical analysis of the CA cells as
their values change in time. We estimate the probability distributions of the cell
values for each cycle of the automaton by histogram measurements [4] of the
images generated by plotting the values of the CA cells as a matrix of coloured
pixels. The histogram of a digital image with levels of gray colour in the range
[0, L− 1] is a discrete function p(rk) = nk

n , where rk is the kth gray level, nk is
the number of pixels in the image with that gray level, n is the total number of
pixels in the image, and k = 0, 1, 2, . . . , L− 1. Loosely speaking, p(rk) gives an
estimate of the probability of occurrence of gray-level rk [4], where

∑
p(rk) = 1.

We have found zones in the histograms consisting of narrow bands (some-
times with a width of just one colour) clearly separated from each other. This is
of interest to us because the automaton self-organizes through very specific sets
of predominant cell values, or colours. These sets of colours vary depending on
the settings of the of the transition rules parameters. By examining the evolu-
tion of these narrow bands, we surprisingly found that their envelopes (i.e., time
trajectories) resemble the amplitude envelopes of the partials in the spectrum
of sounds. With this in mind, we devised a method to generate sound spectro-
grams from CA histograms. Considering that the time domain is common for
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both the histograms sequences and the spectrogram, we map the histogram’s
sample space domain onto the spectrogram’s frequency domain and, the his-
togram’s probability domain onto the spectral magnitude domain.

The spectrograms are synthesised using a combination of additive synthesis
and Frequency Modulation (FM) techniques [5]. Firstly, we select and extract
the structures of the histograms sequence corresponding to the most predomi-
nant bins. Then, these structures are converted into partials of a spectrogram.
We extract the amplitude envelopes and, without any kind of amplitude trans-
formations, apply interpolation in order to define the duration of the sound (60
time steps per second). The frequency assignment for the partials is arbitrary; in
our experiments we have assigned random frequencies to each partial in order to
obtain complex ratios between them. By designing a bounded random frequency
generator it is possible to obtain a wide range of different sounds. In order to
render the partials we consider narrow bands of just one colour width. Then, we
add frequency fluctuations by using FM. The FM is driven by the amplitude
envelopes of each partial as follows: fp(t) = fp + width ∗ AmpEnvp(t) where p
denotes each of the partials.

3 Making sense of the CA behaviour

We have studied the behaviour of the automaton under a variety of different
settings in order to gain a better understanding of the histograms, with a view
on predicting the types of sounds that different CA behaviours would produce.

3.1 Quasi-synchronic behaviour

We have discovered that quasi-synchronic CA behaviour (i.e., where all cells of
the CA grid reach their maximum allowed value almost simultaneously) gener-
ates histograms that are very suitable for sound synthesis. Just after the cells
reach their maximum value, patterns of distorted circumferences emerge. The
contours of these patterns create narrow bands, or peaks, in the histogram.
From here on, the cells values increase towards the maximum value and the
boundaries of the distorted circumferences become less defined, creating wide
bands in the histogram (Fig. 1). At each cycle of the automaton, this process
is repeated but with slightly different distorted circumferences shapes, creating
structures in the histogram with time varying amplitudes.

Figure 2 shows the frontal plot of a typical histograms sequence produced
by a quasi-synchronic CA run. It also shows how the CA rules and parameter
values are reflected in the histogram. We can see the two feedbacks, one positive
(due to Rules 1 and 2), and one negative (due to Rule 3). Peaks E1 and E2 are
the two CA end points corresponding to the minimum and maximum cell values.
The probabilities of these values (or colours) always reach high values. This is
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(a) (b)

Fig. 1. Different CA configurations in the ‘quasi-synchronic’ behavior and the
histograms they produce: narrow bands (a) and wide bands (b).

Fig. 2. Frontal plot of the histograms sequence of a CA evolution and the role
of the CA rules.
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so for E1, due to Rule 3, and for E2 it is due to the need to impose a limit on
(or cap) the maximum cell value (e.g., when the result of Rule 2 is a value that
is over the maximum allowed value). SC1 is a zone of narrow bands that appear
due to Rule 1. Next to SC1 there is a GAP. This is a region that always has
zero probability values, meaning that values corresponding to this area are ever
reached by the automaton. The beginning of the GAP is due to Rule 1, which
has a maximum possible value depending of r1 and r2; this limits the size of the
SC1 Zone. The GAP and its size are due to the constant K in Rule 2, which is
like an offset. SC2 is a zone of narrow bands due to Rule 2 applied to cells with
values (or colours) in the range of SC1 and SC2 itself. Finally, in NC Zone there
are wide bands that appear due to Rule 2.

The behaviour described above is granted by a variety of different combina-
tions of CA parameter settings. We found interesting time evolving structures
by working with large ranges of values, from hundreds and usually thousands.
The images produced by the automaton with thousands of different values (or
colours) proved to be more suitable for our purposes because they seem to be
much more lively and natural than with just a few values. Typical parameters
settings (for someone wishing to replicate our experiments) are: CA grid of 200
by 200 cells, K equal to a value between 20% and 30% of V , and both r1 and
r2 set equal to 2.

3.2 Long-term behaviour

The effect of the automaton’s long-term behaviour can be of two types: long-
term behaviours that produce structures for sustained sounds and long-term
behaviours that produce structures for non-sustained sounds. The previously
mentioned quasi-synchronic behaviour is an example of the former type. CA
definitions with fewer neighbours are likely to generate structures suitable for
non-sustained sounds. This is the case when considering a Neumann neighbour-
hood [3] or even fewer neighbours; e.g., the case where the central cell is not a
neighbour. For instance, if we consider fewer neighbours, the divisor of Rule 2
is lower than if we consider Moore neighbourhoods, and therefore infected cells
will have greater chances of getting immediately ill. Ill cells in the neighbour-
hood cause a higher numerator while the denominator does not grow due to ill
or healthy cells. This causes the automaton to reach a long-term behaviour with
cells whose value oscillates between 0, cell values corresponding to SC1 Zone, and
V − 1. While reaching this long-term behaviour, the rest of the histogram’s bins
fade out to zero, creating the effect of sound release. These structures are inter-
esting because different release times emerge for different histogram bins (Figs. 3
and 4). This kind of effect occurs in the sounds produced by most acoustic in-
struments.
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Fig. 3. CA behaviour that produces non-sustained sounds.

Fig. 4. Histograms sequence from a non-sustained structure obtained with a
method for extracting smooth amplitude envelopes.
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3.3 Spiral waves

A type of behaviour referred to as spiral waves create types of histograms that
are of great interest for sound synthesis. Starting from an initial random config-
uration of cell values, the automaton often produces behaviour that resembles
the quasi-synchronic behaviour mentioned earlier. But then, spiral waves start
to develop, creating structures that resemble sound partials with increasingly
high amplitudes. Once the spirals have completely evolved, they often expand
themselves, covering the whole CA grid. This creates sequences of images, which
are cyclic and stable. When rendered to sound, the amplitudes of the partials
often stop increasing and settle to relatively stable values. What is interesting
here is that the relative amplitudes of the partials are very similar to each other
but with small differences in their time evolution (or envelopes) (Fig. 5). This
is a general property found in most sounds produced by acoustic instruments.
For instance, a sound played on a violin starts noisy due to the attack of the
bow and then it settles into a periodic vibration. (When the violin is played by
experienced violinists, we often cannot hear this noisy attack because the strings
settle into vibration very quickly.)

Fig. 5. Histograms sequence from spiral waves.

3.4 Time dynamics

Different CA behaviours can produce different types of spectral structures with
different time evolutions. Time varying amplitudes can be considered in various
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ways. The original amplitude evolution of the histogram’s bins usually display
oscillatory behaviour, and it could be desired to perform an amplitude envelope
extraction algorithm to get a smoother amplitude envelope (as the one shown in
Fig. 4). Figure 6 shows the time evolution of one bin of a histogram corresponding
to a quasi-synchronic behaviour (solid line). Note the prominent peaks due to the
quasi-synchronic behaviour. The distance of the peaks is the period of the CA
cycle. The dotted line indicates the amplitude envelope that could be extracted
from this histogram.

Fig. 6. Time evolution of one histogram’s bin in the quasi-synchronic behavior
(solid line), and its respective amplitude envelope (dotted line).

The self-organizing process of the automaton also produces interesting noisy
structures. This is important for our research because in addition to the sinu-
soidal partials, noise is an important component of sounds, particularly at their
onset (or attack) [5]. In Figs. 7 and 8 we can see a noisy structure at the be-
ginning of the histograms sequence, which then disappears while more stable
structures emerge.

When histogram structures have narrow bands, the respective spectra will
contain deviations of partials frequency trajectories, which is another property
commonly found in sounds produced by acoustic instruments (Fig. 8).

3.5 Invariance property

We have found an invariance property in the histograms sequences by study-
ing different runs of the automaton (with enough time to reach the long-term
behaviour) with the same settings, but starting from different initial uniform
random configurations of cells values. By looking at a zone of narrow bands
(peaks of prominent colours like SC1or SC2 in the quasi-synchronic behaviour)
we have observed that the structures of the histograms in terms of peak loca-
tions remained identical for all cells; that is all cells ended up organized with the
same set of prominent colours. The relative amplitudes of the peaks remained
similar, but the time variations of the amplitudes (or envelopes) were slightly
different for every run. This invariance property remains largely present even for
different sizes of the CA grid (Fig. 9). It is therefore possible to automatically
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Fig. 7. Structures from SC2 Zone showing self-organization and correlated am-
plitudes.

Fig. 8. Structures from SC2 Zone showing self-organization and deviation of
structure trajectories.
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obtain multiple instances of a certain type sound. All instances will share the
same structure, but with differences in the time-varying amplitudes. Thus, we
can design an instrument that would not output the same exact sound twice and
therefore, capable of generating more natural sequences of notes.

Although we can expect, and we assume, that every run of the same automa-
ton would display identical behaviour, it is not straightforward to ascertain in
advance the value that a specific cell would hold after a number of generations.
But it is possible to ascertain the position of the predominant peaks in the his-
togram. Thus, this is a considerable degree of predictability with applications for
example in the context of our mapping. This does not mean that we will have this
predictability when starting from any initial pattern of cells values (or colours).
When starting from an image with a certain level of organization of colours,
the resulting histogram would probably be different from when starting from a
random distribution of colours; we have not tested such cases systematically yet.

4 Conclusion and ongoing work

The predictability of the outcome of CA evolution is an open problem [6]. Al-
though a level of unpredictability is accepted, and often desired, in systems for
generating music and sound, being under unpredictability conditions implies
limited controllability. A lack of a reasonable level of control restricts the music
or sound design process [7]. Our synthesis technique alleviates this limitation
in many respects. As we have seen, the CA rules and parameters are very well
reflected in the histogram. Thus, it is possible to find direct relations between
the CA parameters values and their effects in the histogram. Most of them refer
to the spectral dimension and some to the time dimension. For instance, the
lower the value of K, the narrower is the GAP (Fig. 2). As a consequence, the
quasi-synchronic behaviour produces more noise bands in the NC Zone. It is
intuitive to see that a wide GAP implies less noise bands. The parameter K also
contributes to the nature of the beginning of a sound; the lower the value of K,
the longer it takes for the partials to appear in the histogram; in these cases,
such delays are also proportional to the histogram bins. The parameters r1 and
r2 control the tendency of a healthy cell to become infected by infected and by
ill neighbours, respectively. With the quasi-synchronic behaviour, the lower the
vakues of r1 and r2, the wider the SC1 Zone. If these values are extremely low,
the histograms sequence will evolve presenting only two peaks in the first and
the last bins. Conversely, if the values are higher than the number of neighbours,
the histograms sequence will evolve, blocking the first bin. With respect to the
time domain, we have seen that by considering fewer neighbours it is possible
to control the time-evolution of the amplitude envelopes. Once analyzed how
non-sustained structures appear, it is possible to induce the same effect working
with Moore neighbourhoods, by modifying the rules. One way to work with fewer
neighbours is by dividing the rule parameters A and B by two. Then one can
obtain the same kind of non-sustained structures that is obtained when working
with Neumann neighbourhoods.
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(a)

(b)

(c)

Fig. 9. Invariance property in histograms sequence for three different CA runs:
CA2 has the same definition than CA1 but starting from a different initial con-
figuration (uniform random distribution). CA3 is the same definition than CA1
and CA2, but with different size, where the size of CA1 and CA2 are 200 by
200, and the size of CA3 is 100 by 100 cells). (a) Frontal plot. (b) Lateral plot.
(c) Time evolution of one bin of the histograms sequence.
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We are currently considering the possibility of using this technique to render
sounds from real chemical reaction-diffusion processes.

References

[1] Doornbusch, P. (2005). The Music of the CSIRAC: Australia’s First Computer
Music. Victoria, Australia: Common Ground.

[2] Adamatzky, A., De Lacy Costello, B. and Asai, T. (2005). Reaction-Diffusion
Computers. Elsevier.

[3] Gerhardt, M. and Schuster, H. (1989). A cellular automaton describing the forma-
tion of spatially ordered structures in chemical systems, Physica D, 36:209?-221.

[4] Pratt, W. K. (1978). Digital Image Processing. New York, NY: Wiley.
[5] Miranda, E. R. (2002). Computer Sound Design: Synthesis Techniques and Pro-

gramming. Elsevier/Focal Press.
[6] Wolfram, S. (1984). Computational Theory of Cellular Automata, Communica-

tions in Mathematical Physics, 96:15–57.
[7] Miranda, E R. and Wanderley, M. M. (2006). New Digital Musical Instruments:

Control and Interaction beyond de Keyboard. Middleton, WI: A-R Editions.



380 Serquera and Miranda

.



Mapping physical phenomena onto CA-models ⋆

Olga Bandman

Supercomputer Software Department
ICM&MG, Siberian Branch, Russian Academy of Sciences

Pr. Lavrentieva, 6, Novosibirsk, 630090, Russia
bandman@ssd.sscc.ru

Abstract. Simulation of natural phenomena using CA-models attracts
more and more attention of researchers and enters into practical use.
However, the methodology of constructing CA-models for simulating cer-
tain natural process as well as analyzing simulation results, are not yet
completely developed. The reason lays in a high level of CA-models ab-
straction which causes difficulties in establishing correspondence between
CA parameters and physical values characterizing the process under sim-
ulation. In the paper an attempt is made to formulate general principles
of constructing CA simulation models, and to show in detail their ap-
plication to three types of CAs: diffusion CAs, Lattice-Gas CAs, and
asynchronous probabilistic CAs. In all cases algorithms for scaling coef-
ficients are developed and illustrated by Examples.

1 Introduction

Cellular Automata (CA) is nowadays an object of growing interest as a mathe-
matical model for spatial dynamics simulation. Due to its capability to simulate
nonlinear and discontinuous processes, CAs are expected [1, 2] to become a com-
plement to partial differential equations (PDE), especially in case when there is
no other mathematical model of a phenomenon which is to be investigated. By
now, a great variety of CAs are known whose evolution simulates certain kinds of
spatial dynamics in physics, chemistry, biology, as well as a behavior of colonies
of animals or crowds of peoples.

The most known and advanced CA-models may be divided into three classes:
(1) CA-models of processes containing diffusion in explicit form, simulating diffu-
sion-reaction processes [3, 4, 5, 6], (2) Lattice-Gas CAs simulating waves and flu-
ids [7, 8, 9], and (3) asynchronous probabilistic CA-models simulating molecular
kinetics [10, 11, 12, 13, 14, 15]. Although the above CA-models are well stud-
ied, there is no systematic approach to establish relations between real values
characterizing the process to be simulated and the parameters of its CA-model.
Meanwhile, the abstract nature of CA-models causes sometimes significant diffi-
culties in constructing an appropriate CA, i.e. in determining the size of the CA,
⋆ Supported by Russian Academy of Sciences, Basic Research Program of N 14-

16(2007)
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expressing initial and border conditions in CA terms, defining transition rules,
probabilities of their application and so on. The inverse problem arises when
transforming the obtained CA simulation results into the real physical values.

To make the situation a bit more clear, a general approach to put into cor-
respondence a real process and its CA-model is proposed. Based on it the tech-
niques for determining scaling coefficients for three above classes of CA-models
are presented.

Apart from Introduction and Conclusion the paper contains four sections. In
Sect. 2 some formal definitions are given and general principles for CA-models
construction are formulated. The next three sections are devoted to detailed
considerations of obtaining scaling coefficients relating physical phenomena and
its CA-model for the three classes of CAs.

2 General principles of CA-models construction

A CA simulation problem is usually stated by defining the following data:
- Size and form of the domain under simulation.
- Properties of the medium where the simulated process is going on.
- Initial and border conditions.
The results to be obtained are scalar u(x, t) or vector u(x, t) functions, which

may represent spatial dynamics of certain physical phenomenon. To achieve sim-
ulation goal a CA-model should be properly constructed, which may be done
according to the following principles.

– The CA should be valid for the whole domain of values of the phenomenon to
be simulated. For example, when simulating the fluid flow using Lattice-Gas
model it is necessary to be sure that the Reynold’s number does not exceed
the Lattice-Gas CA limits.

– Implementation of CA simulation should be feasible on available computer
systems during the acceptable time.

– It is important to chose the set of basic parameters of a CA-model, whose
scales are straightforward. Usually, they are invariant of the phenomenon
to be simulated. Such invariants are Reynold’s number in fluid dynamics,
dimensionless diffusion coefficient, reaction rates. Based on them all other
scales may be derived.

It is worth to notice, that the choice of scaling parameters in CA-simulation
is similar to that in PDE solution in mathematical physics. The main difference
is in the fact that in numerical methods only two scaling values are needed: time
step h and space step τ . All other computed values need not to be transformed,
except in the special methods.

As for CA-modeling, the choice of CA parameters is more complicated, which
is caused by the following factors.

1) The scales should be chosen for all the values involved in the simulation
process, including the medium properties such that density, viscosity, pressure,
sound velocity, etc.
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2) CA-simulation application experience is not rich enough for obtaining
quantitative values of above properties in CA-model terms. So, sometimes, they
should be obtained by experiments on typical, a priory studied, processes, which
is both time consuming and not very accurate.

3) CA-models are very diversified, most of them are essentially nonlinear with
nonpredictable behavior, exhibiting all features of complexity [16], and, hence,
all problems associated with it.

In what follows the measure system MKS (meter, kg (mass), sec) is used for
physical values. As for CA-model, their parameters are mostly dimensionless,
expressed in numbers of cells, whose side length lCA = 1, number of particles
NpCA with mass m = 1, sum of velocity vectors with |vCA| = 1 and so on.
Scaling coefficients (scales for short) are defined as relations of the physical
value to its CA counterpart and denoted by µz = z/zCA, z being any value
involved in the model.

Scales are divided into three groups.
The first group includes two fundamental scales which are defined in all types

of numerical models, they are time step µl = h and space step µt = τ . In CA-
models they represent the linear size of a cell and the time elapsing between two
sequent global states, respectively.

The second group comprises medium properties scales, such as viscosity,
sound speed, substance density, which characterize the medium where the pro-
cess proceeds, but are not the simulated values. The CA properties of this group
are the characteristics of the model derived from CA transition rules or, if it is
not possible, they are obtained by simulation experiments.

The third group comprises the scales of simulated values, i.e. the values of
functions u(t,x), which are the objectives of the simulation, such as the velocity
of a fluid flow or an acoustic wave, the rate of a crystal growth or of quantity of
a substance obtained by a chemical reaction, etc.

Scales from the second and the third groups are strongly dependent of the
nature of the phenomenon under simulation. Hence special methods for any
process are further needed considered each in its own section.

A formalism further used for representing CA-models is Parallel Substitution
Algorithm [17]. According to it a CA-model ℵ is represented by four notions
ℵ = 〈A, M, Θ, ̺〉, where A is a set of symbols of any kind, M = {m1, m2, ...} is
an enumerable set, Θ is a set of local operators, and ̺ is a mode of operation,
which determines the time-space distribution of operator application. The central
concept in the CA-model is a cell, which is a pair (a, m), where a ∈ A is a cell
state, and m ∈M . The set of cells Ω = {(ai, mi) : i = 1, ...}, containing no cells
with identical names is called a cellular array.

On the naming set M naming functions ϕ(m) are defined which whose val-
ues indicate the location of cells communicating with a cell named m. When
Cartesian coordinates M = {(i, j)} are used for names, the naming functions
are usually given in the form of shifts φk = (i + a, j + b), a, b being integers. A
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set of naming functions

T (m) = {m, φ1(m), . . . , φn(m)}, n≪ |M |, (1)

is referred to as a template, m being called as active cell of a template.
A subset of cells

S(m) = {(u0, m), (u1, φ1(m)), . . . , (un, φn(m))}, (2)

having the names from T (m), is called a local configuration with T (m) as its
underlying template.

A local operator Θi ∈ Θ is expressed in the form of a substitution [17] of
local configurations as follows

Θ(m) : S(m) ⋆ S′′(m)→ S′(m), ∀m ∈M, (3)

the underlying templates of S(m) and S′(m) being identical, i.e. T ′(m) = T (m),
and that of S′′(m) T ′′(m) being allowed to be arbitrary.

An application of Θ(m) to a certain cell (u, m) ∈ Ω (a single-shot applica-
tion) consists in removing the cells of S(m) from Ω and replacing them by the
cells given in S′(m). Such a concept of a local operator allows to simulate living
organisms which may grow and die. When simulating physical phenomena sta-
tionary local operators [17] are used which do not change the naming set, only
replacing the states of cells from S(m) in (2) by the states of cells from

S′(m) = {(u′0, m), (u′1, φ1(m)), . . . , (u′h, φh(m))}

u′ being obtained according to transition functions

u′k = fk(v0, v1, . . . , vn, vn+1, . . . vn+h), (4)

where the last h variables are the states of cells from S′′(m). The latter in not
changed by application of Θ to the cell named m, but provides fk with additional
variables, playing a role of a context [17].

There are different modes of local operator application ordering to perform
a global transition Ω(t) → Ω(t + 1). Synchronous mode provides for transition
functions (4) to be computed using the current cell-states, i.e. S(m) ⊂ Ω(t). It
may be performed at once (in parallel) or in any order. Asynchronous mode of
operation suggests the substitution of cell states in S(m) being done immediately
after Θ(m) is applied. So, S(m) ⊂ Ω(t)∪Ω(t+1). In both case the transition to
the next global state is referred to as an iteration occurring when all cells have
completed their computations. The sequence

Ω(0), Ω(1), . . . , Ω(t), . . . , Ω(t̂)

is called a CA evolution, t̂ denotes a terminal iteration number.

Performing a CA simulation task comprises three stages:
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1) constructing the model, i.e. determining the CA ℵ = 〈A, M, Θ, ̺〉 and and
its initial global state Ω(0),

2) obtaining resulting data by running the CA program , and
3) interpreting the results by transferring the model parameters into habitual

physical values.
The first and the third stages require scaling coefficients to be known. The

problem is solved differently for different types of CA-models, but the techniques
rely on the same above principles and the same formalism.

3 CA-models of phenomena which include diffusion

Diffusion components are present in the majority of natural spatially distributed
processes, in PDEs being represented by a Laplacian

d(uxx + uyy) (5)

where d - is a diffusion coefficient in m2s−1. Being discretized by means of the
“cross template" (5) takes the form

C(ui−1,j + ui,j+1 + ui+1,j + ui,j−1 − 4ui,j), i = x/h, j = y/h, (6)

with

C =
dτ

h2
, (7)

where h and τ are length and time steps, respectively. In other words, they are
length and time scales, denoted further as µl and µt. In computational mathe-
matics they are chosen according to performance constraints, convergence and
stability conditions, and, perhaps some special requirements.

As for CA diffusion, determination of scales is more complicated and less
studied. The reason is in the fact that each CA-model is characterized by its
own CA-diffusion coefficient CCA, which may be obtained analytically, as it is
done in [4], or experimentally [3]. The coefficient is dimensionless and plays the
same role that C in (6), being an invariant of a diffusion model. So, when a
CA-model is chosen CCA is easily obtained.

Taking into consideration (7) the derivation of a diffusion CA-model scaling
coefficients is based on the following relation.

CCA = d
µt

µ2
l

, (8)

Since in any certain simulation task d is a known characterizing property of
the medium and the size of the area under simulation Lx × Ly × Lz is given, it
is sufficient to chose the CA dimensions Ni × Nj × Nk for obtaining all scales.
Usually CA size is determined based on the required resolution of resulting
spatial function and the available computing resources. All scaling coefficients
are straightforward.
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µl =
L

N
m, µd =

d

CCA
m2s−1, µt =

µ2
l

µd
s. (9)

There are several CA diffusion models. Two of them are the most popular.
The first is a two-stage synchronous probabilistic model (CA-synch), proposed in
[1] and studied and founded in [4]. The second, called in [1] a naive diffusion (CA-
naive), is an asynchronous probabilistic CA . For all models CCA is a function of
the probability used in the local operators, the maximal values ĈCA being fixed
for each diffusion CA.

In Table 1 ĈCA for the above two CA-diffusion models are given for 1D, 2D,
and 3D cases. For CCA−synch they are proved in [4], for CCA−naive they are
obtained by comparing simulation results with analytically known values.

Table 1. Maximum values of diffusion coefficients of synchronous and asyn-
chronous CA-models

n ĈCA−synch ĈCA−naive

1D 1.0 1.0

2D 3/2 1/2

3D 23/18 1/3

By varying probabilities of local operators application it is possible to simu-
late processes with diffusion coefficient changing in space or in time, for example,
depending on temperature.

Example 1. Application a diffusion-convection CA-model to simulate vapor
propagation through a porous membrane. The objective of simulation is to inves-
tigate the impact of pore walls properties on the percolation velocity. A fragment
of the membrane in a 2D approximation is considered, the pore diameter being
equal to its width. The fragment has three vertically located pores with equal di-
ameters: a hydrophilic, a hydrophobic and a neutral one (Fig. 1). The process is
represented as a stream of abstract particles, moving under convective and diffu-
sive forces. The source of particles is on the fragment top area where the pressure
of the vapor is imposed having equal effect to the three pores. The convective
force makes the vapor particles move downwards. The diffusion component ac-
counts for anisotropic properties of the medium by varying probability values of
particles displacements along the pore diameter, depending on pore wall prop-
erties. The mode of percolation is characterized by the relation of the impact
of convective component to that of the diffusion one, defined as Pe = 0.5 [18].
The porous sample to be investigated has the size Li = Lj = L = 0.03 m, pore
diameter being Dp = 8 ·10−3 m. Diffusion coefficient of vapor is d = 10−4 m2s−1,
the density is ρ = 0.5 · 103 kg · m−3.



Mapping physical phenomena onto CA-models 387

The model to be used is an asynchronous naive CA-diffusion with A = {0, 1}
and the naming set M = {(i, j) : i, j = 0, . . . , N − 1}. The local operator is
the superposition of two substitutions: Θ = {Θconv, Θdiff}, both being proba-
bilistic. The probabilities pconv and pdiff are determined according to the given
coefficient Pe = pconv/pdiff = 0.5 [18],

Θconv(i, j) = {(1, (i, j))(0, (i + 1, j))} pconv−→ {(0, (i, j))(1, (i + 1, j))}, (10)

advances a particle along the pore with a probability equal to pconv.

Θdiff (i, j) = {(1, (i, j))(0, (i + a, j + b))}
p′

diff−→ {(0, (i, j))(1, (i + a, j + b))}, (11)

exchanges the cell-state u = 1 with one of its neighbor according to the pair
(a, b) : a, b ∈ {−1, 1}, which is chosen with the probability p = 1/q, q being the
number of empty neighbors. So, p′diff = pdiff · pw, with pw accounting for pore
type and depending of the distance gw between the cell (i, j) and the wall. When
a pore is neutral or if gw > β, then pw = 1, β being the distance where wall
influence may be neglected. If gw ≤ β, then for hydrophilous and hydrophphobic
pores

pw(phil) = 1− exp(−gw/n1β1), pw(phob) = exp(−gw/n2β),

respectively, n1, n2 depending of the wall properties.
The above data are sufficient for obtaining physical scales of CA-model pa-

rameters.
1) Length scale. According to porous medium simulation practice [18] minimal

diameter of the pore should be several times larger than 10. Taking h = µl =
10−4 the CA-diameter yields DpCA = 80, and the linear size of the whole CA
LCA = 300.

2) Diffusion scale. Since the 2D naive asynchronous CA diffusion is used,
CCA = 0.5, and µC = d/CCA = 2 · 10−4 m2s−1.

3) Time scale µt = µ2
l /µC = 0.5 · 10−4 s.

4) Density scale (mass of an abstract particle) µρ = ρ/(ρ0/h3) =
1.25 · 10−9 kg.

5) Flow scale (mass of vapor propagating through the cross-section of a
pore per second, relative to the number of particles passing through the pore
per iteration). Accounting for a pore square Sp = 5024 cells, µQ = µρ/µt =
2 · 10−5 kgs−1.

CA-simulation results in the following flows, obtained in particles numbers
passing through a pore per iteration

QCA(phob) = 3939, QCA(phil) = 1975, QCA(neutr) = 2812,

which are recalculated into physical values by multiplying the obtained QCA by
µQ resulting in the following flows.

Q(phob) = 0.079 kgs−1, Q(phil) = 0.039 kgs−1, Q(neutr) = 0.058 kgs−1.
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Fig. 1. Three snapshots of CA simulation of vapor propagation through porous
membrane.

4 Lattice-Gas models of viscous flows

Gas-Lattice CA-models comprise a special class of CA intended to simulate
processes in gas and liquids. The medium is represented by abstract particles,
moving in a discrete space and colliding. The most known and well studied
model is a series of stochastic Lattice-Gas CAs called FHP-models according to
the names if the authors [9]. Formally, they are synchronous CA, characterized
by the following parameters. The naming set M = {mk : k = 1, 2, . . . , |M |}
enumerates hexagons on a 2D plane. A cell neighborhood includes the cell names
of 6 adjacent cells. Accordingly, 6 moving and some rest particle may be located
in a cell. To represent the cell states with 6 moving and one rest particle the
alphabet A = {s = (s0, . . . , s6), |A| = 27 comprises Boolean vectors 7 bit long.
A component of a state vector si = 1 indicates that the cell (s, m) has a particle
moving towards the ith neighbor (i = 1, . . . , 6) with a velocity ci = 1, or if the
cell has a rest particle, then s0 = 1 having the velocity c0 = 0. Particle mass is
equal to 1.

Two local operators determine the functioning of a CA. The first Θ1 makes
all particles in all cells simultaneously propagate one cell towards the neigh-
bor pointed by its velocity vector. It is convenient to represent it as a set of 6
substitutions each being applied to ith component of state vector.

Θ1(m, i) = {(si, m)} ⋆ {(s′i, ϕi(m))} → {(s′i, m))}, i = 1, 2 . . . , 6. (12)

The second contextless local operator simulates the collision of particles.

Θ2(m) = {(s, m)} → {(s′, m))}. (13)

The transition function s′ = f(s) is given in the form of a table, some arguments
having two equiprobable outcomes. The principles of collision rules functioning
is shown in Fig. 2.

The mode of operation of Lattice-Gas CA is two-stage synchronous, i.e. each
iteration consists of two stages: on the first stage the six propagation operators
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Fig. 2. Graphical representation of collision operators in FHP-I Lattice-Gas
model. Deterministic rules are given on the left, the probabilistic ones — on
the right

(12) act simultaneously, on the second stage the collision operator completes
the transition to the next global state. In [9] FHP-model is proved to be iden-
tical to Navier-Stokes equation in describing the velocity of viscous flow and to
be identical to the wave propagation when being regarded relative to particles
density.

The 3D-version of the FHP-model called RD-1 is also known. It is based on
the discrete space with cells having the form of rhombododecahedron. The tem-
plate of RD-1 has 12 neighbors. It allows to simulate flows in large enough space,
as compared with the FCHC model proposed and investigated in [9]. Although
the model meets the isotropic conditions approximately, its experimental testing
showed acceptable plausibility to the phenomenon [19].

Each Lattice-Gas CA-model is characterized by by the following parameters:
equilibrium density ρ̃CA, sound velocity CsCA and and viscosity νCA(ρCA), the
latter being a functions of particle density. In (Table 2) these parameters are
given according to [9, 19].

Table 2. Main parameters of Lattice-Gas CA ρ̃CA

CA-model CsCA ρ̃CA νCA(ρ̃CA) 1

FHP 1/
√

2 1.2 0.85

RD-1
√

7/13 3.9 0.325

In its turn a simulation task statement includes the following data in physical
terms.

1) Size of the reservoir where the simulated process proceeds, l m being its
characteristic length.

2) Location of source and of the outlets of the fluid.

1 CA-viscosity values are given already corrected with regard to the isotropy coefficient
g(ρ) [9, 19].
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3) The fluid properties: density ρ kgm−3, kinematic viscosity ν m2s−1.
3) External and initial conditions: working pressure P or pressure drop

∆P kgm2.
4) The wanted velocity value u or the Reynolds number

Re =
u · l
ν

. (14)

The above CA parameters and given physical values allow to obtain all scaling
coefficients. Namely, the viscosity and the density scales are straightforward.

µν =
ν

νCA
m2s−1, µρ =

ρ

ρ̃CA
kgm3. (15)

Moreover, from the limiting CA Reynold’s number [9]

Re = ReCA = CsCA
lCA

νCA

it is possible to find the characteristic CA-values of length lCA or velocity uCA,
depending on the simulation task objective, and then calculate the following
scales.

µl =
l

LCA
m, µu =

µν

µl
ms−1, µt =

µl

µu
s. (16)

The pressure scale may be obtained in two ways:

µP =
µ2

u

µρ
kgm−2, or µP =

P

ρCA
kgm−2. (17)

Since the alphabet, local operators and operation mode are defined by the
Lattice-Gas model, only the linear dimensions and external pressure are to be
determined in order to construct a Lattice-Gas CA-model.

1) The linear dimensions lCA along the three directions li, lj , lk are computed
by dividing the given real dimensions of the reservoir lx, ly, lz by µl.

2) The external pressure is represented by the value of ρCA at the source
location ρCA = P

µP
.

Example 2. The Lattice-Gas 3D model RD-1 is used for simulating the flow
of motor oil through a tube partly barred up by a choker. The follwing data are
given.

1) Tube diameter Dt = 0.7 m, the length l= 7 m, on one end of the tube the
pressure P = 1.07 atm is imposed, the other end is left opened. So, pressure drop
∆P = 7000 kgm−1. The choker is placed at the distance 3.5 m from the source
and barres up a half of the tube cross section.

2) Motor oil viscosity ν = 4.5 · 10−3 m2s−1.
3) Motor oil density ρ = 880 kgm−3.
Simulation aims to obtain the velocity field behind the choker-bar.
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Properties of the fluid being known the scales of density and viscosity are
straightforward.

µν =
ν

νCA
= 13.8 · 10−3 m2s−1, µρ =

ρ

ρ̃CA
= 225 kgm−3. (18)

Taking the averaged CA-density ρCA(0) = 8 in source cells twice as large as the
ρ̃CA, the pressure scale is obtained according to (17). Then, accounting for (18)
it is possible to calculate all others scales as follows.

µP =
∆P

ρCA(0)
= 875 kgm−2, µu =

√
µP

µρ
= 1.97 ms−1,

µl =
µν

µu
= 7 · 10−3 m, µt =

µl

µu
= 3.55 · 10−3 s. (19)

Having the scales in hands CA length values are computed as follows.

DtCA =
Dt

µl
= 100, lCA =

l

µl
= 1000,

lCA being the CA length of the tube (along the j-axis).
Simulation results are obtained as an 3D array of vectors 〈uCA〉(i, j, k), each

being equal to the averaged value of CA-velocity in a cell. The corresponding
physical values

u(x, y, z) = µl · 〈uCA〉(i, j, k), x = iµl, y = jµl, z = µl.

A fragment of the velocity field behind the choker is shown in Fig.3.
Maximum averaged value of the velocity over the choker is 〈uCA−max〉 = 0.9

which yields umax1.77 ms−1. The mean velocity through the tube is computed
as the average lengthwise velocity component at distance lCA = 700 from the
source, which occurred to be 〈uCA〉 = 0.67, which after scaling yield 〈u〉 =
1.3ms−1.

5 Asynchronous CAs modeling nano-kinetic processes

Kinetic asynchronous CA (ACA) simulate phenomena consisting of sets of el-
ementary actions, directly mimicking physical movements and interactions of
molecules or atoms, in CA-models being referred to as calledparticles. Nowadays
a number of surface nano-kinetic processes simulation by ACA are known, be-
ing, sometimes, referred to as Monte-Carlo methods [10, 11, 14, 20]. In brief, the
methods are as follows. The domain where the process should proceed is divided
into sites. A site (a cell in the CA) may be occupied by a particle representing
a species from a given set of species involved in the process. The particles move
and interact according to the laws prescribed by the phenomenon under simu-
lation. The symbols, denoting different particles of the set comprise the ACA
alphabet. The following alphabets are mostly used.



392 Bandman

Fig. 3. A fragment of a lengthwise projection of of the velocity field behind the
choker obtained by applying MathCad tools to RD-1 simulation results of the
fluid flow through a tube

– Boolean alphabet A = {0, 1}, when it suffices to indicate presence or absence
of a particle in the cell.

– A set of characters or symbols representing the notations of particles (∅, Al,
CO, H2, etc.), a symbol ∅ denoting the state of unoccupied site.

– A set of integers, when several particles are allowed to be allocated in a single
site.

The set of cell coordinates M = {(i, j) : i, j = 0, . . . , N} is frequently ap-
pended by a contextual domain consisting of a single generalized cell, say Gas,
which represents the external space, where nothing happens, but wherefrom par-
ticles emanate and whereto the desorbed ones are gone. There is no restriction
on the naming set structure, the most popular are arrays based on crystalline
lattices, as well as those providing structural anisotropy.

Local operators which simulate the most used elementary actions in kinetic
ACA are as follows. Adsorption. A particle a ∈ A is adsorbed from the gas onto
an empty site on a solid surface with the probability pa.

Θa : {(∅, m)} ⋆ {(a, Gas)} pa→ {(a, m)}. (20)

Desorption. A particle b is desorbed from a surface site with the probability
pb.

Θa : {(a, m)} pb→ {(∅, m)}. (21)

Reaction. If the particles a and b occur in the adjacent sites on the surface,
they react forming a molecule ab, which outgoes to the gas with probability pab.
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Θab : {(a, m)(b, ϕ(m))
pab→ {(∅, m)(∅, ϕ(m))}. (22)

Diffusion. If a particle occur in the neighborhood of an empty site, it moves
there with the probability pd

Θd : {(a, m)(∅, ϕ(m))} pd→ {(∅, m)(a, ϕ(m))}. (23)

Of course, the above local operators do not exhaust all possible actions in
surface kinetic processes, but they are typical and the most commonly encoun-
tered.

Nano-kinetic ACA-model simulation aims to investigate the behavior of the
process both qualitatively (finding out whether it tends to a steady state, or to
oscillation, or exhibits instability, etc.) and quantitatively (calculating amounts
of obtained reactants, real rates of the reactions). The given data comprise a
set of species, involved in the process, prerequisites to be accounted for, initial
conditions. As for the size of the sample where the process should proceed, it
is mostly constrained by the available computational resources rather than by
researcher’s request, the latter being usually “the larger the better".

From the above it is clear that local operators of a kinetic ACA model are
very simple being easily derived from the chemical representation of the reaction
mechanism. The problem is to determine the time scale and to find correct
probabilities for reaction operators. The latter ones are computed according
to chemical and physical properties of the process under simulation, usually
calculated on the basis of molecular dynamics laws [21]. So, there are no general
method to obtain their values. But, based on available experience, some following
considerations may be made.

For a chemical reaction Ri ∈ R, i = 1, . . . , n, R being a set of reactions in
the process, the probability in Θi is equal to

pi =
ki

∑n
j=1 kj

,

where ki, kj( s
−1), j = 1, . . . , n, are known rate coefficients.

Adsorption probability pa is obtained apart for each type of particles accord-
ing to given partial pressure of the corresponding species in the Gas and sticking
coefficients. If any deposited atom is assumed to be adsorbed, then pa = 1.

Diffusion probability pd strongly depends on bond strength between particles
and is computed based on bond energy values [21].

Time scale is calculated basing on the assumption that all time intervals
∆t between a certain sequential event are identical, and, hence, may be put
into correspondence with CA iterations ∆tCA, depending of what value is given.
In [20] two methods of establishing a relation between ∆t and ∆tCA are given: 1)
when the real flow of atoms F m−2s−1 to be involved in the process per second is
known, and 2) when the deposition rate (numbers of monolayers deposited onto
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the surface per second) ML s−1 is measured. Accordingly,

µt =
Nd · tCA

µ2
l · F · |M |

s, or µt =
1

ML · |M | s. (24)

where Nd is the total number of particles involved into the process during the
whole simulation, tCA is the number of iterations per second measured during
the simulation, |M | is the cardinality of cellular array in the ACA. In [11] the
physical time interval between two deposition acts teff is taken to correspond
to the averaged time taken by adatoms to jump to the adjacent site.

∆t−1
eff =

kBT

2π~
exp(− Ec

kBT

)
.

The following scaling coefficients establish the correspondence between the
ACA parameters and their physical counterparts.

1) Length scale µl = l m, l being the real linear size of the largest atom.
2) Mass scale µ

(i)
m = mi kg, mi being the real mass of an atom of ith species.

3) Time scale µt = ∆t/∆tCA, ∆tCA being the computing time of an iteration
measured during the simulation.

Moreover, CA-evolution being visualized allows the process to be observed
in detail.

Example 3. The simplified model of epitaxial growth of a silicon (Si) crystal .
The process [20] comprises two following actions: 1) adsorption of Si-atoms from
an external flow; 2) diffusion of the absorbed atoms (adatoms) over the surface.
If any atom deposited on the surface is adsorbed, then the rate coefficient ka = 1.
Being deposited on the surface layer by layer adatoms form pillars and islands of
different height and size. The top atom on a pillar may diffuse to an adjacent site
(i + a, j + b), a, b ∈ {−1, 0, 1}, if u(i + a, j + b) ≤ u(i, j). Probability of such an
action depends on bond strength between the adjacent adatoms, characterized
by a constant B = 0.05 in the following way. If a site has n adjacent adatoms,
then the probability of the diffusion is p′d = (4 − n) · 0, 05n. The choice among
the sites whereto the adatom is allowed to move is equiprobable, which yields
pd(k) = p′d/(4− n).

The process is simulated by an ACA= 〈A, M, Θ〉 where A = {0, 1, . . .}, M =
{(i, j) : i, j = 0, . . . , N}. A cell (v, (i, j)) corresponds to a site on a Si crystal
surface, the thickness of the adsorbed layer being equal to v atoms. The transition
rule Θ(i, j) is a superposition of Θads responsible for absorbtion, and Θdiff (i, j)))
responsible for diffusion.

Θads = {(v0, (i, j))} ⋆ {(1, Gas)} pa→ {(v0 + 1, (i, j))},
Θ

(k)
diff = {(v0, (i, j)), (vk, ϕk(i, j))} pd(k)→ {(v0 − 1, (i, j)), (vk + 1, ϕk(i, j)},

k = 1, 2, 3, 4.

(25)

where ϕk(i, j) is a kth neighbor of the cell (i, j).
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Fig. 4. Simulation results of epitaxial growth process. (a) Cellular array after
t=100000 iterations (b), the dependence of islands perimeter P (t) on real time.
|M | = 200× 200. Intensity of gray color corresponds to the height of the island

A snapshot of the ACA evolution is shown in Fig. 4(a), where the formed
islands on the crystal surface are seen. One of the important characteristic of the
process is the dependence of total island perimeter P (t) on time. The perimeter
P is computed at each iteration as a number of pairs of adjacent cells having
different states. During the process this parameter exhibits oscillations shown in
Fig. 4(b), which are of interest for the researcher. The time scale is computed
according to (24) based on the given rate of the deposition ML = 1.4 sec−1

(monolayers per second µt = (ML · |M |)−1 = 0.178 · 10−4 s.

6 Conclusion

The problem of finding out the adequate correspondence between physical phe-
nomenon and its CA-model is approached form the position of researcher who
exploits CA simulation in studying certain natural phenomenon. Some general
principles are formulated and, based on them, scaling coefficients are derived
apart for three different types of CA-models. It is clear from the presented ex-
amples, that construction of a CA-model as well as finding out the correct in-
terpretation of the simulation results, require a profound knowledge of physical
fundamentals of the phenomenon under simulation. It affirms the fact that users
of CA-simulations tools should be the physicists or engineers not experienced
in CA theory. It makes the methodology of CA simulation yet more important
and requested, thus implanting aspirations that the development of CA-models
should include procedures of computing scaling coefficients.
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Abstract. A uniform cellular automaton is defined modeling creatures
which can move around and which avoid collisions. The collision detec-
tion and resolution is performed in the current synchronous updating
cycle using a neighborhood with the Manhattan distance of two. It is a
subject for further discussion whether the proposed extension of a CA
propagating intermediate results to their neighbors in order to reduce
the overall computational effort is interesting from the theoretical and
practical point of view.
The creatures’ task is to exchange their information among each other
(all-to-all-communication) in shortest time. The goal is to find automat-
ically a very good creature’s behavior for such a uniform multi-creature
system. The creatures shall perform good on environments with borders
as well as on environments without border (wrap-around). The behav-
ior (algorithm) of a creature is defined by a state table which can be
loaded into each creature. Best behaviors were evolved using a genetic
procedure using a training set of initial configurations. Then they were
ranked using a larger ranking set of initial configurations. The evolved
creatures try to walk mainly on trails (a) which are orthogonal forming a
sort of weaving pattern or (b) try to walk preferably at the borders or (c)
in parallel to the borders. The found algorithms are very robust which
was proved for another robustness set of initial configurations. The algo-
rithms perform better for environments with borders meaning that they
are using the borders to improve communication. In comparison random
walkers perform much weaker than the evolved algorithms. In contrast
to the evolved algorithms the communication of the random walkers is
lowered by the borders.

1 Introduction

In former investigations we have tried to find out the best Cellular Automata
(CA) rules for creatures in order to solve the creatures’ exploration problem [1, 2].
The task was to visit all empty cells of an environment (CA grid with obstacles)
in shortest time. We modeled the behavior by using a state automaton with two
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inputs and two outputs only in order to keep the complexity as low as possible.
For automata with up to 7 states we were able to generate and evaluate by hard-
ware support all relevant automata by a special enumeration technique which
allows us to skip a priori over non relevant automata [3]. Relevant automata are
a subset of all automata which can be coded by a state transition table. The
subset is defined by certain conditions, e. g., equivalent automata under state
and output coding permutation should only be enumerated once, or the state
graphs should be strongly connected. This special enumeration technique allows
us to enumerate and evaluate all algorithms until a certain complexity. Using
hardware support we are able to accelerate the computation by about two orders
of magnitude. This enumeration technique can help to yield optimal results for
problems with low complexity or may be used as part of a heuristic.

Now we are addressing more complex multi-agent CA problems. The general
goal of our research is to find out optimal (or sufficient good) local algorithms
(defining the behavior of agents/creatures) in order to solve global tasks. At
the moment we concentrate on problems with a low complexity in order to get
fundamental insights about (1) how such agent algorithms can automatically
be found in acceptable time (also using dedicated hardware architectures) and
(2) what are the successful interaction principles between agents (techniques of
cooperation, competition, communication) in order to fulfil the global task. As
the search space for agent problems is very large we have to apply heuristic
optimization techniques like simulated annealing, genetic algorithms or parallel
meta-heuristics [9].

The presented problem is related to the creatures’ exploration problem in
the way how creatures can move. But the task is different: The creatures shall
exchange their information (all-to-all) in shortest time. The goal is to find an
optimal rule for the movements of the creatures in order to exchange their in-
formation as fast as possible. The information exchange is only possible when
the creatures get close to each other and when they are forming certain defined
local patterns (communication situations).

Examples of possible communication situations are shown in Fig. 1. In the
cases a, b, c the creatures are directly in contact. But it is a matter of definition
whether such situations allow communication. In a former investigation (to be
published) we have defined the patterns d, e, f to be the only ones which allow
communication through a mediator, which can receive incoming messages and
transform them into outgoing messages. For this investigation we have defined
the patterns a, b, c to be the only ones which allow communication: If a creature
(shaded) detects another creature in front, it can read its information for updat-
ing its own state in accordance with the CA principle. Note that one creature
may serve as a source of information for up to four creatures.

All-to-all communication is a very common task in distributed computing.
The problem’s specification can depend on many fixed or dynamic varying pa-
rameters like the number and location of nodes, the number and location of
processes, the number, users and properties of the communication channels and
so on. All-to-all communication in multi-creature systems is related to multi-
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C C C

(d) (e) (f)

(a) (b) (c)

Fig. 1. Communication situations. Communication will only be allowed for the
cases a, b, c, in which a creature reads information from another creature in
front. Other situations like d, e, f using a mediator C are also reasonable, but
not used here.

agent problems like finding a consensus [7], synchronizing oscillators, flocking
theory or rendezvous in space [5], or in general to distributed algorithms with
robots [4].

2 Modeling the multi-creature system

The whole system is modeled by a uniform 2D cellular automata. It models the
environment with obstacles and borders and k uniform creatures which can move
around. A creature can perform four different actions:

– R (turn Right): turn right only
– L (turn Left): turn left only
– Rm (turn Right and move): move forward and simultaneously turn right
– Lm (turn Left and move): move forward and simultaneously turn left.

The actions were defined in this way in order to keep the control automaton
(Fig. 3, explained below) as simple as possible (only two input and two output
values). A more powerful set of actions, including, e. g., move forward/backward
with or without turn would require more output values.

A creature has a certain moving direction and it can only read the information
from one cell ahead (the front cell). The creature investigates the front cell in
order to evaluate the move condition m. If it detects a border cell or a creature
or a conflict, the move condition is set to m = 0 (false) and otherwise to m = 1
(true). If the creature can move (m = 1) it performs Rm or Lm. If the creature
cannot move (m = 0) it will perform R or L.

The cell state is defined as follows:
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state = (type, d, s) //d = direction, s = control state

type ∈ {EMPTY, OBSTACLE, CREATURE}

d ∈ {toNorth, toEast, toSouth, toWest} = {0, 1, 2, 3}

s ∈ {0, 1, 2, . . . n− 1}
The neighborhood is defined by the Manhattan distance of two (i. e., MOORE

neighborhood plus the four cells at straight distance two from the center: NN =
NorthNorth, EE = EastEast, SS = SouthSouth, WW = WestWest). In the case
that a cell is of type EMPTY the used neighborhood is only the von Neumann
neighborhood.

The moving of a creature was defined and implemented in the CA model
using the following rules (described in a simplified pseudo code; only the changing
values are stated). RuleS is the function which defines the next control state.
RuleY is the function which determines the activator y (Fig. 3) which in turn
determines the change of the direction. Thus the function RuleY in combination
with the possibility to increment or decrement d defines the whole transition
rule for d.

if (type==EMPTY) then

sum = (N.type==CREATURE) & (N.d==toSouth) +

(E.type==CREATURE) & (E.d==toWest) +

(S.type==CREATURE) & (S.d==toNorth) +

(W.type==CREATURE) & (W.d==toEast))

if (sum==1) then m=1 else m=0; //move condition

if (m==1) then

type ← CREATURE

if (N.d==toSouth) then

d ← (d + (−1)RuleY (m=1,N.s)) mod 4

s ← RuleS(m=1, N.s)

endif

if (E.d==toWest) then

d ← (d + (−1)RuleY (m=1,E.s)) mod 4

s ← RuleS(m=1, E.s)

endif

if (S.d==toNorth) then

d ← (d + (−1)RuleY (m=1,S.s)) mod 4

s ← RuleS(m=1, S.s)

endif

if (W.d==toEast) then

d ← (d + (−1)RuleY (m=1,W.s)) mod 4

s ← RuleS(m=1, W.s)

endif

endif m
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endif EMPTY

if (type==CREATURE) then

m = NOT(

((d==toNorth) & ((NN.type==CREATURE & NN.d==toSouth) |

(NW.type==CREATURE & NW.d==toEast) |

(NE.type==CREATURE & NE.d==toWest)) |

((d==toWest) & ((WW.type==CREATURE & WW.d==toEast) |

(NW.type==CREATURE & NW.d==toSouth) |

(SW.type==CREATURE & SW.d==toNorth)) |

((d==toSouth) & ((SS.type==CREATURE & SS.d==toNorth) |

(SW.type==CREATURE & SW.d==toEast) |

(SE.type==CREATURE & SE.d==toWest)) |

((d==toEast) & ((EE.type==CREATURE & EE.d==toWest) |

(NE.type==CREATURE & NE.d==toSouth) |

(SE.type==CREATURE & SE.d==toNorth))

)

if (m==1) then type ← EMPTY endif

else

d ← (d + (−1)RuleY (m=0,s)) mod 4

s ← RuleS(m=0, s)

endif m

endif CREATURE

A conflict occurs when two or more creatures want to move to the same
front cell. Conflicts are resolved in one generation (during the current clock
cycle) [10].Therefore the neighborhood with distance two is necessary. If the
neighborhood is restricted to von Neumann, than two generations were necessary
to resolve the conflict.

In a software and hardware implementation the above rules can be simplified.
The idea behind is that the move signal which is computed as an intermediate
value in an EMPTY front cell can also be used in the 4 adjacent CREATURE
cells. Because the move signal can at the same time trigger the CREATURE
to be deleted and the EMPTY front cell to become a CREATURE. Generally
speaking the moving of information under conservation (e. g., like the moving
of tokens in a Petri net) requires also in a CA the simultaneous deletion of the
information particle on one site and its generation on another site.

In our hardware implementation we followed this idea: Each creature which
wants to visit the same front cell sends a request signal and awaits a grant signal
which is sent back to the creature to be selected. No grant signal is sent back
if more than one creature requests. Each cell contains logic (from the hardware
view) or an additional function (from the mathematical view) which generates
feedback signals for arbitration (Fig. 2). By this technique the neighborhood of
a creature (the front cell) is indirectly extended to all neighbors of the front cell.
Therefore a creature can be informed through the front cell that another creature
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is either two cells ahead or diagonal in front. The arbitration signal is only
influencing the next state of the creature but is not further propagated thereby
avoiding very long propagation chains or possible asynchronous oscillations.

feed-back

logic

requesti

granti

front

cell

Fig. 2. Asynchronous feed-back logic used for arbitration.

In order to model the distribution of information we are using an additional
bit vector in the cell state with k bits which is stored in each creature. At the
beginning the bits are set mutually exclusive (bit(i)=1 for creature(i)). When a
creature A detects another creature B in front of it, it will OR the bit vector of
B into its own A bit vector. The task is successfully solved when the bit vectors
of all creatures obtain 11 . . . 1.

A creature is implemented by a control machine (MEALY automaton) and an
action machine (MOORE automaton) which is controlled by the control machine
(Fig. 3). The state of the control machine is the control state s. The state of the
action machine is the direction r. The action machine reacts on the control signal
(activator) d. If d = 1 the creature turns to the right (r := r + 1), otherwise to
the left (r := r− 1). The behavior of the action machine is predefined and fixed.

The behavior defined by the control machine (also called algorithm for short
in this context) is changeable and can be configured by loading a state transition
table. The number of different control states is n. Input to the state table is s and
the move signal m. Output of the state table is the control signal d = RuleY and
the next state s′ = RuleS. Note that the union of the control machine with the
action machine results in a MOORE (of subtype MEDWEDJEW)) automaton.
Note that the MEDWEDJEW automaton is the common automaton used in the
standard CA model.

To summarize we are describing the moving of creatures by appropriate rules
according to the standard CA model with an extended neighborhood. The neigh-
borhood can virtually be reduced if the move signal is computed by the front cell
and also used by the surrounding cells. In general this idea leads to an interesting
extension of the standard CA model. If such an extension should be allowed is
a good point for discussion.

A state transition table with current input x, current state s, next state s′

and current output y is shown in Fig. 4. It can be represented by concatenating
the contents to a string, e. g.:
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s control state

r direction

v(r,d) new direction

m creature can move

L/R turn left/R if (m=1)

Lm/Rm turn left/R and 

move if (m=0)

MEALY-

Control-

Machine1      L
2      L 

0      L

4      R

5      R
3      R

3      Lm

1      Rm

5      Lm

0      Rm
4      Lm

2      Rm

0  0
0  1

0  2

0  3

0  4

0  5
1  0

1  1

1  2

1  3
1  4

1  5

s

r

v

x=m

s'

if d=1 then

r:=r+1 (R)

else r:=r-1 (L)

move signal
from front cell

activator d

MOORE-

Action-

Machine

copy states
to front cell if m=true move direction to neighbors

y=d

Fig. 3. The main parts of a cell: Table driven control machine controlling action
machine. The next state is defined by RuleS (the left column) and by RuleY
(the right column)

1R5L3L4R5R3L-1Lm2Rm3Rm4Lm5Rm0Lm
1R5L3L4R5R3L-1L2R3R4L5R0L (simplified form)

x

s 0 1 2 3 4 5 0 1 2 3 4 5

s',y 2,R 5,L 3,L 5,L 2,R 5,R 3,Lm 4,Lm 0,Lm 1,Rm 5,Rm 2,Rm

i 0 1 2 3 4 5 6 7 8 9 10 11

j 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 18,19 20,21 22,23

0 1

Lm

30

42

1

5

Lm

Lm Rm

Rm Rm

L

R
L

R R

L

(a)

(b)

Fig. 4. (a) A state table, defining the behavior (algorithm) of a creature and (b)
the corresponding state graph. Input = x = m (move condition). Output = y =
d (activator). Solid arcs are used for m = 1, dashed arcs are used for m = 0.

The state table can be represented more clearly as a state graph (Fig. 4b).
If the state machine uses n states, we call such an algorithm n-state algorithm.
The number of M of all algorithms (MEALY type) which can be coded by a
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table oriented state machine is

M = (#s×#y)(#s×#x)

where n = #s is the number of states, #x is the number of different inputs
and #y is the number of different outputs. Note that M increases dramatically,
especially with #s, which makes it very difficult or even impossible evaluate the
quality of all algorithms in reasonable time (e. g. for #s > 6 with #x = #y = 2).

3 Investigations and results

Random walk. In order to compare the quality of the algorithms to be found
we used random walkers with the same actions. Two environments were distin-
guished: (1) grid with border and (2) grid without border (wrap-around). 300
random walks on 50 random initial configurations were performed for each of the
two environments. In the first environment 1,882 generations on average were
needed to solve all of the test cases. In the second environment (wrap-around)
2,199 generations were needed. It is interesting to note that the random walk-
ers can communicate better if they are not disturbed by the borders. We will
show later, that in the case of using optimized behaviors, just the opposite will
be the case. Then the creatures make use of the borders to improve their com-
munication. The following results will also show that the random walkers are
significantly slower than the creatures with optimized behaviors.

Simplification of the problem. To solve the problem very general either
theoretical or practical with respect to all interesting parameters is very difficult.
Therefore we have simplified our investigation by using heuristics and some con-
stants instead of parameters. The grid size was set to 33 by 33 and the number of
creatures was set to k = 16. From former investigations of multi-creature systems
we know that a number of creatures between approx. 8 and 64 can lead to good
synergy effects and a sufficient number of conflicts which are required here. The
ultimate goal is to find the optimal behavior on average (robust algorithm) for
all possible initial configurations. An initial configuration is defined by the start
position and direction of the creatures and by the environment (with border or
wrap-around). Thus the searched behavior shall be able to cope with both types
of environments.

As we cannot test all possible initial configurations we will be satisfied if we
can find best behaviors for some test sets comprising a “sufficient” amount of
initial configurations. We defined several test sets:

1. (Training Set) 10 randomly generated initial configurations which are used
in the genetic procedure (see below). 5 of them use a grid with border, 5 of
them use a grid with wrap-around.

2. (Ranking Set) 100 randomly generated initial configurations which are
used to check and rank the quality of the algorithms found by the genetic
procedure. 50 of them use a grid with border, 50 of them use a grid with
wrap-around.
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3. (Robustness Set) 80 initial configurations (40 without border, 40 with
border) with the same amount of cells but with grid sizes of 1089 × 1, 363
× 3, 121 × 9 and 99 × 11, and with 16 randomly distributed creatures were
defined in order to test the algorithms for robustness.

Genetic Procedure. As the search space for different behaviors is very
large we are not able to check all possible behaviors. Therefore we used a genetic
procedure and tried to find the best behavior within a reasonable computational
time limit.

The fitness of a uniform multi-creature system (using a specific common be-
havior) is defined as the number of generations which are necessary to distribute
(all-to-all) the information, averaged over all initial configurations under test. In
other words we search for state algorithms which can solve the problem with a
minimum number of generations.

The behavior is described by a state table (Fig. 4) using 6 control states,
2 inputs (x = 0/1) and 2 outputs (y = 0/1). The string representation of the
state table defines the genome (individual, possible solution). P Populations of
N individuals are updated in each iteration (optimization cycle). During each
cycle M off-springs are produced in each population. The union of the current
N individuals and the M off-springs are sorted according to their fitness and
the N best are selected to form the next population. An offspring is produced
as follows:

1. (Get Parents) Two parents are chosen for each population. Each parent
is chosen from the own population with a probability of p1 and from an
arbitrary other population with the probability of (1− p1).

2. (Crossover) Each new component (s′i, yi) of the genome string is taken
from either the first parent or the second parent with a probability of 50%.
This means that the tuple (next state, output) for the position i=(input,
state) is inherited from any parent.

3. (Mutation) The string being modified by the crossover is afterwords mu-
tated with a probability of p2. If a mutation shall be performed, an arbitrary
position j is chosen and a new value (randomly chosen from the set of valid
values) is replacing the existing one. Thereby either the next state or the
output is changed at position i.

The algorithms were optimized using P = 7 populations with N = 100
individuals each, M = 10 off-springs, p1 = 2% and p2 = 9%. 6000 iterations
were performed starting with randomly generated state algorithms. The fitness
was tested for each offspring by simulating the multi-creature systems with the
training set.

Evaluation. The 700 best behaviors which had evolved after 6000 iterations
were used for the additional ranking test set. Thereby the best 100 algorithms
were selected ordered by (1) their success rate (number or percentage of initial
configurations which were successfully processed) and (2) their speed (number
of generations). The top 5 are listed in Table 1 upper part. All of them were
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completely successful (100 out of 100 configurations) and the best algorithm
needed 773 generations on average (mean of 50 configurations with border and
50 without).
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A1 2R5L3L5L2R5R-3L4L0L1R5R2R 100 773.21 209.9 80 1905.61 378.26

B1 1R3L5L4L2R1R-3L4L0L1R5R2R 100 775.58 215.82 60 1329.35 327.53

C1 5L5L5L3R2R4R-4R2R3L5L1L0R 100 775.65 116.76 60 1601.12 183.78

D1 5L3R4L0L3R3R-2R0L4L1L5R3R 100 778.31 111.13 60 1382.75 136.82

E1 4L3R5L4L1R5L-2R0L4L1L5R3R 100 782.52 197.82 68 2477.79 331.06

A2 2R5L3L5L2R5R-3L4L0L1R5R2R 100 773.21 209.9 80 1905.61 378.26
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Table 1. The top 5 algorithms of the Ranking Set and of the Robustness Set
ordered by (1) “Success Rate” (number of successfully solved configurations) and
(2) “Mean Generations” (number of generations averaged over all successful con-
figurations). The column “Communication Spots” represents the mean number
of cells from which information was read.

Figure 5 shows the distribution of generations with respect to the 100 initial
configurations for the best algorithm A1. Configurations with a border can be
solved faster with a lower variance than the configurations with wrap-around. In
the 33 × 33 environment with borders the algorithm A1 needed 474 generations
(averaged over the 50 configurations) whereas the random walkers needed 2,199
generations on average. In the environment with wrap-around the algorithm
A1 needed 1,072 generations (averaged over the 50 configurations) whereas the
random walkers needed 1,882 generations on average.

The 700 best algorithms obtained by the genetic procedure were also used
for an additional robustness test using the robustness test set. The ordering
scheme is the same as the one used for the ranking set. The top 5 are listed in
Table 1 lower part. Only one of them A2 = A1 was completely successful (80
out of 80 configurations) and the best algorithm A2 needed 1,906 generations on
average (mean of 40 configurations with border and 40 without). The following
three algorithms B2, C2, D2 cannot solve one configuration: It is one of the
configurations of size 1089 × 1. Algorithm E2 cannot solve two configurations
of size 1089 × 1.
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Fig. 5. The number of generations needed by algorithm A1 = A2 for each of the
100 initial configurations of the Ranking Set. The initial configurations 0 . . . 49
are with border, the configurations 50 . . .99 are with wrap-around. The creatures
solve the problem faster (474 on average) with border than with wrap-around
(1072 on average).

Further investigations have shown (Table 2) that environments of size n× 1
are in general more difficult to solve with the evolved algorithms. The success
rates for “wrap-around” are slightly better than for “border”.

Grid Size wrap-around border

1089x1 13.9% 13.0%

363x3 99.9% 96.4%

121x9 100.0% 98.0%

99x11 99.8% 94.3%

Mean 78.4% 75.4%

Success Rates

Table 2. Overall success rates of the Robustness Set, separate for each grid size.

Figure 6 shows how many of the best 100 algorithms ordered by the ro-
bustness test can solve a certain number of the 80 initial configurations of the
robustness set. It can be seen that less than 50-60 configurations are easy to
solve whereas more configurations are difficult to solve. The analysis revealed
that the difficult environments were in particular the environments 1089 × 1.
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Fig. 6. Curve showing how many of the 100 algorithms can solve a certain num-
ber of initial configurations in the Robustness Set.

Global Behavior. All algorithms which could successfully communicate in
all the 100 configurations show a similar global behavior: In the environments
with wrap-around the creatures form trails on which they preferably move. These
trails are forming a sort of a grid or weaving pattern. This grid is slightly turned
to the right or to the left (Fig. 7). The communications take place on the trails
and on the crossings of the trails. Similar patterns have emerged for all the
algorithms out of the top 100 we have checked. Analyzing the behavior of a
single creature showed that it is following a trail which forms a spiral with wrap-
around in the torus. Thus several creatures are forming the weaving pattern.
When creatures meet they are slightly deviated or they turn by 90 degrees. But
the algorithms are robust enough holding the creatures more or less on the trails.

The trail patterns which are emerging in the environments with borders look
similar but in addition trails and many communication spots along the borders
are establishing. A communication spot (marked white in Fig. 7, 8) is a cell which
at least once is used as an information source. In some of the multi-creature
systems also trails which run in parallel to the borders (Fig. 7b, 8b) can be
observed. In Fig. 8 appear also little squares in which creatures are circulating
around. These squares may be interpreted as centers of information which stay
at their place until they are kicked into regular trails.

4 Conclusion

We have explained in detail CA rules which allow to model moving creatures with
conflict resolution. The moving behavior of a creature is defined by a state table.
As an example we have modeled all-to-all communication between creatures. The
best behaviors were evolved by a genetic procedure on a Learning Set of initial
configurations comprising 50% environments with border and 50% with wrap-
around. A larger Ranking Set and a larger Robustness Set of initial configurations
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Fig. 7. Patterns emerged by Algorithm A1 = A2 (see also Tab. 1). The num-
bers indicate the generations of the CA when the situations were observed. The
rightmost images show the final generation when the algorithms accomplished
all-to-all communication.

were used to evaluate and order the evolved algorithms. The best algorithm is
very robust and performs very well on all the tested environments.

The algorithms perform better on environments with border compared to
environments with wrap-around because the movements along the borders im-
prove the communication. Compared to random walkers the evolved algorithms
perform much better. In contrast to the random walkers the evolved algorithms
perform better on environments with borders whereas random walkers perform
better on the other environments with wrap-around, meaning that random walk-
ers are not able to take advantage out of the borders.

The evolved algorithms emerge mesh like trailing patterns which are remind-
ing us of weaving structures. In addition trails which are in parallel to the borders
have emerged.

Further investigations are considered with different actions, a different num-
ber of control states, time-shuffled algorithms [8], non-uniform creatures [6], spe-
cialized fixed communication cells, and complete quality tests or formal proves
for small environments.
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1 A three-dimensional cellular automata simulator

There are many simulation programs of various kinds of cellular automata (CA).
In the two-dimensional case, there are some “killer applications" such as Golly [9].
Such a multi-purpose simulator enables constructing rules and configurations
without programming any new simulation tool.

In the three-dimensional case, there are also many simulation tools [2, 5] and
even Mathematica also serves one as an example. But it is difficult to study three-
dimensional cellular automata employing existing simulation tools. Because the
configurations of three-dimensional CAs apt to be large and designing a user
interface of intuitive and comprehensive manipulation of them is quite difficult.
So quite a few tools are intend to simulate a specific type of three-dimensional
CA.

Once some of the authors had planned to build a three-dimensional cellular
automaton with a complicated rule and configurations [6], a special simulation
tool was programmed at first. We used Common Lisp and QuickDraw 3D [11]
for rapid prototyping. Although the simulator was easy to modify and we divert
it to built three-dimensional array grammars [7], it is not so easy to maintain
by other research groups. Because the programming environment is not popular
and works only on the MacOS.

So we intend to build a Java based multi-purpose three-dimensional cellular
automata simulator. We used the Java3D [10] and Eclipse [8].

Figure 1 is a screen snapshot of the current prototype of the simulator. The
shape of neighborhood is variable and some user interfaces such as clip boards
are equipped so far.

2 Three-dimensional Larger than Life cellular automata

To show the potential of our simulator, we tried to find some interesting rules
and configurations of three-dimensional Larger than Life CAs.

Larger than Life L = (r, [β1, β2], [δ1, δ2]) is a natural generalization of the
game of life. Where r is the radius of neighborhood, [β1, β2] is the range of the
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Fig. 1. A screen snapshot of the simulator.

total number of live neighborhood cells for giving birth to the center cell (0→ 1),
[δ1, δ2] is the range for survival of the center cell (1 → 1) [3]. The game of life
can be denoted by (1, [3, 3], [2, 3]). Impressive patters such as Bugs and Bosco
are found on the Larger than Life of large neighborhood (radius 5) [3] and it
also has high computing efficiencies [4].

As far as the game of life, there are three-dimensional extensions. In contrast
to the two-dimensional case, there are many combinations of the range of birth
and survival. Bays defined a condition for three-dimensional game of life and
find some candidates [1].

We tried to find some life like rules and patterns in the case of r = 2 and
found several rule candidates and interesting patterns including gliders. Fig. 2
shows a glider patters on the rule (2, [14, 15], [10, 15]). We are also trying to find
some rule candidates and functional patterns for the case of larger radius.
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Abstract. This article proposes the use of high level programing lan-
guages for quick experimentation, verification of algorithms, data vi-
sualization and as a replacement for pseudo code in scientific articles.
Example SAGE/Python code for a few CA related problems is provided.

1 Introduction

This article evaluates SAGE http://www.sagemath.org a relatively new math-
ematical software. SAGE is an open source package based on Python that inte-
grates different existing software and ads its own code. It was chosen over other
tools, because it provides:

– good tools for integer mathematics (compared to Matlab)
– an arguably large set of libraries (compared to raw C)
– easy creation of interfaces (OS, other software, graphics)

I started the evaluation with a set of criteria to be observed. In approximately
two weeks I wrote a short software package and evaluated some of the proposed
criteria. The focus was on theoretical CA problems instead of practical appli-
cations, where programs are already common (Life simulators, ...). The article
lists the package source code and a set of examples showing its features.

Note, that the source code included in the article was created in a short time
frame as a proof of concept and is not ready for production purposes.

2 Evaluation criteria

To be able to evaluate the usefulness of SAGE/Python, I made a list of problems
to be solved and requirements to be met. Different criteria must be met for known
practical and new theoretical problems.

CA simulators are a common example of practical problems, where large
amounts of data are processed and visualized. Common requirements are: effi-
cient resource consumption (memory, processing power, processing time), scala-
bility and portability (over present and future platforms).
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Software is used in theoretical CA research to quickly create simulators of
formally defined systems and implementations of algorithms. Such software can
than be used to pass knowledge to other researches or students. Common require-
ments are: availability of libraries, easy learning curve, compact and readable
code.

The main criteria this article tries to evaluate is the appropriateness of SAGE
as an alternative for pseudo code.

3 Description of the included source code

The source code included in the appendix defines a set of classes and functions
for 1D CA with the purpose of solving the next problems:

– definition of 1D CA rule and lattice
– global state transitions forward and backward in time
– checking for garden of eden configurations

The computation of preimages was discussed by Wuensche [1] and Mora, Juárez
and McIntosh [2], the implemented algorithm was described by Jeras and Dob-
nikar [5]. McIntosh [3, 4] also describes de Bruijn and subset diagrams.

3.1 1D CA definition

The definition of a cellular automaton is divided into two classes (rule and lat-
tice), that can be arbitrary combined.

The rule class CA1D_rule is used to store the initialization parameters (k - cell
states, m - neighborhood size, r - rule number) and computed parameters (f -
local transition function table, D - de Bruijn diagram matrices, Sf - forward
subset diagram table).

sage: ca = CA1D_rule (2, 3, 110); ca

Cellular Automaton:

states = 2

neighbors = 3

rule = 110

The lattice class CA1D_lattice describes the size of the CA lattice and
boundary conditions. In addition to parameters (ca - rule object, C - config-
uration, sh - output cell position in its neighborhood, b - boundary type) there
are methods (next() - compute evolution step, prev() - compute preimages,
isGoE() - check for Garden of Eden configurations) used to perform computa-
tions on the CA.

sage: lt = CA1D_lattice (ca, [0,0,0,1,0,0,1,1,0,1,1,1,1,1], sh=1)

sage: lt

[0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]
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3.2 Local transition function and global transitions

When a CA1D object is created the rule number is transformed into a table
describing the local transition function. Element 0 in the list is the output of
the local function with the neighborhood 000 as input.

sage: ca.f

[0, 1, 1, 1, 0, 1, 1, 0]

The next code prints the lattice state for 5 time steps. Since the example con-
figuration is the ether for rule 110, common triangular patterns can be seen. A
’cyclic’ and an ’open’ lattice are processed.

sage: for i in range(5) : lt.next(); print lt

[0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1]

[0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1]

[1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1]

[0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0]

[1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0]

sage: lt.b = ’open’

sage: for i in range(5) : lt.next(); print lt

[1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0]

[0, 1, 0, 0, 1, 1, 0, 1, 1, 1]

[1, 0, 1, 1, 1, 1, 1, 0]

[1, 1, 0, 0, 0, 1]

[1, 0, 0, 1]

3.3 de Bruijn diagram and preimages

The de Bruijn diagram is represented as a list of matrices, one for each cell state.

sage: ca.D[0] sage: ca.D[1]

[1 0 0 0] [0 1 0 0]

[0 0 0 0] [0 0 1 1]

[1 0 0 0] [0 1 0 0]

[0 0 0 1] [0 0 1 0]

This matrices are used to compute preimages. The prev() method returns a
list of preimages. In the first example for ’cyclic’ and than for ’open’ (unre-
stricted) boundaries.

sage: lt = CA1D_lattice(ca,[0,0,0,1,0,0,1,1,0,1,1,1,1,1],sh=1)

sage: lt.prev()

[[1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1],

[1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1]]

sage: lt.b = ’open’; lt.prev()

[[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1],

[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0],

[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0],

[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1],
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[1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0],

[1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1],

[1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1]]

For non cyclic lattices the preimage configuration is larger than the input con-
figuration.

3.4 Subset diagram and Garden of Eden configurations

The subset diagram is build with the creation of the rule object. Each line
represents the subset transitions for one of the cell states.

sage: ca.Sf

[[0, 1, 0, 1, 1, 1, 1, 1, 8, 9, 8, 9, 9, 9, 9, 9],

[0, 2, 12, 14, 2, 2, 14, 14, 4, 6, 12, 14, 6, 6, 14, 14]]

The included code supports checking for GoE configurations only for ’open’
boundary conditions. The subset diagram is used as a finite state automaton
where the initial state is the full set and the accepting state (for the GoE regular
language) is the empty set.

sage: lt = CA1D_lattice (ca, [0,1,0,1,0], sh=1); lt.isGoE()

True

4 Overview and conclusion

After writing the listed code, I can say that SAGE and Python are appropriate
tools for quick implementations. I was able to write the code without much prior
Python knowledge, and the implementation of algorithms is short and compact
enough to be included in an article.

The listed code can be improved in many ways. By adding complexity (li-
braries) and optimizations (written in C) larger problems could be processed.
Packages like NetworkX1 and Python Imaging Library2 can be used to draw
basins of attraction and create PNG images of CA evolution. Matrix multiplica-
tion can be optimized using the NumPy package3. The SAGE project by itself
ads a lot of useful tools for theoretical analysis of CA, I was mostly interested
in its combinatorics capabilities.

The appropriateness of SAGE and Python as an alternative to pseudo code
is not obvious. The main problem is the fast evolution of high level programming
languages. So the code might be portable for a few years, but to add longevity a
more abstract representation (like algorithm diagrams) should also be included.

1 networkx.lanl.gov
2 pythonware.com/products/pil/
3 numpy.scipy.org
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5 SAGE source code

Most of the data in the code is stored in lists. This is a basic data structure
in Python and it was chosen, because it is the simplest to use, although very
far from optimum regarding usage of system resources (memory and processing
cycles).

def int2list (number, radix, length) :
list = Integer(number).digits(radix)
return list + (length-len(list))*[0]

def list2int (list, radix) :
return sum ( [radix^i*list[i] for i in xrange(len(list))] )

def list2bool (list) :
return [Integer(list[i]>0) for i in xrange(len(list))]

class CA1D_rule () :
def __init__(ca, k, m, r):

ca.k = k; ca.m = m; ca.r = r;
ca.f = int2list (ca.r, ca.k, ca.k^ca.m)
ca.D = [zero_matrix(ZZ, ca.k^(ca.m-1), sparse=True) for k in xrange(ca.k)]
for n in xrange(ca.k^ca.m) :
o_l = n // ca.k; o_r = n % (ca.k^(ca.m-1))
ca.D [ca.f[n]] [o_l, o_r] = 1

ca.Sf = [ [ list2int ( list2bool ( \
vector(int2list(i, ca.k, ca.k^(ca.m-1))) * ca.D[c]), ca.k) \
for i in xrange(2^(ca.k^(ca.m-1))) ] for c in xrange(ca.k) ]

def __repr__(ca):
return "Cellular Automaton:\n"+ \
" states = "+str(ca.k)+"\n" + \
" neighbors = "+str(ca.m)+"\n" + \
" rule = "+str(ca.r)

class CA1D_lattice () :
def __init__(lt, ca, C, sh=0, b=’cyclic’) :

lt.ca = ca; lt.C = C; lt.sh = sh; lt.N = len(lt.C); lt.b = b

def __repr__(lt):
return repr(lt.C)

def next (lt) :
if (lt.b == ’cyclic’) :
lt.C = [ lt.ca.f[list2int([lt.C[(x+lt.ca.m-1-i-lt.sh) % lt.N] \

for i in xrange(lt.ca.m)], lt.ca.k)] \
for x in xrange(lt.N ) ]

else :
lt.C = [ lt.ca.f[list2int([lt.C[ x+lt.ca.m-1-i ] \

for i in xrange(lt.ca.m)], lt.ca.k)] \
for x in xrange(lt.N-(lt.ca.m-1)) ]

lt.N = lt.N - (lt.ca.m-1)
return

def prev (lt) :
C_p = []

if (lt.b == ’cyclic’) :
lt.D_x_b = [identity_matrix(ZZ, lt.ca.k^(lt.ca.m-1), sparse=True)]
for x in xrange(lt.N) :

lt.D_x_b.append (lt.ca.D[lt.C[lt.N-1-x]] * lt.D_x_b[x])
lt.p = sum ([lt.D_x_b [lt.N] [i,i] for i in xrange(lt.ca.k^(lt.ca.m-1))])

C_p = [CA1D_lattice(lt.ca, lt.N*[0], lt.sh, lt.b) for i in xrange(lt.p)]
o_p0 = [];
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for o in xrange(lt.ca.k^(lt.ca.m-1)) :
o_p0.extend([o for d in xrange(lt.D_x_b[lt.N][o,o])])

o_p = list(o_p0)

for x in xrange(lt.N) :
i = 0
while (i<lt.p) :

o_L = o_p[i]; o_R = o_p0[i]
for c in xrange(lt.ca.k) :
n = o_L * lt.ca.k + c
if (lt.C[x] == lt.ca.f[n]) :

o_x = n % (lt.ca.k^(lt.ca.m-1))
p_i = lt.D_x_b[lt.N-x-1][o_x,o_R]
for p_c in xrange(p_i) :

C_p[i].C [(x+lt.sh) % lt.N] = c
o_p[i] = o_x
i = i+1

else :
if (lt.b == ’open’) :

b_L = b_R = vector(lt.ca.k^(lt.ca.m-1)*[1])
lt.b_x_b = [b_R]

else :
b_L = vector(lt.b[0]); b_R = vector(lt.b[1])
lt.b_x_b = [b_R]

for x in xrange(lt.N) :
lt.b_x_b.append (lt.ca.D[lt.C[lt.N-1-x]] * lt.b_x_b[x])

lt.p = b_L * lt.b_x_b[lt.N-1]

C_p = [ CA1D_lattice(lt.ca, (lt.N+ca.m-1)*[0], lt.sh, lt.b)
for i in xrange(lt.p) ]

o_p = [];
for o in xrange(lt.ca.k^(lt.ca.m-1)) :

o_p.extend([o for d in xrange(b_L[o] * lt.b_x_b[lt.N][o])])
for i in xrange(lt.p) :

C_p[i].C [0:lt.ca.m-1] = int2list(o_p[i], lt.ca.k, lt.ca.m-1)

for x in xrange(lt.N) :
i = 0
while (i<lt.p) :

o_L = o_p[i];
for c in xrange(lt.ca.k) :
n = o_L * lt.ca.k + c
if (lt.C[x] == lt.ca.f[n]) :

o_x = n % (lt.ca.k^(lt.ca.m-1))
p_i = lt.b_x_b[lt.N-x-1][o_x]
for p_c in xrange(p_i) :

C_p[i].C [x+lt.ca.m-1] = c
o_p[i] = o_x
i = i+1

return C_p

def isGoE (lt) :
if (lt.b == ’open’) :
s = 2^(ca.k^(ca.m-1))-1
for x in xrange(lt.N) : s = lt.ca.Sf[lt.C[x]][s]
return (s == 0)

else :
return "Unsupported boundary"

References

[1] Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Addison-
Wesley (1992)



Solving CA problems with SAGE/Python 423

http://www.cogs.susx.ac.uk/users/andywu/gdca.html

[2] Mora, J. C. S. T., Juárez, G., McIntosh, H. V.: Calculating ancestors in one-
dimensional cellular automata. International Journal of Modern Physics C 15
(2004) 1151-1169

[3] McIntosh, H. V.: Linear Cellular Automata Via de Bruijn Diagrams (1994)
http://delta.cs.cinvestav.mx/~mcintosh/newweb/marcodebruijn.html

[4] McIntosh, H. V.: Ancestors: Commentaries on The Global Dynamics of Cellular
Automata by Andrew Wuensche and Mike Lesser (1993)
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/wandl/wandl.html

[5] Jeras, I., Dobnikar, A.: Algorithms for Computing Preimages of Cellular Automata
Configurations. Physica D: Nonlinear Phenomena 233/2 (2006) 95-111
http://www.rattus.info/al/al.html



424 Jeras

.



Cellular automata with cell clustering

Lynette van Zijl⋆ and Eugene Smal

Computer Science, Stellenbosch University,
P/Bag X1, Matieland, 7601, South Africa

http://www.cs.sun.ac.za/~esmal

Abstract. We consider the modelling of a particular layout optimisa-
tion problem with cellular automata, namely, the LEGO construction
problem. We show that this problem can be modelled easily with cellu-
lar automata, provided that cells are considered as clusters which can
merge or split during each time step of the evolution of the cellular au-
tomaton. The LEGO construction problem has previously been solved
with optimisation techniques based on simulated annealing and with a
beam search approach, but we show that the use of cellular automata
gives comparable results in general, and improves the results in many
respects.

1 Introduction

Cellular automata (CA) and their many variations typically have a constant
grid size, irrespective of the problem begin modelled. That is, in modelling a
given problem using CA, the starting point is a grid of a fixed size consisting of
single cells, where each cell has a specific interpretation. Each cell is evaluated
simultaneously in each time step. However, in problems where clustering plays a
meaningful role in the information represented by a cell, each cluster has to be
evaluated at each time step in an efficient manner, instead of the traditional cell-
by-cell evaluation. The LEGO construction problem falls into this last category.
The LEGO construction problem, in short, concerns the optimal layout of a
set of LEGO bricks to represent a given shape. In this article we discuss the
modelling of the LEGO construction problem using CA, with emphasis on the
necessity for efficient cluster evaluation. To our knowledge, the idea of CA with
cell clustering has not been investigated before.

The rest of this article is organised as follows: In Sect. 2 we define the nec-
essary terminology. In Sect. 3 we show how to encode the LEGO construction
problem with cellular automata, followed by a discussion of the results in Sect. 4.
We point out possibilities for future work in Sect. 5, and conclude in Sect. 6.

⋆ This research was supported by NRF grant number 2053436.
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2 Background

We assume that the reader is familiar with the theory of CA, as for example
in [1]. We briefly recap on the definitions used in the rest of this article.

A cellular automaton C is a multidimensional array of automata ci, where the
individual automata ci execute in parallel in fixed time steps. The individual au-
tomata ci can reference the other automata by means of a rule. Typically, each ci

only references the automata in its immediate vicinity, called its neighbourhood.
If all the automata ci are identical, then C is called a uniform CA. If all

the automata ci only have two possible states, then C is called a binary CA.
We restrict ourselves to two-dimensional (2D) uniform binary CA in this article.
When a given CA is two-dimensional, it forms a two-dimensional grid of cells,
where each cell contains one of the automata ci. In an n×n grid we assume that
both the rows and columns are numbered from 0 to n− 1.

As an example, consider the CA C with a 3 × 3 grid and with the rule
cij(t + 1) = ci−1,j(t) ⊕ ci+1,j(t). Suppose the rows of C are initialised with the
values 000, 010 and 111 at time step t = 0 (see Fig. 1). Then the value of
c11(t = 1) = 0 ⊕ 0 = 0 and c21(t = 1) = 1 ⊕ 1 = 0. Note that we assume null
boundaries, so that if i = 0, then i−1 is simply ignored in the formula. Likewise,
if i = n − 1, then i + 1 is ignored. In the example above, c22(t = 1) = c12(t =
0)⊕ c32(t = 0) = c12(t = 0) = 1.

t = 0
0 0 0
0 1 0
1 1 1

t = 1
0 0 0
1 0 1
1 0 1

Fig. 1. An example CA.

We now define a so-called cluster, which we will need to intuitively describe
the LEGO construction problem as a CA. Usually, a CA has a given number of
cells, and the number of cells stays fixed throughout all of its time evolutions.
In our particular model, however, it is easier to assume that cells may merge or
split during time steps, so that the number of cells in the CA may vary between
different time steps.

We first define the adjacency of cells to mean cells that touch on a joint
border:

Definition 2.1. Let C be a 2D CA. Two cells cij and ckm in C are adjacent if
either |i − k| = 1 or |j −m| = 1. If both |i − k| = 1 and |j −m| = 1, then the
cells are not adjacent.

We now define a cluster as a set of adjacent cells:

Definition 2.2. Let C be a 2D CA. A cluster B in C is a set of cells from C
such that any cell cij in B is adjacent to at least one other cell ckm in B.
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It is convenient to define disjointed clusters:

Definition 2.3. Two clusters A and B are disjoint if there is no cell aij in A
such that aij is also in B, and no cell bij in B such that bij is in A.

The clusters in our modelling of the LEGO construction problem are typi-
cally disjoint, but it is not a necessary condition for our algorithms to function
correctly.

We can also define adjacency of clusters:

Definition 2.4. Two clusters A and B are adjacent if there exists at least one
cell aij in A and at least one cell bkm in B such that aij is adjacent to bkm.

Fig. 2. Cell clustering in a CA.

Example 2.1. In Fig. 2, cell c11 is adjacent to cell c12, but c11 is not adjacent to
c22. Also, the set of cells {c11, c21, c22} forms a cluster, but the set {c12, c21} does
not. Lastly, the clusters {c01, c02} and {c12, c21, c22} are adjacent, since cells c02

and c12 are adjacent. These two clusters are also disjoint.

�

When using clusters to model the LEGO construction problem, we will fur-
ther restrict the cluster to have only the forms that represent standard LEGO
bricks. That is, the clusters can only have the rectangular shapes and sizes as
shown in Fig. 3. Note how the bricks are identified by the number and rectangu-
lar arrangement of its studs. For example, a brick with two rows of three studs
each is called a 2× 3 brick.

Definition 2.5. A valid LEGO brick is one with dimensions as defined in Fig. 3.

The reader should note that clusters are considered to be homogeneous enti-
ties, in the sense that all the cells forming the cluster will contain the same status
information. However, clusters are typically of different sizes (for example, the
cluster representing a 2× 4 LEGO brick may lie next to the cluster representing
a 1 × 3 LEGO brick). This means that we have to define the meaning of the
neighbourhood of a cluster.
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Fig. 3. The list of standard LEGO bricks.

Definition 2.6. The (Von Neumann) neighbourhood of a cluster A is the col-
lection of clusters adjacent to A.

Note that the above definition implies that a cluster may not necessarily
have four neighbours in its Von Neumann neighbourhood. Also, the number of
Von Neumann neighbours may vary between different clusters. For example, in
Fig. 2, suppose that the there are four 1 × 1 clusters, namely, are c00, c10, c20

and c11. Also, {c01, c02} forms a cluster of size 1× 2 and {c12, c21, c22} forms an
L-shaped cluster. Then the Von Neumann neighbourhood of cluster c11 consists
of three other clusters, namely, the cluster c10, the cluster {c01, c02} and the
cluster {c12, c21, c22}.

In addition, a single cluster may have a different number of neighbours in
different time steps. We also note that the definition of different types of neigh-
bourhoods (such as Von Neumann or Moore) now simply defines the type of
adjacency. This is indeed the case with CA without cell clustering as well, but
the neighbourhoods based on a fixed size grid enforce a fixed number of neigh-
bours for all cells through all time steps.

The next issue to consider is the merging of clusters.

Definition 2.7. Let A and B be two clusters in a binary 2D CA. Define a new
cluster C to contain every cell aij in A and every cell bkm in B, and no other
cells. Then C is said to be the merge of A and B.

Given a merge operation on two clusters, it is natural to consider the dual
operation of splitting up a cluster into smaller parts. In our case, we simply
consider the splitting of a cluster into its smallest constituent parts, namely,
clusters of size 1× 1:

Definition 2.8. Let A be a cluster in a binary 2D CA, and let A contain k
distinct cells ci, with 1 ≤ i ≤ k. Then the operation split(A) creates k new
clusters Ai, such that ci is the only cell in Ai, for 1 ≤ i ≤ k. All the clusters Ai

are thus disjoint.

We now discuss the LEGO construction problem in more detail, and show
how to encode it using a uniform binary CA with clustering.



Cellular automata with cell clustering 429

3 Encoding the LEGO construction problem as a CA

The LEGO construction problem in essence concerns the following issue: given
a real-world three-dimensional (3D) object, find the most optimal way to build
a LEGO sculpture of the object, given a specific set of standard LEGO bricks.

The traditional approach to solving the LEGO construction problem is to
virtually cut the 3D object into horizontal two-dimensional (2D) layers (we as-
sume that a digital representation of the real-world 3D object is given as input).
The problem then reduces to a series of 2D solutions which can be joined to-
gether (under certain restrictions) to find the final 3D solution. We note that
each horizontal layer will eventually form one layer of bricks in the final solution.

Given the digital representation of a 2D layer, the layer is then encoded as a
grid of zeroes and ones, where the ones represent the solid parts of the original
object in this layer. To solve the LEGO construction problem, we therefore have
to find an optimal layout of LEGO bricks to cover the ones in each layer. It is
assumed that there is an unlimited number of each type of brick of the standard
LEGO bricks.

An optimal layout of LEGO bricks is defined by a number of factors [2], the
most important of which are:

– the number of bricks used should be minimised;
– larger bricks should be used where possible, to allow for ease of building,

better brick connectivity and to indirectly reduce the number of bricks used;
– bricks in consecutive layers should have alternate directionality to increase

the stability of the final sculpture;
– a large part of each brick in the current layer should be covered by other

bricks in the next layer; and
– a brick in the current layer should cover as many other bricks in the previous

layer as possible.

The traditional way of solving the LEGO construction problem is to use
combinatorial optimisation methods to find an optimal layout [3]. One of the
first proposed solutions was based on genetic algorithms [4], while the current de
facto solution makes use of a beam search to cover the search space [5]. As with
all optimisation methods, some models can take excessively long to solve. Also,
in some cases, sub-optimal solutions are found when the search tree is trimmed.
Our CA approach is an attempt to alleviate exactly these problems.

We are now ready to encode the LEGO construction problem as a CA. As-
sume a two-dimensional grid of clusters, representing one 2D layer of the real-
world object as described previously. Each 1×1 cluster has the value zero or one,
which indicates whether this is an area to be filled with a brick, or to be kept
open. Additionally, we allow each cluster to keep separate status information as
needed.

The time evolution of each layer of the model intuitively proceeds as follows:
initially, each cluster of size 1×1 which contains a 1 value, is assumed to represent
a LEGO brick of size 1× 1. Then, for each time step, there are two phases.
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In the first phase, each cluster investigates every other cluster in its Von
Neumann neighbourhood, to decide whether it is possible to merge with that
neighbouring cluster. The status information for each cluster is then updated to
indicate with which of the clusters in its neighbourhood the cluster is willing to
merge. This operation happens in parallel and simultaneously for all clusters,
similar to the time evolution of cells in a standard CA.

In the second phase, a sequential pass through the individual clusters inves-
tigates the status information of each cluster. This status information is used
to decide which clusters will merge to form larger clusters. As the merging into
clusters takes place in a sequential and progressive fashion, the order of the ac-
tual merges can be random, or front-to-back, or any other implementable way
of choosing the order. This has a slight influence on the final layout.

We now discuss each phase in more detail.

3.1 Merging

In the first phase of the merging step, each cluster examines its neighbours
to determine with which of the neighbours it can merge to form a valid new
LEGO brick. We assume a Von Neumann neighbourhood, which uses the clusters
directly adjacent to the current cluster. If there is more than one possible merge
amongst the neighbours, the cluster selects the best possible merge by using a
local cost function rule (described below)1. If there are no clusters with which
the current cluster can merge, the cluster can split into smaller clusters (see
Sect. 3.2). The status information of the cluster is now updated to indicate its
best possible merge neighbour.

We use a local cost function as the rule to determine with which neighbour
each cluster should be merged. The local cost function is defined as:

Cost = Wperpend × perpend

+Wedge × edge + Wuncovered × uncovered

+Wotherbricks × otherbricks

where the W ’s are weight constants and

– the perpend variable corresponds to the directionality of the bricks in con-
secutive layers;

– the edge variable represents the number of the edges of each brick that co-
incide with edges of bricks from the previous layer;

– the uncovered variable describes how much of the area of each brick is not
covered by bricks in the previous and following layers; and

– the otherbricks variable represents the number of bricks in the previous layer
covered by this brick.

1 If the local cost function evaluates to the same minimal value for more than one
neighbour, a random choice is made amongst the minimal value neighbours.
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This cost function directly corresponds to the fitness function used by Petro-
vic [4], but without the numbricks and neighbour heuristics used in his function.
These were removed since they have no effect when local optimisation is used.
The numbricks heuristic is used to minimise the total number of bricks globally.
Our method indirectly minimises the number of bricks, since a brick will always
merge with a neighbouring brick if possible. Even though the numbricks heuristic
was not included in the local cost function, we do still add it in our test results
when calculating the total sculpture cost. This is useful in comparing the results
to those achieved with other methods.

The cost function must be minimised to help ensure that the total cost of the
LEGO sculpture is kept to a minimum while its stability is maximised. After each
time step, the total cost for the layer is calculated. The best layer constructed
throughout the time steps is used as the final building instruction for that layer.

In the second phase, the new set of (merged) clusters are constructed. The
process involves two steps:

1. Each cluster is considered, and a potential new cluster is calculated by using
the information from phase 1. If the new cluster forms a valid LEGO brick,
the merge information for the cluster is completed.

2. For all potential new clusters that do not form valid bricks, the potential
new cluster is traversed until a further traversal step would lead to an invalid
brick. The traversed clusters are then flagged for merging into a new cluster,
and the process is repeated until all the elements of the potential cluster
have been traversed and flagged for merging into valid brick clusters.

Clearly, phase 2 is a sequential phase, where all clusters are calculated se-
quentially by visiting each cluster and using its best possible merge status infor-
mation.

Once the new clusters have been calculated, all the clusters are merged si-
multaneously. The exact detail for the implementation of the merging can differ
substantially, and this can have a noticeable effect on the performance of the
method. In our case, we simply merge the clusters by starting with the first
cluster in the new potential cluster, and merging it with its best possible merge
neighbour. The resulting cluster is then merged again in a similar manner until
either it cannot merge any further, or the whole cluster has been merged to-
gether. We note that this method of merging the clusters will not necessarily
always deliver the optimal result. However, the local optimisation propagates to
a satisfactory result in almost all cases, with a low execution time.

We give an example of the merging process below.

Example 3.1. Suppose that a 3× 3 grid, with all values consisting of ones, must
be constructed from the standard LEGO brick set (see Fig. 4). Therefore, there
are initially nine clusters in the grid, each representing a brick of size 1× 1.

In the first phase each cluster determines with which of its neighbours it can
merge to form a new valid brick. The cluster then sets its status information
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a b

c d

Fig. 4. (a) The 2D grid, (b) potential merge neighbours, (c) potential new clus-
ters, (d) the final three clusters.

to indicate with which neighbouring brick it would best merge (see Fig. 4(b)).
Here, each cluster indicates its best possible merge brick with an arrow.

In the second phase, all the potential new clusters are calculated. In this
example we have two clusters (see Fig. 4(c)).

After the potential new clusters are calculated, they are traversed and merged
together to form the larger clusters. The merging process in this case ends with
three clusters instead of two, since the second cluster cannot merge into one
large valid brick (see Fig. 4(d)). The second cluster is therefore merged, until it
cannot merge any further without resulting in an invalid brick. The remaining
clusters are then traversed and merged together to form the third cluster.

In the next time step (see Fig. 5), each cluster will again determine with
which brick its group of clusters should merge, using its local neighbourhood, to
form a new valid brick. The best possible merge for the group is then selected.
In this example cluster {1, 2, 4, 5} can only merge with cluster {3, 6} to form a
valid larger brick. Cluster {7, 8, 9} can then not merge with any of the other two
bricks. Therefore, there will only be one cluster to merge containing the merge of
{1, 2, 4, 5} and {3, 6}. After the clusters have been merged, there are two bricks
in the layout, which cannot be merged again into a larger valid brick.

�
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Fig. 5. The resulting bricks after time step 2.

The counterpart to the merge operation is the split operation. As our merge
operation can quickly reach the point where no more merging is possible, it is
useful to split a given cluster so that the search for an optimal solution can
continue.

3.2 Splitting

Our splitting method simply splits a given cluster into 1×1 clusters (see Fig. 6).
It is in principle possible to use other splitting strategies (such as splitting into
k smaller clusters). However, due to the large number of possible brick sizes in
the LEGO construction problem, this would be computationally expensive with
no immediate advantage over our complete dissolution of the cluster.

Fig. 6. Two bricks splitting into 1× 1 bricks

A cluster can potentially split if it cannot merge with any of its neighbouring
clusters. We assign a splitting time delay to each cluster, which is the maxi-
mum number of time steps during which the cluster will unsuccessfully attempt
possible merges. When the splitting time delay expires, the cluster will attempt
to split. The time delay allows neighbouring clusters enough time to grow into
clusters with which the current cluster can merge. If there were no time delay,
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clusters could split too early and larger clusters will fail to form. The time delay
can be a random or fixed number of time steps for each cluster.

If a cluster was unable to merge within the time delay, it will attempt to split.
For the LEGO construction problem, we assign a different splitting probability
to every brick (basically, the larger a brick, the less its splitting probability).
When a cluster attempts to split, it generates a random number. If that number
is less than its splitting probability, the cluster splits. Otherwise, the time delay
of the cluster is reset and the cluster will again try to merge with neighbouring
clusters.

In summary, our algorithm considers each layer separately. For each layer, it
executes phase 1 and phase 2, and calculates the cost for the layer. Phase 1 finds
the best merge neighbour for each cluster, and phase 2 calculates new clusters
sequentially before merging all the clusters in parallel.

We implemented our CA-based method, as well as the beam search method
of Winkler [5]. In Appendix A, we give some screenshots of our system, as well
as some of the LEGO instructions generated by the system. In the next section,
we analyse the results obtained by our CA with cell clustering method.

4 Results

We implemented our CA with cell clustering method, as well as the beam search
method. We compare these two methods below, and discuss their respective
advantages and disadvantages. We also point out some interesting issues that
occurred in the implementations.

In comparing the CA with cell clustering against the beam search method,
one is in essence comparing a local optimisation method against a global opti-
misation method. Having noted that, we had to define measures of quality for
the comparison. We list these below:

– number of bricks used in the final model : in general, the fewer bricks used,
the cheaper it is to produce the model. This was one of the criteria listed by
the LEGO company in the original definition of the problem;

– cost (as defined by the cost function): as the cost function contains all the
parameters against which to optimise, a low cost function represents a ‘good’
model;

– execution time of the implementation on a specific model : the quicker a good
layout can be reached, the better;

– extending the solution to allow coloured sculptures: the traditional solutions
to the LEGO construction problem assume the input to be monochrome,
which significantly limits the practical use of the implementation;

– ease of building: this is a ‘fuzzy’ measure, and we simply experimented by
building a number of the same sculptures based on the instructions generated
by the beam search method and the instruction generated by the CA method,
respectively; and

– ease of implementation of the solution: here, we consider the complexity of
the coding of the solution.
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Fig. 7. The LEGO sculptures.

We set up a number of experiments to evaluate our measures of quality.
For the experiments, we selected three different models (see Fig. 7). The first
is a simple hollow cube with dimensions 8 × 8 × 8 unit bricks, which is repre-
sentative of small geometric models without rounded surfaces. The second is a
chess pawn with dimensions 10× 10× 20 unit bricks, which is representative of
small models with many rounded surfaces. The third is the well-known Stanford
bunny with dimensions 30 × 20 × 25 unit bricks, which is representative of a
larger sculpture with more complexity and finer detail. We selected weight con-
stants 2 Cnumbricks = 200, Cperpend = −200, Cedge = 300, Cuncovered = 5000,
and Cotherbricks = −200.

Reaching a good layout with the CA method depends on the number of time
steps that the CA executes, whereas to reach a good layout with the beam search
method depends on the width of its search tree (and how much it is pruned).
These two parameters are not necessarily easily comparable. In addition, there
is a random element to be taken into account in the CA method (in the merging
phase), so that the values given for the CA method are averaged over a number
of runs.

A summarised view of the results is given in Table 1. Here, the number of
iterations for the CA was set at 1500, and the width of the search tree in the
beam search method was set to 4000 (a wider search tree is possible, but will
dramatically increase the execution time of the beam search).

The first measure is the number of bricks in the final sculpture. From Table 1
it is easy to see that, for the more complicated sculpture (the chess pawn) and
the larger sculpture (the bunny), the CA method uses less bricks than the beam
search method. This is to be expected, as the CA method forces merging into
larger bricks whenever possible so that fewer but larger bricks are used. The
beam search, on the other hand, will evaluate the size of the bricks as part of
its cost function, and the requirements for non-coincidental edges and alternate

2 These values are similar to the values suggested by [4]. The large integer values
prevent underflow errors in the evaluation of the cost function.
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Model Number of bricks Cost function value Execution time (s)
CA BS CA BS CA BS

Cube 42 43 20357 20158 75 8
Chess pawn 170 196 99889 106543 181 18
Bunny 1133 1436 630739 714223 280 313

Table 1. Experimental results for CA with cell clustering (CA) and beam search
(BS).

directionality then result in smaller bricks being chosen. It is possible to care-
fully choose the weight constants for the beam search to weigh the size of the
bricks as highest priority. However, that leads to weaker sculptures, as the lack of
alternate directionality and non-coincidental edges result in disconnected sculp-
tures. Therefore, in the beam search, it often happens that two adjacent smaller
bricks rather than a single larger brick appears. For example, we often found two
adjacent 1 × 3 bricks produced in the beam search sculptures, whereas the CA
method would almost always force those into a single 2×3 brick. This influences
the ease with which a sculpture can be built, as it is usually more uncomfortable
to connect many small bricks than to connect a single larger brick. In that sense,
the CA method produces ‘better’ building instructions.

However, the above comments on the number and size of the bricks are mostly
true for larger and more complex sculptures. In simple and small sculptures, the
beam search can stabilise more quickly than the CA approach. For example, for
the hollow cube, if the tree width is set at 10000, the number of bricks for the
final sculpture is reduced to 32 within 19 seconds. The CA, on the other hand,
takes 2000 time steps and 96 seconds to reach a brick count of 40.

Our second measure of quality is the value of the cost function. This repre-
sents the quality of the sculpture in total, including number of bricks, alternate
directionality and non-coincidental edges between layers. Here, as can be seen
in Table 1, the difference between the CA method and the beam search is com-
parable. It should be noted that it is possible to get a smaller cost value for the
beam search, but at the expense of a much wider search tree and substantial
increase in execution time. For example, if we increase the width of the tree to
40000 for the chess pawn, the value of the cost function falls to 95366, but the
execution time increases to 275 seconds. Corresponding to the values in Table 1,
the sculptures built from the CA generated instructions and the beam search
generated instructions showed no perceivable difference in stability.

The last direct measure of quality of our method is the execution time. Al-
though Table 1 indicates an order of magnitude difference in the execution times
between the two methods, the values can be potentially misleading. We note that
the execution of the CA is dependant on the number of time steps, which is a user
parameter. There is no easy way to let the implementation decide its own point
where no improvement is possible. For example, with the chess pawn model, a
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number of 192 bricks is reached within 14 seconds and just 100 iterations. To
improve the number of bricks to 168 takes 2000 iterations and 246 seconds. The
beam search, on the other hand, could reduce the number of bricks only to 180 in
275 seconds (with a tree width of 40000). In addition, the CA has a transitional
startup phase before stabilisation which shows clearly in the smaller models, but
which is relatively shorter in the larger models. However, it is fair to say that
for small and simple models, the beam search method executes faster than the
CA method on a single processor machine. As we point out in the next section,
we intend to parallelise both methods in the future.

There are two areas where the CA method shows distinct advantages over
the beam search method. The first is ease of implementation – although the
number of lines of code for each of our implementations is roughly comparable,
it was much simpler to implement the CA (even with merging and splitting)
than it was to implement a search tree with its associated pruning. The second
area where the CA has a distinct advantage over beam search, is the extension
of the implementation to cater for coloured sculptures. In the case of the CA
method, this has a small effect on the merging phase, where merging of clusters
is restricted to clusters of the same colour only. Our current implementation of
the CA method already incorporates coloured models. The beam search method,
however, is much more difficult to extend to coloured models. Every sculpture
has a certain ‘thickness’ – that is, the depth of any one side of the sculpture.
Traditionally, a thickness of four unit bricks works well to ensure enough stabil-
ity without unnecessarily increasing the number of bricks used. When colour is
incorporated, it is possible to make the outer brick the required colour and use
the inner bricks (that are hidden from view) to ensure stability. In that way, even
checkered patterned sculptures can be built without losing stability. However,
in the beam search, this single extra requirement leads to an explosion in the
size of the search tree, and in many cases tree pruning leads to disconnected
sculptures.

Our last observation is a rather obvious one, but still important: the CA
method uses significantly less memory than the beam search method.

In summary then, we conclude that the CA method shows results compa-
rable to that of the beam search method, except for small and simple models.
For complex models, the CA model typically uses fewer bricks. And lastly, the
distinct advantages of the CA method is the ease of implementation and the fact
that it is easily extendable to handle coloured sculptures.

5 Future work

It is not immediately obvious that a theoretical investigation into CA with cell
clustering would yield interesting results. However, we plan to consider the con-
cept of clustering in more detail, even if only for modelling some additional
problems.

As far as our implementation is concerned, we plan to parallelise the code
and run experiments on a Beowulf cluster to consider the extent of the speedup
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over a single processor machine. As the parallel implementation of game trees is
well-known, we do not expect either method to improve upon the other by using
parallelisation.

We have previously implemented a 3D CA with clustering, in order to do
the layout for all layers in the sculpture simultaneously. The results were poorer
than expected, but we intend to revisit this aspect in more detail.

Although not part of the CA solution to our problem, we wish to improve
on the manual effort necessary to build a virtual 3D model for input to the
system. Currently, the user must construct a 3D model by hand using a 3D
modelling package. However, ideally, it should be possible to input a series of
synchronised photographs, so that the system can build its own 3D model. We
have completed an initial version of such a system based on the shape from
silhouette technique [6], but there are still some issues to be resolved.

6 Conclusion

The paper presented a new approach to solving the LEGO construction problem,
based on a CA with cell clustering.

We showed that a CA incorporating cell clustering is a simple generalisa-
tion of traditional CAs. This generalisation allows us to easily model real world
clustering problems with CA.

We discussed the practical results from our implementation of the LEGO
construction problem, and pointed out the differences between the traditional
beam search approach and the CA approach. We pointed out the various cir-
cumstances in which one approach would perform better than the other.

Finally, we stated our planned extensions to our implementation, and noted
the possibility for parallelising the implementation on multiple processors, as
well as the need for an easier method of input creation.
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Appendix A

This appendix contains some screenshots and results generated from our system.

Fig. 8. Some parameter settings for the system.

Fig. 9. Instructions generated for the 5th layer of the Stanford bunny. The dark
grey areas indicate bricks in previous layers, and the light grey the bricks of the
current layer.



440 Van Zijl and Smal

Fig. 10. A 3D model of a dinosaur.

Fig. 11. Instructions for the dinosaur being generated.

Fig. 12. Completed LEGO sculpture of the dinosaur.
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From cellular automata to a random artificial

chemistry producing symmetric replicas

Andre Barbé
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1 Introduction

The algorithm that will be presented here, grew out of an earlier one that was
reported in [1]. We briefly recall the original algorithm, and sketch some inter-
mediate transition steps that lead to the artificial chemistry.

Consider the one-dimensional CA, with states in {0, 1}, and with local evo-
lution rule (state transition rule)

ct+1(k) = (ct(k) + ct(k + 1)) mod 2 (1)

where ct(k) refers to the state of cell at position k at (discrete) time t. When
the initial state of the CA is only known over a finite string of cells, applying
the rule creates an orbit which, when displayed properly, takes the shape of a
configuration on an equilateral triangular cellular array (TCA), as illustrated in
Fig. 1 A. Now consider the following

Random feedback algorithm

RF step 1 : Initialize the top row configuration of the TCA (i.e., assign states
0 or 1 to the cells of the top row, possibly in a random way)

RF step 2 : Complete the TCA-configuration by applying the local rule.
RF step 3 : Select randomly a number of cells on the right side of the TCA,

and feed the state of these cells back to the corresponding top row cells
(see Fig. 1 B). This produces a new top row which keeps the states of the
cells which are not affected by the feedback unchanged, while states on the
feedback-affected cells copy the states of the corresponding right side cells
(and thus may change state).

RF step 4 : Return to step 2.

It was observed in [1] that iterating this algorithm eventually produces a
TCA-configuration that is invariant under rotations of 0◦, 120◦, and 240◦. I.e.,
the configuration has Z3-symmetry. And this no matter the size of the TCA.

Moreover, it was observed that the random feedback may actually go from
any side of the TCA to any other side (varying randomly from iteration to itera-
tion). This is plausible by the Z3-symmetry of the TCA and of the local matching
rule: the TCA-configuration can be grown by applying the local matching rule
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Fig. 1. A: A triangular cellular array (TCA)with state configuration pattern: it is
the orbit of a one-dimensional CA when given the state configuration on the top
side (state 0=white, state 1=black), and satisfying the rule (1). This induces the
symmetric local matching rule as displayed. B: Implementing a random feedback:
(a) the states of some randomly selected cells on the right side are fed back to
the top side, as indicated by the connecting lines. Full lines induce an effective
change of state on the top row, the dotted lines do not. (b) is the resulting
configuration obtained by applying the local matching rule implementing the
feedback-induced changes on the top side. This illustrates one iteration step in
the random feedback algorithm. C: (a) a nontrivial generating set for the TCA is
formed by the gray cells (grayness does not indicate a cell state): it is a minimal
set of cells such that knowledge of the state on these cells completely determines
the overall configuration under application of the local matching rule. (b) shows
the clockwise rotation by 120◦ of this generating set, and the arrows between
(b) and (a) denote the feedback lines between the two (randomly) selected cells
1 and 6 in the generating set (in analogy to the feedback lines between right
side and top side in B). (d) displays a state configuration, and (c) shows how,
after having implemented the feedback from the cells 1 and 6 (thereby leaving
the states on the other cells of the generating set in (a) unchanged), the overall
configuration changes. D: the gray cells form a (nontrivial) generating set on a
D6-symmetric frame cellular automaton (for a local rule stating that the states
(in the binary field F2) of all cells in an elementary hexagon should add up to
0) . When cell A is a (randomly) selected cell from the generating set that could
change its state under proper counterclockwise 120◦ feedback, it will change its
state into the state of cell B.
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from the configuration on any side. Unfortunately, the algorithm’s dynamics
could only be analyzed for TCA’s of very limited size, and a general proof for
this symmetric outcome is still lacking.

It was also shown that the random feedback need not necessarily have to
take place between cells at the sides of the TCA. These sides are just the most
natural examples of so-called generating sets for the TCA, i.e. minimal subsets
of cells in the TCA such that knowledge of the states on these cells determines in
a unique way the overall TCA-configuration (whereby of course the local match-
ing rule induced by (1) has to be satisfied). The aforementioned feedback works
equally well when replacing the top side by any generating set (and replacing
the right side/left side by the corresponding 120◦ clockwise/counterclockwise
rotation of this generating set). This is illustrated in Fig. 1 C. Further proper-
ties of generating sets in connection with (binary) quasigroup-defined TCA’s,
and extensions of TCA’s known as frame cellular automata (involving multary
quasigroup-induced matching rules, see Fig. 1 D for an example), can be found
in [2], [3].

We will now show how to obtain a procedure that is completely equivalent
with the feedback algorithm, but without using the explicit feedback. This is
illustrated in Fig. 2. In step 3 of the algorithm, just duplicate the (master) TCA,
and call the duplicate the slave. Then rotate the slave 120◦ counterclockwise,
and let it align with the master TCA. Then the master copies, on the top side,
randomly some of the cells from the top side of the rotated slave. After which,
by going back to step 2, the master develops its full configuration by applying
the local matching rule. This repeats iteration after iteration. It is clear that
this procedure is equivalent with the original algorithm: the random feedback
has been replaced by a random copying. Corresponding (aligned) cells on the
top side of the master and on the top side of the rotated slave that have the
same state remain in that state: some of the remaining cells in the master’s top
side may copy the state of the corresponding slave cells. This can be done with
a certain probability.

As mentioned before, the original algorithm works equally well by changing
the sides involved in the feedback in each iteration. In the master-slave copy-
ing procedure, this means that the slave can be rotated arbitrarily, and that
the copying action of the master may be done along any side. Or, for the same
purpose: along any generating set. The point is that master and slave may re-
orient relatively to each other by rotations which are a multiple of 120◦. This
opens a way to get rid of the hierarchical master-slave distinction. One could
start with two TCA’s with the same initial configuration (possibly generated
randomly). Let them reorient randomly (by random rotations over multiples of
120◦), after which they align and make a random copy of each other along a
generating set. This means: where corresponding cells of the the two rotated
TCA’s on the generating set have the same state, they keep this state. Where
corresponding cells differ: bring both cells in state 0 or in state 1, each with
probability 1/2. This makes the configuration on the generating sets on both
TCA’s the same, and accordingly, the new overall configuration will also be the
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Fig. 2. One iteration cycle in the implementation of the random feedback scheme
using a slave cellular automaton.
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same. Then this procedure iterates, and eventually produces two TCA’s with a
Z3-symmetric configuration. In that sense, there is no difference with the origi-
nal feedback algorithm, and it brings also nothing new when looking for a proof
of this observation. We have even performed similar experiments with Z4- and
Z6-symmetric two-state frame cellular automata, in which the reorientations are
randomly taken from the corresponding symmetry group (for example, Fig. 1D
shows an automaton with Z6-symmetric shape (Z6 being a subgroup of D6)).
The observations are also similar: the configurations obtained are respectively
Z4- and Z6-symmetric.

In the search for a proof, having to take into account a local matching rule,
presents a difficulty. So we tried cellular arrays without local matching rule.
This is the limiting case of a degenerate frame cellular automaton in which the
generating set coincides with the whole set of cells in the automaton. At the same
time, we tried a bold generalization: if the copying procedure sketched above
works for two TCA’s, maybe it will also work for more than two TCA’s. And
indeed, these generalizations, which in hindsight define an artificial chemistry,
allow several observations to be proven for any size of underlying array (frame).

2 Description of the artificial chemistry

An artificial chemistry is a triple (C, D, I), where C is a collection of “artificial
molecules", moving around under a dynamics D, and interacting according to
some prescription I ([5]). In the present context, an artificial molecule is an
agglomerate of cells, which we propose to name “cellicule" (an artificial contrac-
tion between “cellular" and “molecule"). A few examples are shown in Fig. 3.
Each cell is attributed state 0 or 1 (or white and black in the illustrations), thus
defining a state configuration pattern on the cellicule. S denotes the symmetry
(group) of the cellicule’s shape. We will mainly consider cellicules with the cyclic
group symmetries Z1, Z2, Z3, Z4, as illustrated in Fig. 3.
C denotes the set of all cellicules of given size (i.e., number of cells in the

cellicule) and shape, but with distinct configuration patterns. For a cellicule of
size n, the cardinality of C thus equals 2n. P will denote a population of N
cellicules of the same shape and size. N is the population size. Formally, it is a
multiset

P = {Cj}j=1,...,N = {c1(n1), c2(n2), . . . , cL(nL)},
where Cj ∈ C and ci ∈ C, i = 1, . . . , L, and ni is the multiplicity of ci in P .
Obviously,

∑L
i=1 ni = N .

We now present the so-called S-algorithm, which defines the dynamics D and
the interaction I in a population of N cellicules with shape symmetry S.

The S-algorithm

step 1 : Initialize a population of N cellicules. This may be done by attributing
randomly and independently state 0 or 1 to each cell in each cellicule.

step 2 : Implementing the dynamics D of the cellicules
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Z2

Z3 Z4

Z1

Fig. 3. Examples of cellicules with Z1-, Z2-, Z3-,Z4-symmetric shape. I.e., the
shape remains invariant under the identity operation Id (for Z1); under Id and
Rev (=reflection along the vertical for the Z2-case shown); under Id, and rota-
tions of ±120◦ (for Z3); under Id and rotations of 90◦,180◦ and 270◦ (for Z4).
The state configuration patterns are not symmetric (or: have only Z1-symmetry).



448 Barbé

substep 2.1 : Select randomly and independently two cellicules from the pop-
ulation, say Ca and Cb (a, b ∈ {1, . . . , N}, a 6= b).

substep 2.2 : Select randomly and independently two operations ω1, ω2 ∈ S,
each with probability |S|−1, and let them act on Ca and Cb respectively,
producing the pair of cellicules

(ω1(Ca), ω2(Cb)).

substep 2.3 : Align ω1(Ca) and ω2(Cb) by bringing all cells in these two cel-
licules in 1-1 correspondence through an exact juxtaposition of both.

step 3 : Implementing the interaction I between aligned cellicules
substep 3.1 : For each cell in ω1(Ca), find the corresponding aligned cell in

ω2(Cb), and keep or change the states in these cells according to the
following rule:

∗ if both aligned cells are in the same state: keep the cells in the same
state

∗ if both aligned cells have a different state: bring both cells into state
0 with probability ν0, or to state 1 with complementary probability
ν1 = 1− ν0.

This random interaction creates a pair of identical cellicules, each of
which is denoted

(ω1(Ca), ω2(Cb)).

substep 3.2 : Update the population by replacing both parent cellicules Ca

and Cb by R(ω1(Ca), ω2(Cb)).
step 4 : Return to step 2.

Step 2 of this algorithm models the dynamics of a well stirred chemical reactor
(in a sequential way): all cellicules are allowed to meet randomly in pairs and
align properly, after which they interact randomly as described in step 3 (hence
the qualification random artificial chemistry). The interaction can be seen as
a random copying between two cellicules, whereby a cell in state 1 copies the
state 0 of its aligned neighbour with probability ν0 (equivalently: a cell in state
0 copies the 1 of its neighbour with probability ν1). Of course, if aligned cells
have the same state, they are already each other’s copy, and nothing changes.
This artificial chemical reaction can be symbolically represented by

Ca + Cb = 2R(ω1(Ca), ω2(Cb)).

It is clear that a population in which all cellicules have an identical S-
symmetric state configuration pattern is a fixed point under the S-algorithm.
But, due to the random dynamics and interactions, it is not clear that these
fixed points are attractors. However, numerous experiments have led to the fol-
lowing

Observation 2.1 The S-algorithm eventually brings the population in an equi-
librium state in which all cellicules have the same S-symmetric state configura-
tion pattern. And this no matter the population size, or the size of the cellicules.
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3 Analysis of the S-algorithm for S = Z1, Z2, Z3

The observation can be turned into a theorem for SZ = Z1, Z2, Z3, formulated
as follows

Theorem 3.1. Let P be a population of N cellicules of size n, with SZ-symmetric
shape and with arbitrary initial state configuration pattern. The SZ-algorithm
will bring all cellicules into an identical SZ-symmetric configuration pattern,
with a probability tending to 1 as the number of iterations increases, whatever
the values of N and n.

The proof is based on showing that the population state, defined by the state
vector z = (n1, n2, . . . , nL−1) performs a random walk in the corresponding
population state space SP = {(n1, n2, . . . , nL−1)| 0 ≤

∑L−1
i=1 ni ≤ N}, and that

this random walk (modelled as a Markov chain) has absorbing states which
correspond to populations in which all cellicules have the same SZ -symmetric
configuration pattern. It is hereby sufficient to consider populations of so-called
elementary SZ -cellicules, i.e., cellicules with SZ -symmetric shape, but with a
minimal number of cells.

For example, for studying the dynamics of the Z1-algorithm, it is sufficient to
consider a population of N single-cell cellicules. The population state is in this
case z = z0, i.e. the number of single-cell cellicules in the population which have
state 0. A careful analysis of all transition probabilities induced by the different
steps in the Z1-algorithm shows that the underlying Markov model corresponds
to the gambler’s ruin random walk [6]. This translates in the present context
into the fact that the population gets ultimately absorbed into state z = 0 or
z = N , which corresponds respectively to all cellicules being in state 1 or 0.

When considering a population of N multicell cellicules under the Z1-algorithm,
it is clear that when looking in isolation at all cells located at a same (single)
position in these cellicules, these cells evolve as a population of N single-cell
cellicules under the Z1- algorithm, and thus these cells will all end in either
configuration state 0 or 1. As this will be the case for the cells in any particu-
lar position in the cellicules, it follows that all cellicules will eventually get into
the same state configuration pattern (which will generally have Z1-symmetry,
meaning that the pattern is only invariant under the identity operation). When
looking at the global picture: what happens is that there is a certain (random)
position in the cellicules where all cells get into the same state first. Then there
are no more changes at this position. Then there will be a second position in
which all cells get into the same state, and so on, until finally all cells at all
positions will have reached the same state (which may vary with the position).

A similar analysis is possible for the Z2- and Z3-cases, where population
dynamics of elementary cellicules with respectively two and three cells have
to be analyzed. This is still practically feasible, but it no longer is for other
symmetries because of the high dimensionality of the population state space.
See a forthcoming paper [4] for more details concerning absorption probabilities,
and for generalizations to other symmetries, variations on the S-algorithm, and
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Fig. 4. 1-5: different runs of the Z3-algorithm on a population of 5 triangular
cellicules (having dihedral D3-symmetric shape actually, Z3 being a subgroup
of D3). The cellicules have 210 bi-state cells (20 cells along each side). These
runs start with the same random initial population shown on top. Intermediate
results for the population are shown after 50 and 100 iterations, as indicated.
The last column shows the Z3-symmetric configuration that all cellicules reach
after the population has been absorbed in an equilibrium state, and is followed
by the number of iterations until equilibrium for that particular run.
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multistate cellicules. Figure 4 shows a few results for a population of 5 cellicules
with Z3-symmetric shape.

The artificial chemistry experiment that was presented above and that found
its origin in the random feedback scheme reported in [1], as described in the intro-
duction, clearly shows how randomness (which is present in the initialization of
a population, in the selection and reorientation dynamics of the cellicules, and in
the interactions between cellicules) may lead to the inevitable fate of uniformity
in symmetry. This happens in a self-organizing way, without having explicitly
being designed for this to happen (in contrast to the original feedback design
which was an explicit purposeful construction). The implicit driving force is the
S-symmetry of the cellicules’ shape which constrains the random reorientations.
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Abstract. Signal crossing is a significant problem within von Neumann
cellular automata (29-states); only three solutions are known. This paper
gives a thorough examination of these three solutions, including discus-
sion of performance and the effective means of construction, including the
mechanism of auto-initialisation. Application of these solutions within
self-replicators is then examined for Nobili and von Neumann architec-
tures. Two self-replicators for Nobili cellular automata are presented.
We demonstrate the transformation of cellular automata between these
architectures; both configurations are transformed into von Neumann
equivalents. We derive the signal crossing configuration having minimal
footprint. We also present conjectures regarding signal crossing organs,
suggest the nature of tapeless von Neumann self-replicators, discuss the
distribution of complexity in self-replicators, and distinguish holistic self-
replication from self-replication by means of partial construction, a novel
mechanism.

1 Introduction

The mechanism of effecting control within configurations of von Neumann [17]
cellular automata (vNCA) is translocated signal, best considered as a packet of
bits bounded by values of one; the shortest signal is a single bit, or pulse. Gener-
ally, for two-dimensional cellular automata, a problem with translocation arises,
known in vNCA as the signal crossing problem. An interesting characteristic of
vNCA is that no state is defined specific to the service of signal crossing, service
necessary to that beyond simple function. Instead, signal crossing mechanisms
must be obtained by the aggregation of other states types. Further, all mecha-
nisms must be constructible, for human abilities are expected to say nothing of
the abilities of a machine.

Evidently, John von Neumann devoted a good deal of thought to the problem,
discussing it with H. H. Goldstine [5] and Arthur W. Burks [3, 17]. Von Neumann
was familiar with only one solution, a passive configuration known as the coded
channel, cc, it being judged less than satisfactory even as it satisfied an ancillary
requirement of his model of machine self-replication. By this we mean to imply
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an expectation of period researchers for the need of perfect signal crossing to the
practical implementation of a vNCA self-replicator, a conclusion which Burks [4]
has acknowledged respecting the von Neumann Memory Control.

Much effort was expended to improve the efficiency of this solution, with J.
W. Thatcher [16], C. Y. Lee [7, 8], and S. T. Hedetniemi [6] each publishing vari-
ous successive improvements upon von Neumann’s design, the latest appearing in
1968; none produced a perfect signal crosser, one which crosses all signal without
change. Clearly, the area of a self-replicator is proportional to the area of incor-
porated signal crossers and, given the state of automatic computing equipment
in the 1950s and 60s, it was important for any demonstration of self-replication
within vNCA that solutions of minimal area and maximal performance be found.
Indeed, it is only within the current decade that personal computing equipment
has produced sufficient throughput to demonstrate a vNCA self-replicator on
the human time scale.

Hedetniemi also published another solution, a configuration that crosses two
synchronous signals of arbitrary length, attributed to J. E. Gorman [6], and
known as the real-time crossing organ, rtco. Though the rtco offers the perfect
service unavailable in the cc, it is much more difficult to construct. Specifically,
the rtco includes clocks, and the construction of clock bearing configurations
presents its own difficulties. Burks [3, pp. 30] suggested one inelegantly effective
means to construct the rtco, preserving von Neumann’s requirement that a self-
replicator be initially passive; started into action by an externally supplied pulse.
Burks later brought the problem to the attention of Amar Mukhopadhyay [12],
who in 1968 published his mco, a configuration functionally equivalent to the rtco
but of a very different design. The mco is another clock bearing configuration.
No prior work has been published respecting perfect signal crossing by means of
a clockless configuration; our exposition touches on this issue.

Von Neumann designed his cellular automata being mindful of the need to
minimise complexity while supporting non-trivial self-replication. Thus, while
signal crossing is not a problem in three dimensions, von Neumann insisted upon
a two dimensional model; it seems this is due the advice of Goldstine and Julian
Bigelow [5, pp. 278]. Though signal crossing can be effected by the inclusion
of special states into the model, von Neumann declined to include such states,
also. Burks [17, pp. 261] reports no recollection of a reason for von Neumann’s
decision, suggesting state count minimisation (29 are specified) as the likely
concern, though von Neumann [17, pp. 191] wrote of the issue. We offer that
Occam would approve.

Breaking with von Neumann, Renato Nobili [13] added memory and signal
crossing states to the model in the 1990s; ideal signal crossing became triv-
ial. These changes increase the base complexity of the model, and reduce the
functional complexity of configurations, but have little effect upon the over-
all complexity of self-replicators a la von Neumann. Configurations employing
these extensions have corresponding near equivalent configurations devoid of
these extensions. While signal crossing in Nobili cellular automata is easier than
in vNCA, we will see that such extensions are superfluous; their function is eas-
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ily obtained otherwise. Indeed, the primary effect of Nobili’s extensions is upon
configuration size and computational throughput.

We examine the three signal crossers, giving special attention to constructibil-
ity, and their use in self-replication, observing interesting results. We also present
improvement to the Hedetniemi [6] design, deriving the likely minimal signal
crossing organ for vNCA. First, we review some fundamentals.

Classification schemes for configurations shall be important to our exposition.
The simplest partition is implied by a feature of construction; that all constructed
states are passive, in that they carry no signal. This is, of course, a consequence
of the vNCA state transition function. So, configurations are either passive or
active, according to their carriage of signal. The labels perfect and ideal are used
for signal crossers that (i) cross all signal, and (ii) do so within a configuration
size of one cell, respectively.

Thatcher [16] defines cellular automata in geometric terms, relating cells to
the cross product of the integers, and considers the configuration s to be the state
of the entire space of cells for some time t. Passivity is then defined as the equality
of a configuration with its transform under state transition. Thatcher also posits
the notion of partial passivity, defining s as completely passive if every sub-
configuration ś is passive. We might imagine a partially passive configuration as
one in which a long series of transmission states generally carry no signal, but for
a few cells of the path. Hence, most of the configuration is passive, even though
some small sub-configurations are not passive. The remainder of this discussion
shall determine passivity upon the presence of signal, and define a configuration
as any well specified grouping of cells.

D F

E C

.

.

.

.

Fig. 1. An active sub-configuration f(s′) = s′ which is identical to its state
transition, and classifiable as passive or active, depending upon applied metric.
No other figure shows signal, as this figure does; the dots adjacent to the ordinary
transmission elements represent bits of value one; lack of a dot represents bits
of value zero.

The organ shown in Fig. 1 is highly unlikely, as it would seem to serve no
useful purpose. The more important consideration of passivity is upon the occur-
rence of purposeful active components, or clocks. Clocks are signal bearing and
emitting, closed path configurations, and are unlimited in the duration of their
behavior; the configuration in Fig. 1 is not a clock, as it is not a signal emitter.
Though we directly address constructibility below, it is important to now take
note that the occurrence of clocks within a configuration imposes limitations
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upon construction. A configuration becomes non-constructible when no means
exist to isolate signal generated by active components from signal necessary to
construction. That is, clocks external to the constructor supply unwanted signal
to space under construction, thereby altering the constructed configuration. All
completely passive configurations are constructible; each cell can be constructed
without consideration of the state of surrounding cells. We shall see that means
exist to avoid conflict between clocks and constructors; generally, unconstructible
configurations have larger, constructible analogs. Figure 1 is the only figure of
this paper that shows carried signal; the dots next to the ordinary transmission
states.

The remainder of this paper is highly technical, a fact for which we offer no
apology. Readers are well served by strong familiarity with von Neumann cellular
automata; familiarity with Nobili cellular automata is highly recommended. In
particular, command of the material and jargon contained within Buckley and
Mukherjee [1], Burks [3], Mukhopadhyay [12], and Thatcher [16] is expected. We
should mention also that many of the organs shown in the figures are in the form
suggested by Thatcher [16], however optimised, these providing a standard by
which to measure configuration efficiency and complexity, and reducing the diffi-
culty readers may find in coming to a detailed understanding of the mechanisms
of organ function. Readers are encouraged to obtain the computational resources
mentioned at paper end, and use same to verify the content here presented.

Before moving to discussion of the mechanisms of construction, we should
like to consider the question of what ought constitute complete specification of a
self-replicator. By von Neumann’s definition, the act of self-replication requires
both constructor and description, these hence being suggested as necessary to
any complete specification of a self-replicator. We assert this expectation, that
proper specification of a self-replicator requires definition of both configuration
and taped description, is without logical basis. Clearly, the description is totally
dependent upon the configuration; it must be accepted by the configuration,
and it must yield replication of the complex. Moreover, it is not possible to
construct a tape description without detailed knowledge of the configuration to
be described. Yet, from the mathematical perspective, an infinite set of tapes
exists, each member having a fixed length; the size of the set is the sum of all
the positive powers of two. This set is then partitioned in two by any given
configuration; those tapes which result in self-replication of the configuration,
and those tapes which do not.

For any self-replicable constructor, there is a set of tapes by which self-
replication may occur, and that set of tapes is completely determined by the
constructor. Hence, it is not necessary to specify a tape, in order to claim self-
replicability. vNCA self-replicators are defined by their configuration, and the
environment in which they exist. We assert that the superfluousness of the tape
to complete vNSRCA specification is trivially obvious.

Rather more important is the behavior of the configuration, that the in-
struction set provides construction capability sufficient to self-replication. With
but one exception - the time to halt. One generally expects in this case that
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tape length is as critical as is tape content. We deem a self-replicator to be
its configuration, and determine size of a self-replicator solely upon the count
of endo-perimetric configuration cells, exclusive of the tape. Thus, the minimal
self-replicating configuration will not likely accept the shortest possible tape, nor
consume the shortest possible time to self-replicate. We hold that configuration
size, exclusive of tape, and upon which tape length and time to self-replicate are
dependent, is the most important consideration of the three.

2 The mechanisms of construction

Construction is the process by which one configuration generates another. Non-
construction in vNCA occurs in several forms. Some configurations cannot be
constructed by any means, the minority of these being Garden-of-Eden con-
figurations, GoE. Some such configurations have plausible pre-images, but no
path to construction by act of construction arm. Other configurations impose
functionality requirements upon constructors, and so are constructible by only
a proper subset of all possible constructors. Thatcher [16, pp. 145] gives the
first published example of a non-constructible configuration for vNCA, basing
the argument upon the improbability of combinations of states, while as editor,
Burks [16, pp. 138] adds a few comments in the paper footnotes. McMullin [10]
writes that self-replicators can be augmented with any other machine, save those
which “ in some sense interfere with or disrupt the normal operation of” the self-
replicator. Buckley and Mukherjee [1] present a second example configuration
that is non-constructible, noting the local effects of constructor versus construct
interaction.

An important issue respecting Thatcher’s sup() operator is that it excludes
those ground states which are contained within the perimeter of a configura-
tion. Such endo-perimetric ground state cells are not necessarily non-functional
vis-à-vis the configuration. Many undoubtedly insulate transmission states from
confluent states, and are therefore an essential part of the configuration. Even
where the organs of a configuration are optimally packed, internal ground states
are to be found, and are consequential if not essential. We do not base configu-
ration size measures upon sup().

The reader should be disavowed of the construction of transition states. This
does not occur. Rather, transition states are exactly that, transitions between
the ground state and the passive states. Ascribing the non-constructibility of
a configuration to the presence of transition states, as did Thatcher [16, pp.
145] by presenting a GoE, begs the question. The transitory nature of transition
states makes clear that such states are not constructed. Non-constructibility
more reasonably rests upon the nature of configurations of the non-transition
states, and in particular, the nature of the constructor. One may speculate as to
the potential for valuable construction obtained through the clever interaction
of multiple signal sources and constructors. Perhaps the close interaction, spatial
and temporal, of construction processes and signal sources are integral with the
processes of development and homeostasis.
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A constructor is a mechanism that causes cells to accept change, which for
vNCA is an alteration of state class, as from confluent to ground. Hence, con-
structors are transmission states pointed at a cell that is either in the ground
state, a transition state, or an annihilatable state. For special transmission states,
annihilatable states are ordinary transmission states and confluent states. The
construction arm is an articulate pairing of ordinary and special signal paths,
these paths having the property of always being adjacent to each other. It is
always the case that one of the signal paths terminates by pointing to the other
signal path; the end of the construction arm. Thus, the construction arm sports
two constructors. The constructor assumes that space under construction is in
the ground state, just as construction arm articulation is assumed to be unim-
peded.

XR extend CArm right 25

XU extend CArm up 28

RL retract CArm left 30

RD retract CArm down 36

OR construct right ordinary transmission 5

OD construct down ordinary transmission 4

OL construct left ordinary transmission 4

OU construct up ordinary transmission 5

SR construct right special transmission 4

SD construct down special transmission 4

SL construct left special transmission 4

SU construct up special transmission 4

CN construct confluent 4

IT initialise signal transfer 5

FT finish signal transfer 13

S:.0000000000000101111110100.

O:.1000110011000000000000001.

S:.1000000000000010011001011111.

O:.0010001110011010000000000000.

S:.111011000000000000000011110100.

O:.000000010100011100001000000001.

S:.100000010000000000000001101111110100.

O:.001000110100111000110000000000000001.

S:.00000.

O:.10000.

S:.0000.

O:.1010.

S:.0000.

O:.1011.

S:.00000.

O:.10001.

S:.0000.

O:.1100.

S:.0000.

O:.1110.

S:.0000.

O:.1001.

S:.0000.

O:.1101.

S:.0000.

O:.1111.

S:.00000.

O:.10001.

S:.1101110000000.

O:.0000000110000.

Fig. 2. A set of construction arm operations, the first thirteen of which provide
articulation over the first quadrant, satisfy construction of all passive configu-
rations, and facilitate transfer of signal between configurations. Special require-
ments of real-time crossing organ construction are satisfied by the additional two
operations listed. Each operation is shown with its mnemonic, description, bit
length, and signal. Sequences of operations can be implemented by the concate-
nation of signal. It should be noted that no provision is made for destruction
of cell states, beyond that associated with construction arm articulation. Occa-
sional necessary delay between signal is not shown.
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The construction arm responds to signal alternately transmitted down each
signal path. Clearly, construction arm integrity is a function of this signal; mis-
placement of a single bit within signal can result in the permanent disablement of
the construction arm. The reader is invited to verify that such result is trivially
achieved. The sequence of operations for construction are to cause the transition
of state of the target cell, by delivering construction signal (including any nec-
essary annihilation signal), followed by the retraction of the construction arm
by one cell. The choice of path used for the delivery of signal is arbitrary save
for one purpose; the transmission of signal from constructor to construct, which
must come via the ordinary signal path. For example, the start signal used to
initiate construct behavior. We should perhaps say, construct by any path; in-
struct by ordinary, only. Our examples construct and instruct using the ordinary
signal path of the construction arm. Hence, they cannot destruct any construct,
a fact having obvious implications regarding notions of universality over con-
struction; these implications also apply to the joint and several work of Nobili
and Pesavento [14, 15].

There are but two sources of signal; pulsers, and programmed controls. The
pulser generates a specific finite signal for each pulse of input. Thatcher [16,
pp. 147-148] gives the general pulser, a passive configuration that employs six
cells for every generated bit of signal, delivered to one output channel. One can
obtain two channels of signal with the dual-path pulser, by extending the general
pulser to five cells wide, giving two generated bits (one each path) per ten cells.
Such a configuration can directly drive the construction arm. A suitably large
pulser can construct a self-replicator; we shall demonstrate this mechanism for
construction of the rtco. We conjecture that a self-replicator is expressible as a
dual-path pulser, albeit one having a more complex control structure than the
in-line mechanism employed by Thatcher and von Neumann; the mechanisms
of microprograms and hierarchically layered clocks come immediately to mind.
This self-replicator has no tape, nor does it constitute a universal constructor.
Indeed, the description is implied by, and expressed as, the configuration, it
being instead a complex construct specific constructor, or csc; the description
and configuration are an identity. Such a configuration is self-describing, and
being initially passive, it is restartable.

A strong benefit of pulser use is the trivial assurance of proper timing of
generated signal. This is especially important for signal that is to be transmit-
ted from constructor to construct, such as that intended for component clocks.
It is not so easy to obtain comparably accurate timing of signal generated by
programmed controls. A programmed control is a high order configuration that
generates signal according to an external, coded description of some configura-
tion to be constructed, by the ordered triggering of a set of pulsers, each pro-
ducing fundamental, purposeful signal. The process of converting description to
signal provides many opportunities for corruption of signal timing. For instance,
enforcement of time delays between signal pairs requires that a programmed
control know such measures as the distance between description reader and in-
terpreter, the distance between construction signal generator and construct, and
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the delay between interpretation and signal generation. The accuracy of such
measures, and means to correspondingly adjust the timing of signal generation,
is especially critical to programmed controls when the signals served by multiple
clocks are to be configured with specific phase relationships.

The coded description of a configuration can be expressed as a sequence of
operations, which when viewed in mnemonic form, has vaguely the appearance
of assembly language; a construction program. Discussion of configuration con-
struction may be qualified in terms of this form. Further, knowledge of signal
associated with each operation makes possible quantified comparison between
various construction arm behaviors. We use this process in our analysis of rtco
and mco construction. A total of thirteen operations suffice to map the first
quadrant of space, to construct all passive configurations, and to pass signal be-
tween configurations. These and other operations are listed in Fig. 2. The signal
necessary to construction is produced by concatenating the signal for each op-
eration of the program, in the required order. The additional operations listed
in the figure are necessary to construction of the rtco, and other clock bearing
organs. Nota bene — these operations are insufficient to universal construction.

The last mechanism of construction we consider is auto-initialisation, a means
of organ start first suggested by Mukhopadhyay [12]. An organ is auto-initialised
by the first input signal, which is sampled, processed, and distributed as required
by an auto-initialisation circuit to the component clocks of the configuration.
Auto-initialisation can be extended, so that an organ is initialised for every
input. This allows for organ function reassignment through organ reconstruc-
tion. Lee [7, 8] uses a primitive form of this concept in his design of a cellular
computer, modifying the memory pulser of the memory assembly between two
configurations, according to the state of the bit stored. We shall see that auto-
initialisation offers far more efficient means to construct active organs than does a
dedicated pulser, minimising the complexity of programmed controls by moving
construction complexity to the tape encoded description, and to the construct.
Auto-initialisation is demonstrated for rtco construction, and we compare the ef-
ficiency of this method to that offered by task specific pulsers, a csc for example,
and programmed controls.

3 The coded channel

The cc is the only signal crossing organ designed by von Neumann. It is a
non-cyclic, controlled access signal path of finite length, capable of serving an
arbitrary number of arbitrarily large fixed length non-interfering asynchronous
signals. The signal path is accessible via two layers of ports; the input layer
allows the passage of signal into the cc signal path, and the output layer allows
the passage of signal from the cc signal path. In the von Neumann design, an
example being shown in Fig. 3, a port is a pairing of decoder and pulser. The
decoders detect the presence of signal of some form and length, outputting a
pulse to indicate detection; the pulsers emit signal upon receipt of a pulse. The
pairing of decoder and pulser amount to a crude translation mechanism, detected
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signal being converted into a form suited to transmission via the cc signal path
(the code of the channel), this signal then being converted a second time, to
suitable output form. It should be noted that the decoder is able to distinguish
only those one valued bits of signal; zero valued bits are ignored. Hence, the
decoder is an ambiguous signal acceptor, best when cleverly used. One may
improve signal selectivity on input by replacing the decoder with the recogniser,
at the cost of increased port size. An important note of caution is that signal
longer than that accepted by a recogniser or decoder is ambiguous when visited
upon those organs. The size of the cc is proportional with port size and count.

CDDD CDDD CD CD CD C DD CD CD CD CD C DDDDDD Bo

E E F F E F F F E E E

AiD CD CD CD CD C DDDDDD E CDDD CDDD CD CD CD C

E F

CDDD CDDD CD CD CD C E CD CD CD CD C DDDDDD Ao

E E E F F F E F F E E

Bi D CD CD CD CD C DDDDDD E CDDD CDDD CD CD CD C

Fig. 3. The general coded channel. This organ crosses two signals, 101 and 111,
each detected on a different port, and the same signals represent themselves
within the signal path. This organ covers a rectangular region of 33×7, or 231
cells, of which 83 are in the ground state, or ∼ 1/3. The shaded portion is
comparable to the example given in von Neumann [17, pp. 336].

Bo

D F E

Ai D D C D C D C D D Ao

E D D E

Bi

Fig. 4. The degenerate 101 coded channel of the von Neumann triple-return
counter. The signal at input and output is a pulse. Only one path is protected
by decoder and pulser, so signal from input Ai is sent to output Ao and Bo ,
while signal from input Bi (being a single bit) is sent only to output Bo . The
pulser and decoder shown are of minimum size and area, and are shaded for easy
identification.

The cc is an extremely flexible organ, and ports of either type may be placed
at any point along its length, allowing signal to be selectively gathered any num-
ber of times, and similarly deliverable to many destinations. Corruption may
occur upon the admission of unsuitably synchronised signal; less than 100% of
incident signal is crossed without corruption, herein known as unserviced signal.
Though some corruption is correctable, it is not generally so, and such limita-
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tions become serious concerns in higher order configurations having the cc as a
component. The cc is not a perfect signal crosser.

Another measure important to signal crossing organ performance is the rate
at which signal is crossed, termed frequency. That is, frequency is the inverse
of the time delay required between incident signal such that crossing occurs.
Frequency applies independently to each signal path. An organ which provides
the ability to cross all signal, does so at the frequency of one along all paths.
An organ which provides the ability to cross at the rate of one signal every eight
clock ticks serves at the frequency of 1/8. For notational simplicity, frequency
is often expressed as the time delay itself, instead of its inverse. It must be
remembered that this delay is different from that of signal propagation through
the organ, which is the meaning used in historic literature.

Bo Bo Bo

D D C C C C C C C

E E E E E E

A/Bi
C D C A/Bi

C D C A/Bi C D C

D C C D C C D C C

Ao Ao Ao

Fig. 5. The 1001.11, 1001.100001, and 1001.10000001 signal switch crossing
organs.

Various degenerate forms of the cc have been explored, von Neumann being
here also the first, such as is used within an organ known as the triple-return
counter, trc, a device for computing long delay. Burks [17, pp. 180] writes of a
possible trc malfunction, noting the possibility “ is a special case of the general
problem of” signal crossing. Von Neumann [17, pp. 183; both quotes] discussed
trc design, noting that while the interconnections between some organs were
easily made, “ serious topological difficulty” exists in making other interconnec-
tions, following with “ It is clear that these paths must cross.” Subsequently, von
Neumann puts forward the general case and its solution, the cc. Von Neumann
nevertheless resolved that for trc design, the better solution is obtained ad hoc.
Undesirable output from the signal crossing configuration does not corrupt trc
operation, so the configuration is sufficient for its application, assuming that the
trc is not restarted at Ai during operation. We shall see that this form presages
what we present as the minimum possible vNCA signal crossing organ. The
relevant trc sub-configuration is shown in Fig. 4.

Some degenerate forms of the cc are obvious. For instance, if the signal input
to a port is a single bit, then the corresponding decoder can be eliminated. If an
input to the cc is already in the form of channel code, then there is no need for
the input pulser, either. Further, if single bit output is the desired result of signal
crossing, then one need only the output decoders. Hence, signal to be crossed
can be directly introduced into the cc signal path; one need only the left part
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Bo Bo

Ai C F E C C C D Ao C C C

F F E E E D F E C

C D F C E E Ai C F E C E

D C E E F D E

D D E F D D C C D C D C Ao

E E F E E E C D D E

E C C D C D C Bi

Bi

Fig. 6. The signal crossing organs of Lee, shown at left, and Hedetniemi, shown
at right. The Lee organ uses the 11.101 channel code. The Hedetniemi organ
uses the 101.1001 channel code. Critical components, decoders and pulsers, are
shaded, the rest being component interconnect, with the Lee organ including
formatting to keep the area square. These organs logically correspond to the
inner half of Fig. 3. The Hedetniemi organ is nearly 39% smaller in size. While
more space efficient than the Lee organ, it is less efficient at crossing signal,
being more susceptible to signal interference.

Lee Hedetniemi

Propagation Delay 25 / 20 13 / 17

Unserviced Pairs A {1, 021, 031} {1, 031, 051, 061, 071}

B {1, 01, 031, 041} {1, 021, 031, 041}

Count / Range 6 / 8 8 / 12

Area / Size 7x7 / 41 5x6 / 25

Frequency 5 / 5 :: 7 6 / 7 :: 7

Fig. 7. The performance measures of the Lee and Hedetniemi signal crossing
organs. Unserviced signal pairs are grouped by the varying input versus the
signal 1; the labels A and B indicate the input which does not vary. Range is
the maximum time separation between two sets of uncrossed signal pairs. Size
is the number of non-ground states in the area covered by the organ. Frequency
is given for one channel operation to the left of colons. Two channel operation is
to the right of colons, and assumes minimal interpath signal phase difference.

of the right half of the configuration of Fig. 3. Indeed, if one chooses either of
the three signal pairs 1001.11, 1001.100001, or 1001.10000001, then one can
construct the signal switch crossing organ in a 3×4 region, using eleven cells, as
shown in Fig. 5. Other variations of the signal switch shown can be constructed
in a 3×5 space, again using eleven cells.

Size minimisation of the shaded portion of Fig. 3 has been the chief effort
of Lee and Hedetniemi, who demonstrate sequential design improvements in
respective subsequent papers. We now review these designs, first presenting their
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forms, then presenting analysis of their relative performance. This is followed by
a short analysis of signal crossing fundamentals, leading to specification of the
likely minimal footprint signal crossing organ for vNCA. The Lee and Hedetniemi
organs are shown side-by-side in Fig. 6; performance characteristics for both
are shown in Fig. 7. Comparison between these organs is best accomplished
by considering those cases in which two closely incident signals are successfully
crossed. Each case is found by varying the time separation between signal input.
Clearly, given some suitably large time separation, all signal is crossed without
interference. The problem to be solved is however not the crossing of signal for
which interference is not a possibility.

Propagation Delay 14 / 13

Unserviced Pairs A {1, 021, 031, 041}

B {1, 031, 051, 061, 071, 081, 091, 0101}

Count / Range 11 / 15

Area / Size 5x5 / 21

Frequency 6 / 3 :: 12

Bo

D F D C C

Ai C D C D C

Bi C E F F

D C C F

D C C

Ao

Fig. 8. The reduced Hedetniemi organ and performance measures. While
smaller, the reduction in signal crossing capacity is the greater change.

11 111 101 1001 100001 10101

11 111 101 1001 100001 10101

Decoders

Pulsers

CD C CD CD CD CD F CD F CD

DDD DDD E D E D C D C E DD E

DD F D CD C CD C D CC DD F

C C E D F F DD E C E CD C

D C E C D C DD E F E

F E CD F CD C DD E

DDD E D CC D CC

Fig. 9. Basic signal generators and detectors of minimal size. Input is to the
shaded cell, and output is generally to the right for all organs, with the associated
signal in caption below the organ.

Hedetniemi [6, pp. 4] claims his design is an “ improvement of the 7×7
crossover network of C. Y. Lee.” We can see from the performance measures
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shown in Fig. 7 that the claim is problematic. The Hedetniemi organ is approx-
imately 39% smaller, at the cost of a 33% increase in the number of unserviced
signal pairs; it is less able to serve signal crossing. However, the signal propaga-
tion delay is significantly reduced, by as much as 48%. Further, the frequency
of two channel input is equivalent, for at least some phase relationships between
incident signal. While the minimisation of signal propagation delay is important
to overall configuration performance, such as that of a self-replicator, it happens
that delay in vNCA configurations is generally a good thing. If signal crossing
alone is the criterion, then perhaps Hedetniemi’s claim is wrong. We can do bet-
ter, producing further reduction in organ size, and some corresponding reduction
in signal crossing performance.

Propagation Delay 14 / 9

Unserviced Pairs A {01, 041, 071, 0101}

B {01, 021, 031, 041, 051, 061}

Count / Range 10 / 17

Area / Size 4x5 / 16

Frequency 7 / 6 :: 12

D F Bi D F

Ai C F C E C Ao

C D C E

D C C

Bo

Fig. 10. The minimal signal crosser for two pulses, the 4×5 cc. Several varia-
tions of this design occur, with areas of 4×7, 4×6, and 3×9, each having different
performance measure. The shaded portions correspond to the organs of the de-
generate cc found in the trc.

Lee Hedetniemi Reduced 4x5 Filter

Hedetniemi Corrected

Propagation Delay 25 / 20 -48 / -15 -44 / -35 -44 / -55 +200 / +260

Count / Range 6 / 8 +33 /+50 +83 /+88 +67 / +213 -33 / +75

Area / Size 49 / 41 -39 / -39 -49 / -49 -59 / -61 +765 / +441

Frequency 5 / 5 :: 7 -20 / -40 :: 0 -20 /+40 :: -71 -40 / -20 :: -71 -40 / +40 :: -86

Fig. 11. Relative performance between presented cc configurations. Values are
given in percent of change from the Lee organ, rounded to the closest whole
number. Improved performance has a positive sign. Frequency of two channel
input (right of colons) is derived from pulse pairs of minimal phase difference;
this would be signal pair 1.1 for the 4×5 cc. Other possible pairs having larger
phase differences are 1.071 and 021.1; such other pairs may yield different and
perhaps better two channel input frequency for some organs.

The explicit separation of the upper and lower shaded portions of the Hedet-
niemi organ is easily eliminated, yielding a 5×5 form. This reduced Hedetniemi
organ, shown in Fig. 8, has a 17% smaller area, 16% smaller size, and 38%
reduced signal crossing performance. We see therefore a trend, that signal cross-
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ing performance varies inversely with reduction in organ size, and would like to
determine the size of the smallest crossing organ, and its utility.

To derive the smallest possible cc, one need start with its components; de-
coders and pulsers. Figure 9 presents those decoders and pulsers of minimal size
corresponding to a set of short signals. We see that the smallest pairings of de-
coder and pulser occur for the 101 and 1001 signals; these represent the pulsers
and decoders of minimal possible size for vNCA. Ignoring potential undesirable
interactions between adjacent organs, one should expect that a signal crossing
organ could be constructed for this signal pair in a space no larger than 4×5.
Presently, we show that this can indeed be accomplished.

One can easily avoid signal conflicts between these four organs within a con-
figuration having an area of 4×6 and a size of 19, an organ that shares one cell
between both decoders. Minimisation of configuration requires maximisation of
configuration sharing. Sharing of configuration between functions requires that
clocks not be introduced into the configuration, and generally requires clever
arrangement of component organs. For example, one can construct a 3×3 con-
figuration that includes both pulsers, while having a size of seven cells, not eight;
the area increases even as the size decreases. As already suggested, one can share
a confluent state between the decoders for these signals, saving one cell. The key
trick is to share part of the pulser configuration with part of the decoder configu-
ration, in this case resulting in a two cell reduction. We see these optimisations in
the configuration shown in Fig. 10, together with the performance measures. The
resulting configuration performs marginally better at signal crossing than does
the reduced Hedetniemi design. Comparison of all these cc organs is presented
in Fig. 11.

D C F D F

D CD CD CD C D C F E F E F D F D F

E DDDD F F D C CD CD C E D E D E DD F

Ai C D F F C E DD E F LLLLL C Bo

D C E DDDD F D E CD C NLNM

D C F E NMNM

DDDD E D F DD CD F D C E LMLM

Bi CD C C F E D C F

DD F E CD C E DD CD C CD F

D E F F E D E F

F DDDD E D F F

F D F D F DD C CD C Ao

CD C C E D E E

F E

DDDDDDDDDDD E

Propagation Delay 50 / 52

Unserviced Pairs A { 071, 081 }

B { 071, 081}

Count / Range 4 / 17

Area / Size 25x15 / 181

Frequency 7 / 3 :: 9 when synchronous

17/18 when asynchronous,

with phase distortion

in channel A

Fig. 12. A filter-corrected cc that crosses all 1011101.1100011 channel code
signal pairs, shown with performance measures. As shown, this organ is not
compressed to its minimal supporting area.

No cc crosses all signal pairs; at minimum, four signal pairs are not crossed.
Yet, unserviced pair count is minimised through careful selection of channel
code, as is the complexity of resultant corruption to organ output, allowing
correction by filters on cc output signal, to yield crossing of all signal pairs,
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with occasional phase distortion, at a frequency substantially but not horribly
less than one. This is the case for the 1011101.1100011 channel code; the cc is
shown in Fig. 12. We conjecture that one may cobble together perhaps a great
many such crossing organs, distributing the workload across a correspondingly
large number of signal crossing paths, and so produce a perfect if monstrous
signal crosser which is completely passive. The development effort is left as a
reader exercise.

We have shown that the minimum cc for two pulses is a 4×5 configuration
that uses the 101.1001 channel code signal pair, and that the minimum degener-
ate cc is the signal switch, a 3×4 configuration with three variations, each having
a different channel code signal pair; these results have been neither previously
demonstrated, nor published. We shall later show that the 4×5 cc is sufficient for
construction of a vNCA self-replicator, which is itself an isomorph of an NCA
self-replicator that employs only ideal signal crossers. Presently, we begin our
analysis of the rtco by comparing its performance with that of the 4×5 cc.

4 The real-time crossing organ

It is a maxim of engineering that the fewer contingencies with which the designer
must contend, the easier is implementation of problem solution. The failure of
the cc to cross some signal pairs of channel code without the aid of filtering,
and the argued necessity for monstrous cc size in order to service packet signal,
suggests that crossing would be better served by a different class of organ. We
have already seen that there exist but two classes of configuration within vNCA,
passive and active; it would seem that we need an active signal crosser. Interest-
ingly enough, the fundamental mechanism used by both the known active signal
crossing organs, the rtco and mco, is to spread the workload across several sig-
nal paths, as suggested in the above reader exercise. The use of this technique is
optimally applied in the rtco; no smaller perfect signal crosser exists for vNCA.
Nota bene - vNCA signal crossing efficiency is limited to a rate of 50% in each
direction of signal transmission. Perfect signal crossing therefore requires two
signal paths in each direction of signal transmission.

The introduction to this paper mentions that the construction of clock bear-
ing configuration is moderately to impossibly difficult, and that the construction
of passive configuration is trivially easy. Other discussion mentions the knowl-
edge and components necessary to a programmed control which is able to accu-
rately time construction signal. To these we should add more exotic techniques,
like the use of external configurations to augment construction arm function,
pulsers dedicated to specific construction tasks, and auto-initialisation. All of
these mechanisms are discussed in this section. We will see that the benefits
of perfect signal crossing are quite costly to obtain by all of these mechanisms,
save auto-initialisation; even then, perfect signal crossing is not free. Yet, the con-
struction of self-replicators within vNCA is not particularly difficult. Further, no
necessity exists for perfect signal crossing, even as packet signal is served. The
rtco is shown in Fig. 13.
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Fig. 13. The rtco, shown without clock signal. Each clock carries and syn-
chronously emits 101 signal.

Burks [3, pp. 16-18, 30] [17, pp. 262] examines the rtco in great detail, in-
cluding the mechanisms of signal propagation within the organ. In summary, we
note the rtco is an 8×8 composite of four 5×5 signal crossing elements, and four
signal paths. The signal paths are grouped into parallel pairs, the pairs orthogo-
nal to each other, giving two channels, A and B. All signal paths are of identical
length; the channels begin and end with a cell in the confluent state. The first
confluent cell duplicates signal, and the last selects which duplicate to output,
from disjoint signal halves, these being transmitted via alternate channel paths.
Signal crossing elements are composed of a pair of clocks emitting synchronous
101 signal, the pair diagonally bounding a cell in the confluent state which has
two input transmission cells, and two output transmission cells. Each element
provides an alternating 50% service rate each to its two signal paths, this signal
coming from one of the two clocks; no transmission cell gets signal from both
clocks. Each path of the rtco is common to, and serviced by, two signal crossing
elements. Hence, the rtco is a perfect signal crosser, though not an ideal signal
crosser, like that produced by Nobili [14]. The bits of signal are partitioned into
two disjoint sets, one each path, by the operation of the signal crossing elements.
The central clock is common to the four signal crossing elements; the rtco could
just as well be constructed from eight clocks, and be distributed over a very
much greater area. This does not make construction easier, even if it makes
clocks more accessible.

In a footnote, Burks [3, pp. 30] describes a multi-step process for rtco con-
struction. The greater portion of the rtco is constructed, save a two-cell wide
path giving the construction arm access to the central clock. Then, auxiliary
constructs are started synchronously, producing signal to configure the clocks
synchronously, and complete construction as needed. The footnote is:

“One can use a real-time crossing organ in an initially quiescent au-
tomaton in the following way. Construct the quiescent part of the crossing
organ, except for a path to the center clock. Then add pulsers to complete
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D D D D D D D D D … D D D D D D … D D D D D D D F

E E E E F

Ai D C D C D C D C D C … C D C D C D … D C D C D C C L N Ao

F F F F C D D Bo

D D D D D D D D D … D D D D D D … D D D D D D C E

Fig. 14. The dual-path pulser, configured as a simple construct specific con-
structor. The construction arm of this organ is controlled by the signals shown
in Fig. 12. The shaded area pulses construction of one upward pointing ordinary
transmission element at the end of the construction arm’s ordinary signal path;
an area of 45 cells. This is in terms of space utilisation a very inefficient way to
generate construction signal.

the construction and start the organ. The starting stimulus to the whole
automaton must stimulate these pulsers, which then complete and start
the crossing organ.”

To address Burks’ method, we must first understand the nature of any such
external augmentation of the construction arm. This analysis necessarily includes
the operation of programmed controls, and the form and content of external
descriptions; our starting place. One expects rtco signal paths to be intersected
by other signal paths carrying start signal to the auxiliary pulsers but, there is no
infinite regress here. Paths need only overlay, and additional pulsers can be added
along the trigger signal path so as to complete construction of the rtco signal
paths, and other configuration. Our analysis is only of the pulsers necessary to
rtco construction, not those necessary to completion of other intersected signal
paths; we discuss only the tip of the iceberg.

C F D D C C C F

E C E E E C

D D C D D C D F

… L L L L N C F E F

… D D D D D D E C E C

D D C D D C D E

C F E E C F

E C E C D E E C

1. OD OR {starts the clock}

2. BR OU2 RL2 OD XU CN

3. RD RL

S: .1101110000000. .kill.SR.kill.0. . .

O: .0000000110000. . . . .0.kill.OR.

Program signal length is 205 bits. Here, we see necessary delay
between signal, for the BR instruction. This delay serves to avoid
interference between construction arm constructors.

Fig. 15. The rtco under construction by Burks’ method. The special path of the
construction arm (outlined) must not terminate in the right-most shaded cell.
Expected construction arm function requires a signal not listed in Fig. 12. The
bridge is removed by the instruction BR; the signal is shown, with derivation.
The group of four shaded cells is the location of the construction arm at the end
of signal transmission.
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Von Neumann understood the value of complexity distribution, his construc-
tor off-loading the complexity of the construct (to the degree allowed by the
environment) onto the external description. A constructor has a required min-
imum complexity, which is totally dependent upon an environment; this com-
plexity being that which is necessary and sufficient to controlled manipulation of
that environment. Any other complexity within the constructor is to the benefit
of the construct, not the constructor. It is intuitively obvious that the simplest
programmed control is the one which makes no decision of its own, following
the external description blindly; there is no code compression scheme applied to
the external description. While less intuitive, it is also obvious that the shortest
external description is the one with the least complexity. We note that there are
two kinds of complexity within the tape, associated with (a) construction arm
activity, and (b) the complexity of the construct. Excess type (a) complexity is
of no benefit to the constructor.

The problem with Burks’ method is that it does not move complexity as
completely as possible to the construct, and in consequence the construction
arm performs a great deal of work that does not directly yield a functioning
rtco. The construction of supporting pulsers amounts to the production of much
detritus, as these pulsers have no purpose beyond rtco completion. Thus, they
impose a significant size cost to any configuration employing an rtco constructed
by Burks’ method. To understand the scale of this size cost, we review large
pulsers like the csc. The general csc is shown in Fig. 14; complex csc design is
not addressed in this discussion.

A construction program can be encoded in two forms; the instruction on tape,
and the bit pattern pulsed by a csc. Of critical concern is the size of pulser Burks
would need for (i) starting the central clock, and (ii) completing those portions
of the rtco obscured by the extended construction arm. Figure 15 shows Burks’
configuration. We see that a right pointing ordinary transmission element is
required to bridge the distance between construction arm and the rtco central
clock, for by ending the special signal path of the construction arm in the position
of the shaded cell, construction becomes impossible; signal transmitted to the
clock would be re-transmitted to the construction arm. Hence, the construction
arm needs signal sufficient to remove this bridge, signal which is not present in the
instruction list shown in Fig. 12. This additional signal is shown in Fig. 15, and
the operations necessary to complete rtco construction require a signal length of
205 bits. The csc covers an area of 2050 cells. This is an area 32 times the area of
the rtco, and just over 340 times the area constructed; six cells are constructed.

In absorbing this point, that the area of the simple csc is many times the
area of its construct, recall that four other pulsers are required to synchronise
signal in the other four clocks of the rtco. Further, and recalling Burks purpose,
to solve the signal crossing problems of the von Neumann Memory Control by
employing four rtco configurations, the reader should understand that all twenty
of these pulsers are supplied with the same start signal as that which starts the
construct of which they are a part. This mechanism of construction is intolerably
wasteful. Compression of the signal would require the development of highly
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complex clocking mechanisms, an effort expected to be much in excess of the
effort to produce a general constructor; a self-replicator is very much simpler.
Moreover, regardless of size or efficiency, the observation of such detritus within
mathematical models is anything but elegant.

The problem gets much worse. What Burks did not in writing consider is
the direct construction of the rtco, as might be mediated by a csc. The trivial
assurance of clock synchronisation is for the rtco a highly desirable benefit. The
immediately valuable question is, can that benefit be obtained for reasonable
cost? We use the mnemonics shown in Fig. 2 to derive the message generated
by this pulser. Construction follows the general sequence of (i) extending the
construction arm by some length η, followed by a sequence of (ii) η pairs of one
construction operation followed by one construction arm retraction. So, each cell
constructed requires one extension, one retraction, and one construction oper-
ation. The sequence of construction arm actions necessary to rtco construction
by csc is given in Fig. 16. We assume the construction arm is positioned with
the ordinary signal path pointing at the lowest left cell of the region in which
the rtco is to be built.

While the rtco is constructible via simple csc, yielding active rtco sub-
configuration even as adjacent configuration is under construction, the corre-
sponding csc is prohibitively large. From the rtco construction program, and
the lengths of the corresponding signals, we determine the number of bits rea-
sonably required to efficiently construct the rtco. Computation by this method
yields the answer of approximately 6,500 bits per channel required for rtco con-
struction. Such a value corresponds to a simple csc having a size of approximately
65,000 cells, which is several times larger than the size of a known vNCA self-
replicator, not to mention being in excess of 1000 times the size of the rtco. The
rotational asymmetry of construction signal within vNCA gives eight variations
of the rtco; two pairs of mirror images about each of the co-ordinate axes, each
with different construction programs. General solution of signal crossing by rtco
requires construction of four, non-mirror variants, and therefore a proportion-
ately larger csc area. Clearly, so simple a pulser as the simple csc is, on basis
of space efficiency, a very poor choice for rtco construction, and indeed for the
construction of any configuration, active or passive. A complex csc would likely
be many times larger.

It is our expectation that design of a constructor capable of constructing
the rtco by means of programmed control requires substantially greater effort
than does design of a self-replicator. For instance, one cannot reliably synchro-
nise construction signal via a programmed control without exact knowledge of
the internal timing of the constructor. The acquisition and maintenance of such
knowledge was discussed by Thatcher [16, pp. 169], who addressed a require-
ment of von Neumann’s self-replicator design, that the position of the read/write
head along the tape need be known in order to alter the message there stored.
Thatcher argues the von Neumann design to be unnecessarily complex, that
signal should not be dependent upon delivery distance, and demonstrates sim-
pler means to alter tape content. What is common to both mechanisms is the
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1. XR3 XU XR4

2. CN RL OU RL3

3. XU XR4 OD RL CN RL3

4. XU XR4 OU RL OR RL3

5. XU XR4 CN RL4

6. XU XR4 OD RL4

7. XU XR4 OD RL4

8. XU XR4 CN RL OU RL3

9. XU XR4 OD RL CN RL OL RL CN RL OR
10. RD2 XR3

11. IT —— OD OR FT
12. OR RL IT OU FT CN RL2

13. RD2 XR2 IT OU RL2

14. RD XR2 CN RL2

15. RD XR2 OU RL2

16. XU XR OR RL
17. RD3 XR3

18. IT j1
b OD OR FT

19. RL3

20. XU XR2 OU RL OR RL CN
21. XU3 XR CN RL OU
22. XU XR OD RL CN
23. XU XR OR RL OR
24. RD6 RL2 XU5 XR OU RL
25. XU XR CN RL OR
26. RD3 XR2

27. IT j1
c OD OR FT

28. OR RL IT OU FT CN RL
29. RD3 RL
30. XU7 XR2 OU RL CN RL OU
31. XU XR2 OR RL OD RL CN
32. RD2

33. IT j1
d OD OR FT

34. OR RD5 XR2 OU RL CN RL OU
35. XU XR2 OU RL OD RL CN
36. XU XR OR RL OR
37. XU OD
38. XU CN
39. RD5

40. IT j1
e OD OR FT

41. RL

Fig. 16. The mnemonic form of the construction program for the rtco. The
program given is optimised for size, and totals 289 instructions plus a few hun-
dred bits for necessary separation between signal; ~6500 bits. The program for
Burks’ scheme is considerably larger. The zero valued bits ϕ are used to correct
the phase of signal transmitted to clocks, and have either a length of zero, or of
one. The construction arm returns to its initial position upon servicing the bit
sequence corresponding to these instructions.

distance between programmed control and the read/write head along the tape,
upon which distance signal transmission time is dependent. As the control of
construction signal timing involves this and other variables, a corresponding pro-
grammed control would be substantially more complex than is von Neumann’s
self-replicator design. Such capability increases the complexity of a constructor,
instead of its construct, and consequently the effort of the designer. Note that
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we have not addressed the not insignificant increase in tape length necessary to
support of Burks’ method. We leave the effort to produce a programmed con-
trol capable of rtco construction as an open problem, turning our attention to
auto-initialisation.

Auto-initialisation provides much more capability than that used in the rtco,
the examples of clock synchronisation and trivial reconstruction being the sim-
plest applications. Mechanisms used are signal sampling, portal closure, clock
synchronisation, and staged initialisation. Our implementation uses three sepa-
rate start signals; a staged initialisation. Each clock of the rtco has a separate
auto-initialisation circuit. Signal to a stage is intercepted from a suitable path of
channel A, by an interposing confluent state, or portal, and directed to the pulser
of the adjacent auto-initialisation circuit by an auxiliary path. Pulser output is
directed to clock input; and to a special transmission path constructor, which
is addressed shortly. Clock signal for the entire organ is suitably synchronised,
as initialisation of the first clock pair occurs simultaneously upon input of the
first start pulse. All subsequent initialisations occur given knowledge of timing
for the first two clocks. In this way, synchronisation becomes a trivial concern.
Figure 17 shows the auto-initialisable rtco.

The minimum start signal for the configuration shown is 10
13
10

32
1. Signal

with shorter lengths of zero bits result in a failed initialisation. An odd number of
zero bits must precede the second pulse. For the third pulse, and even number of
preceding zero bits is necessary. A pulse occurring at other intermediate times is
ignored; one generally expects supply of multiple pulses to auto-initialisation cir-
cuits yields a failed initialisation. Unless supplied as a special signal generated by
the constructor, the above signal is more easily generated by a programmed con-
trol by passing the signal for construction of three transmission cells, in the order
of one right pointing ordinary state, then two up pointing special states, with
sufficient relative delay. This mechanism avoids acceptance of multiple pulses by
auto-initialisation circuits, and is well served by the delay associated with the
reading of an external description; this is an example of the value of long delay
within a von Neumann cellular automaton.

The portal cells which transfer pulses to auto-initialisation circuits are indi-
cated by a box around the cell in the figure. The single line box indicates the two
points of acceptance of the first start pulse. The second start pulse is accepted
by the cell with a double line box. The third start pulse is accepted by the cell
with the thick line box. This third pulse is then input to the shaded cell. Upon
accepting a pulse, each stage puts signal to clocks, and to the adjacent special
constructor, ensuring that the next phase will receive the next pulse of auto-
initialisation, and that only three such pulses are accepted; the auto-initialised
rtco as given in the figure is not reconfigurable a multiple number of times. Thus
is start signal delivered to the six auto-initialisation circuits. All further input
to the organ, after a short delay following auto-initialisation, is crossed.

Three different auto-initialisation circuits are used in the rtco, one employed
for the outside four clocks, and two for the one internal clock. Auto-initialisation
occurs in three phases, each phase started by a separate pulse. Phases one and



474 Buckley

Bo

D D F D D D D C C C C F C C

E C D C F E E C C C E

E F E E F E

N C C F E E C F C N

L E E C E E E C E K

D C D D D C D D D D D D C D D D C F

E E C F E L F F

E E E C D D C F E C C F

Ai C E E F E F F

F E E F C C C F E F C Ao

F E E C F C C E F E

F E E C C E F E F E

D C D D D C D D D D C D C D D D C E

L F C F E L L L L F K E C F F K

M C E C E M K C C C M E E C C M

F E E M K K N M E E F

F C D E E L M E E C C C F

D D E E C C C D D D E E C C

Bi

Fig. 17. The rtco, configured for auto-initialisation. The minimum start signal
for this organ is 101310321, which is applied once to Ai. The organ begins crossing
signal 30 clock ticks later. This organ can be started at the time of construction;
there is no start signal propagation. All signal crossing paths impose equal delay.
The organ has 18×18 dimensions. This configuration can be marginally reduced
in area.

three initialise the outside clocks, while phase two initialises the central clock.
The auto-initialisation circuit for outside clocks produces two signals, a pulse,
and the 101 signal. The pulse is passed to the special transmission path construc-
tor, which annihilates the auxiliary path, closing the signal port, and protecting
the auto-initialisation circuit from being started multiple times. The purpose of
the constructor in phase two is a bit more complicated. The pattern of alter-
nating bit values in the signal carried by the rtco must be observed at all signal
crossing elements. Further, the length of the signal paths surrounding the cen-
tral clock must yield a signal delay of even time. From a design point of view,
it is better to have shorter signal propagation delay (and correspondingly fewer
parts), and therefore it is better to remove one confluent cell than to add seven
others; the confluent cell must change to the right ordinary transmission state.
Hence, there is no need to delete the auxiliary path used to initialise the central
clock. The post-auto-initialised rtco is shown in Fig. 18, with shading to highlight
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Fig. 18. The rtco, after reconfiguration by auto-initialisation. Cells with altered
states are shaded. Note that all auto-initialisation circuits are isolated from organ
signal paths.

those cells having altered state. Isolation of signal path from auto-initialisation
circuits is clear.

An important part of auto-initialisation is that start signal not be propa-
gated beyond the auto-initialised organ. For some organs, it may be necessary
to construct special configuration to prevent premature signal propagation. The
design of the output ports of the rtco is sufficient to prevent start signal prop-
agation. Hence, the auto-initialised rtco can be employed fully started, even as
the configuration of which it is a part remains under construction. As we see,
construction of the auto-initialised rtco is substantially easier than is any means
of constructing the non-auto-initialised rtco, as given by Gorman.

Clearly, any constructor capable of constructing the rtco by means other than
auto-initialisation carries within an albatross.

5 The Mukhopadhyay crossing organ

The mco is a perfect signal crosser composed of three identical exclusive or
organs, each being larger and more complex than is even the auto-initialised rtco.
The mco is well described in Buckley and Mukherjee [1], where the reader should
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turn for details. Yet, the configuration is not therein presented in its entirety.
We see the complete non-auto-initialised mco in Fig. 19, and observe an increase
in the size and number of signal crossing elements, a corresponding increase
in the number of signal paths, the more complex bit processing mechanism,
and the nine-fold increase in clock count, as compared to the rtco. The auto-
initialised mco is easily obtained by substituting the three component exclusive
or organs of Fig. 19 with the corresponding exclusive or organ described in Fig. 5
of Buckley and Mukherjee [1, pp. 401], and adjusting signal path delay between
these organs, as necessary. The start signal is akin to that used for the rtco,
though not a pulse. Rather, as the mco is started in a staged fashion, the signal
comes in three packets, with suitable relative delay between the packets; each
exclusive or organ is started by separate signal. Packets are five bits in duration;
11111. Like the auto-initialised rtco, auto-initialised mco design prevents the
premature propagation of signal.

Clearly, the mco is no solution to rtco construction difficulties. Neither is it
space efficient. The non-auto-initialised mco is much larger than is the rtco, auto-
initialised or not, being about one third the size of a known vNCA self-replicator.
The mco is also less elegant than the rtco, and expresses a bit of Rube Goldberg
in its design. It is a mechanical solution to signal crossing, which incorporates
construction as part of its operation, being therefore a self-modifying device,
much befitting of von Neumann. The operation of the mco is altogether an
order of magnitude more complicated than is the rtco. Consequently, the mco
is not a practical signal crosser, even if more optimally designed. More efficient
solutions to signal crossing exist, including the rtco. The unsuitability of the mco
to practical application does not extend to the constituent mi signal inverter.

6 Ideal signal crossing

We close our review of signal crossing with consideration of ideal mechanisms.
In as much as a system of cellular automata is defined, in part, in terms of states
and transitions between states, ideal signal crossing is not obtainable within
vNCA. Yet, by careful alteration of these two characters, one may obtain an
analog which functions largely as vNCA, and provides for ideal signal crossing.
Nobili and Pesavento [14] obtained this result, to produce what we name Nobili
cellular automata, NCA. Their changes endow the confluent state with ideal
signal crossing, at the cost of function as a two input, two output logical and
operator, and gives confluent states having inputs but no outputs the ability to
indefinitely store data. In all other respects, NCA are identical in behavior with
vNCA. Our concern here is with the signal crossing function, represented by the
two input, two output conformation, and any benefit thereby obtained.

Clearly, the availability of ideal signal crossing eases the burden of a designer,
reducing the contingency load for signal crossing to that of positional relation
relative to other component organs. Nobili [13] reports this as his purpose, sim-
plifying his analysis of universal construction. Nevertheless, we argue that the
chief benefit of ideal signal crossing within NCA is configuration size minimi-
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Fig. 19. The non-auto-initialised Mukhopadhyay [12, 1] crossing organ, mco.

sation, versus functionally equivalent vNCA configurations. Indeed, in the case
of one example, we use Nobili’s signal crossing extension to demonstrate a self-
replicator for vNCA, via the configuration of its NCA isomorph, replacing ideal
signal crossing with the service provided by the 4×5 cc.

The parallel relationship of the current paper with the work of Nobili and Pe-
savento [14, 15], joint and several, gives us pause to consider. Nobili’s [13] frank
admission of introducing ideal signal crossing as a means to simplify other cel-
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Fig. 20. The standard architecture of a self-replicator for Nobili and von Neu-
mann cellular automata. All internal paths carry pulse signal only. A total of
ten signal path intersections are indicated; all pulse signal.

lular automata investigations points up the important pre-requisite of thorough
understanding of signal crossing to the construction of a vNCA self-replicator.
Pesavento [15] provides a design which, while clearly suggestive, proves insuffi-
cient as to self-replication within NCA, and by extension vNCA, even as it is
a capable NCA constructor; the configuration is unable to construct one cell of
its corpus. The relevance of this point concerns the development of a standard
architecture for self-replicators within NCA and vNCA, which originated with
our analysis of the Pesavento [15] design. The standard architecture is shown in
Fig. 20.

Most of the example self-replicators presented herein conform to the standard
architecture, if with occasional inexactitude. Yet, the implied sequence of events
and the flow of information suggested in the standard architecture apply even
where the architecture of a specific self-replicator differs; the last self-replicator
discussed operates similarly, though it has a completely alternate architecture.
Clearly, derivation-from implies correspondence with the Pesavento [15] design,
and this is true also of the design presented jointly by Nobili and Pesavento [14],
a general constructor over the first quadrant, implemented for vNCA. Like the
Pesavento [15] design, this jointly developed configuration is insufficient as to
self-replication.

7 Signal crossing in self-replicators

As we have said, it is generally understood that signal crossing within vNCA is
an important problem in the design of complex automata like self-replicators.
We see in the standard architecture a few examples of signal crossing. Many
others are hidden within the organs; the controls for the construction arm and
read/write head are particularly rich in crossed signal. Having examined the
construction and behavior of the two available classes of signal crossing organs,
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the discussion now properly turns to application of signal crossing within the
self-replicators of NCA, and their vNCA cousins. We begin with analysis of
the systematic behavior of the standard architecture, especially communications
between the organs, and develop an understanding of how those communications
coordinate self-replication. We then present four self-replicating configurations,
giving a detailed presentation of three of these, noting special characteristics
and showing their correspondence with the standard architecture. Discussion
then turns to a novel mechanism of self-replication, termed partial construction,
which is compared with other published cellular automata self-replicators. Owing
to their size, the images of these four configurations are shown within an online
manuscript, located on the world wide web at the URL listed at the end of the
Comments section. Each figure is referenced in the foregoing text by mention of
the catalog, and the page number upon which the corresponding configuration
is shown.

The primary task of a self-replicating automaton is the conveyance of con-
struction and articulation instruction from information source to information
consumer; the tape and the constructor. Self-replicator design is then the task
of selecting the mechanism of information conveyance, which mechanism conse-
quently determines signal crossing requirements; the environment imposes the
requirements for construction. The process proceeds through physical implemen-
tation of a mapping, each instruction producing a single pulse routed to a partic-
ular pulser, a translation from instruction code to construction and articulation
signal. Instruction code translation is minimised by use of construction signal as
instruction code, partitioning these from meta-instructions, like those directing
construction arm articulation and the tape mark, this having minimal use de-
marcating tape end-points. Construction signal is suitable as instruction code,
being short in length. Quite the opposite applies to articulation signal. Upon
this process of instruction conveyance and translation are built those acts that
define the steps of automaton self-replication, tape replication and configuration
construction, acts reflected in the algorithm of the standard architecture.

We see in the standard architecture that construction and articulation sig-
nal is delivered to the construction arm and its control from three sources, each
source governed by one or more pulses. These pulses originate within the state
machine, which services a closed cycle of four states, corresponding to the four
behaviors we argue necessary to self-replication; tape replication and configura-
tion construction including replicant triggering at Start, both mentioned above,
and two rewinds of the tape, to include returning the configuration to its initial
condition, or at least evolved to a configuration from which it can produce fur-
ther replicants, being restarted for each at Start; algorithms are expected to halt.
These behaviors are listed in Fig. 21, in typical order. Tape replication corre-
sponds with state (ii), and configuration construction with state (iii); alternative
orderings are equally effective for self-replication. This sequence of behaviors is
the output of each example self-replicator; they are restartable.

As to necessity, others may disagree with us regarding a return to initial con-
dition; see for instance the configurations of Morita and Imai [11]. One may cor-
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i. Seek the end of the tape with the read/write head, ignoring tape content save the tape
mark, and correspondingly lengthen the construction arm;

ii. Retract the read/write head to the beginning of the tape, and correspondingly retract the
construction arm. For each step of retraction, if the value stored on the tape is a
one, construct a down pointing ordinary transmission state;

iii. Seek the end of the tape with the read/write head, passing construction and articulation
instruction to the signal discriminator, and the construction arm;

iv. Retract the read/write head to the beginning of the tape, return the configuration to its

initial state, and halt.

Fig. 21. The behaviors of a von Neumann self-replicating cellular automaton.
The ordering shown corresponds to the sequence observed in the example self-
replicators. Other orderings are effective.

respondingly neglect state (iv), to taste, eliminating the restart ability property
from resulting configurations, which may in consequence be marginally smaller.
We leave for another time any ensuing debate.

It is important that we explain to some detail the operation of some standard
architecture organs but, not to the finest detail. Nor need we describe all organs.
In particular, the construction arm and read/write head are well discussed else-
where in the references. We devote little space to these organs, as their overall
operation does not change between examples, even if configuration specifics do.
For instance, in most published examples, the construction arm is organised
with special transmission states positioned above ordinary transmission states;
our examples exhibit this and the reverse ordering; control signal differs between
the orderings. Yet, both example organs serve the same function and command
set, those listed in Fig. 2. Our discussion need not include details of signal which
is specific to particular variations of these organs.

Still, the interaction of these two organs with other automaton configuration
is important to the discussion. For instance, the read/write head operates in-
dependently of all other organs, and drives all other automaton behavior; this
is also true for the Nobili and Pesavento [14, 15] designs. Each pulse delivered
to Read causes the reading of a single bit from the tape, any repair owing to
destructive tape reads, and positional adjustment of the read/write head and
signal return paths, these bounding the top and bottom edges of some portion
of tape. Self-replicator behavior terminates upon interruption of this cycle, which
is the purpose of the halt gate, at the direction of the state machine.

The reading of successive bits from tape must be delayed by time sufficient to
allow completion of the internal operations suggested above, and is signaled by
sampling the 0 and 1 input signal lines via logical or, the resulting pulse being
then passed to Read, and other places internal to the read/write head control.
Several hundred clock ticks between the reading of two adjacent bits of the
tape are not unreasonable. Indeed, it is often necessary substantially to increase
this delay, facilitating signal synchronisation; it is expected that instructions
be fully processed before the first bit of the next instruction is read from tape.
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Finally, tape bit location adds significantly to this minimum; the reading of data
from tape is overwhelmingly the largest consumer of time for von Neumann self-
replicators. On average, a tape read signal travels the length of the tape between
the start of reading a bit (the sending of signal) and its completion (the receipt
of signal), this measure being within the error bars expected of a physicist.

As a practical matter, the expectation for full processing of one codon before
starting to read the next from tape is relaxed, providing opportunities for opti-
misation over time, however marginal. As with most optimisations, this comes
at cost; at the moment when tape mark input is fully processed by the state
machine, the read/write head has already begun reading one cell past the end of
the tape. In addition to need for a change in the direction of tape traversal and
a repositioning of the read/write head along the tape, the resulting input signal,
the read of a one or a zero, needs to be culled from the 0 and 1 input signal
paths. The input signal squelch, iss, culls this unwanted signal. The overshoot
behavior is observed for all traversals of the tape by the read/write head, in all
examples, and in the Pesavento [15] design; the 29 state design of Nobili and
Pesavento [14] cannot rewind its tape, and only constructs.

Service of those bits read from tape is obtained by two sub-configurations.
One consists of the memory unit, signal discriminator, construction signal squelch,
css, and state machine organs, which together service codons directing construc-
tion and articulation, and machine state; this is the general constructor. The
other is the tape construction control, tcc, which directs tape replication by in-
dividually serving each bit as it is read from tape. The memory unit groups
tape data into codons which the signal discriminator divides into three cate-
gories, governing subsequent distribution of those codons. The css is triggered
by detection of meta-instruction, preventing delivery of those codons to the con-
struction path of the construction arm, and by the state machine. Tape mark
detection yields pulse signal to the state machine; two detections yield a transi-
tion of state. All other meta-instructions govern construction arm articulation,
and are delivered to the construction arm control.

Tape replication is the simpler function. First is the determination of tape
length and the corresponding extension of the construction arm. Next follows a
rewind of the tape and corresponding retraction of the construction arm as it
constructs the tape replicant. Construction signal is serviced before articulation
signal. This process is driven by the read/write head. In state (i), the logical or
of signals 0 and 1 are delivered to construction arm input XR. In state (ii), the
logical or of these same signals is delivered to construction arm input RL, as 1

is delivered to input OD.
During the transition to state (ii), pulses are sent from the state machine to

the iss, culling the unwanted input bit; to the tcc, squelching signal XR and per-
mitting propagation of signals RL and OD; and to the read/write head, directing
a reversal of direction for tape traversal. Distribution of these signals entails some
signal crossing. Being thorough, we mention the existence of some subtle timing
relations between the acts associated with read/write head behavior, which co-
ordinate to ensure that reading of the tape during state (ii) begins with the last
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(right-most) bit. Though reader understanding of these details is not relevant
to the purposes of our discourse, they will prove important to any reader who
undertakes a painstaking review of the internal operations of examples.

State (ii) is the reverse of state (i), save for the delivery of signal OD to the
construction arm, yielding replication of the tape. Upon detection of the second
tape mark, the previously described conditions for reversal of tape traversal direc-
tion exist, like read/write head overshoot, and are correspondingly serviced (we
do not mention these conditions in the discussion of subsequent state machine
transitions, even though they may apply). In addition, pulses open the css, per-
mitting the flow of construction signal to the construction arm, and de-asserting
the signal discriminator squelch, permitting the flow of articulation signal to the
construction arm control. The configuration transitions to state (iii).

R/W Head for each bit of tape input, extend the read/write head; read/write head is

positioned over the first, left-most bit of the tape; reading occurs, left to

right

Memory Unit awaiting receipt of first codon bit

State Machine in state one, awaiting detection of the first tape mark

Signal Discriminator set to suppress propagation of signal to the construction arm

Input Signal Squelch set to open; signal is allowed to propagate

Construction Signal Squelch set to closed; signal is not allowed to propagate

Halt Gate set to open; signal is allowed to propagate

Tape Replication Control for each bit of tape input, transmit XR signal to the construction arm

Fig. 22. The initial state of all example self-replicators. The construction arm
is not configurable.

Standard architecture construction is best understood in terms of the inter-
operation of the organs. The initial state of standard architecture self-replicators
is shown in Fig. 22. The sequence of events for self-replication begins with injec-
tion of a pulse at Start. This starts a continuous reading of the tape; reading does
not stop until action is taken by the state machine. For states (i), (ii), and (iv),
the css is asserted by the state machine, preventing the propagation of codons to
the construction arm. Though the signal discriminator is always operational, an
internal squelch is asserted on output to the construction arm control; discrimi-
nator signal is propagated to the construction arm during state (iii) only. Output
from signal discriminator to state machine is propagated during all states; there
is no squelch on signal TM Detect. During state (i), the tcc emits only signal
XR, and the iss is de-asserted, permitting propagation of all incident signal. The
halt gate is also de-asserted, permitting continuous automaton behavior.

The memory unit services codons during all states. For all states, codons move
from memory unit to signal discriminator, and with short delay to the css. If the
codon represents a meta-instruction, the css is signaled to prevent codon propa-
gation to the construction arm. Signal representing identified meta-instructions
are delivered to corresponding inputs of the construction arm control, save that
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for the tape mark, which representing signal enters the state machine. For any
codon, only one signal is put to the construction arm. Again, override signal
from the state machine further limits the propagation of the foregoing signal to
state (iii).

Construction ends with a transition to state (iv). The final state returns the
configuration to its initial condition, ready to receive another pulse at Start, and
capable of repeating the process of self-replication. The final act is repositioning
of the read/write head concomitant with detection of the second tape mark. In
this one case, the state machine issues signal to the halt gate during transition
to state (i), squelching the 0 and 1 signal paths, halting the read/write head,
and consequently the configuration, completing self-replication.

The configurations of example self-replicators generally correspond to that
given in the standard architecture, to include relative placement of organs, and
follow directly.

Nobili pulse corpus With the overview of standard architecture behavior
complete, we now proceed to describe our three example self-replicating config-
urations. For each example, we present such detail as is necessary to understand
operation of each organ, with special emphasis placed upon signal crossing re-
quirements. We will also take note of variations to organ design, such as are
necessitated by differences between NCA and vNCA. Our four example self-
replicators demonstrate a progression; the pattern of states for the initial condi-
tion is given for each in a corresponding figure.

The first example configuration demonstrates that self-replication within
NCA is not dependent upon the service of packet signal; that ideal and indeed
even perfect signal crossing is overkill. The second configuration demonstrates
the expected size reduction obtained by incorporating the service of packet sig-
nal, while at the same time demonstrating that service of packet signal implies
no crossing requirement. We name these two NCA examples according to the
signal they service; the pulse corpus and packet corpus configurations. The con-
version of these two self-replicators from NCA to vNCA is then demonstrated.
For the first resulting configuration, we present just the dimensions; generation
of the configuration is left as a reader exercise. For the second conversion, the
configuration is given, and we argue it to be architecturally the smallest possible
vNCA self-replicator.

Some of the standard architecture organs are common to all the examples,
and these often without substantial change. Of note is the state machine organ,
which was derived from the work of Pesavento [15]. The state machine and
iss have few differences between examples. The halt gate, found in all examples
without alteration, is shown in Fig. 23. Other organs exhibit substantial variation
between the examples; in the first example, the memory and signal discriminators
are replaced. Variations between the iss for NCA and that for vNCA relate solely
to signal crossing requirements; instead of ideal signal crossing, the 4×5 cc is
employed. Like the iss, differences between NCA and vNCA expression of the tcc
relate solely to mechanisms of signal crossing. This is not so for other organs; the



484 Buckley

P P

C C

N N

I D D D O I D D O

Fig. 23. The halt gate, in the closed and open conformations, from left. This
normally closed switch is opened by a pulse at P, and reset by a pulse at I.
When closed, all signal is passed to O.

I D D F D D O I D D F D D O

L D C E L C E

C C

P P

Fig. 24. Construction signal squelch, in the closed and open conformations, from
left. When the switch is open, signal passes from I to O. Multiple inputs to P
are combined by a logical or operator.

differences between the example memory units exceed alteration in component
signal crossing mechanisms. Some configurations employ multiple css organs,
shown in Fig. 24, linked together by a single control signal. Like the halt gate,
the css appears in all examples without change, whether singularly or in multiple.

The halt gate operates by annihilating one right pointing ordinary transmis-
sion cell of the signal path that post-logical or leads from the 0 and 1 input signal
lines to the Read input of the read/write head control. This ordinary transmis-
sion cell is then reconstructed by passage of a final signal from the combined
input signal lines; a pulse is identical with OR, and an ordinary transmission
state pointing to a ground state is a constructor. The side effect of reconstruc-
tion is that the signal is not passed further, and reading of the tape stops.

The css operates by construction and annihilation, to control a valve on the
signal flowing through, and not to alter, a signal path. Again, this control is
effected by agency of a side effect. An ordinary transmission state serves as the
control on a confluent state, through which signal passes; when the ordinary
transmission state is present, the confluent state carries no signal. The confluent
state performs a logical and upon its inputs. The logical operator blocks signal,
as one input has a constant value of zero. Upon annihilation of the ordinary
transmission state, no longer is a logical and performed upon inputs, and signal
is not blocked. The side effect is the engagement of the logical operator.

The tcc, shown in Fig. 25, is a passive configuration employing two signal
crossing organs. The three generated signals are connected to the construction
arm control, with an intermediate signal squelch on each, subject to control of
the state machine; the signals are produced for each read of the tape. It is the
careful selection of moment to permit propagation which makes sense of these
signals; they would produce chaotic results when applied all together during any



Signal crossing solutions 485

D D D D D D D D RL + OPD

E

C D D D D D D D XR

0 1 E E

E E E E D D D D RL

E E E E E

C D C D C D C D C D D …

E E E

E C D C D D …

E E

0 1

Fig. 25. The NCA tape construction control, tcc, is a grouping of three signals,
these being derived from combination of the 0 and 1 signals emitted by the
read/write head. The state machine mechanisms governing propagation of these
signals is not shown. Component signal crossing organs are shown boxed.
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Fig. 26. The two channel input signal squelch for NCA, shown in the open
conformation. Pulse signal passes from input to output when this organ is in
the open conformation. A pulse at P toggles the open/close state of the organ,
moving the pair of right pointing ordinary transmission states from the position
of the lightly shaded cells, to the position of the darkly shaded cells. The first
input resets this state, returning the right pointing ordinary transmission states
to the position shown. The boxed confluent states are ideal signal crossing organs.

automaton state, and corrupt the process of general construction during state
(iii), among other behaviors.

The iss, shown in Fig. 26 for NCA, is a pairing of dual-path valves, the
operation of each path-pair being exclusive to the other. Further, one permits
signal passage while the other does not. The selection of which path-pair does,
and which path-pair does not, pass signal is determined by signal accepted from
the state machine. The output of one path-pair, combined by logical or, is input
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state (ii)

state (iii)
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Fig. 27. The state machine, configured for Nobili cellular automata, includes one
signal crossing organ. The state machine is initially set into the first state, and
supports a total of four states. Each state corresponds to one complete traversal
of the tape. Upon four traversals of the tape, two from beginning to end, and
two from end to beginning, the state machine is returned to the configuration
shown here. The boxed region with a single line identifies the cells which define
the second state. The double-boxed cell is described in the text. This organ is
derived from the state machine given by Pesavento [15].

at P, providing a one-shot bit bucket; subsequent signal propagates through the
other path-pair. Normally, signal flows from the iss to the memory unit; the
normal signal paths. Upon direction of the state machine, iss configuration is
altered, redirecting flow to the alternate pair of signal paths, thus facilitating iss
reset by the next P incident signal originating in the read/write head.

The state machine for the pulse corpus includes just one signal crossing or-
gan, as shown in Fig. 27. The larger single-line box in the figure shows the sub-
configuration responsible for all features of machine state (ii); its entry, main-
tenance, and exit. The machine state indicator is implemented as a sequence
of five cells. The rightmost and left two cells are confluent states. The other
two cells, sandwiched between confluent states, alternate between ground and
right-pointing ordinary transmission states, indicating the current state of the
machine. A machine state is entered when a right-pointing ordinary transmission
state is constructed in the left of these two sandwiched cells. A right-pointing
ordinary transmission state is constructed in the right cell upon TM Detect

being passed to input N. A second such signal triggers transition to the next
machine state.

Machine state transition brings annihilation of both right-pointing ordinary
transmission states of the current machine state indicator, and the propagation
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00 01 10 11

00 OR SR GG/RL CC

01 OL SL XR

10 OU SU RD

11 OD SD XU TM

High

Order

Bits

Low Order Bits

Fig. 28. The tape instruction code for the pulse corpus NCA self-replicator.
Retraction of the construction arm to the left yields default construction of the
ground state. Use of unassigned codes yields no construction arm output.

P P

F F

T D C F T D C F

F F F F

C C CD O C C CD O

F N E F N E

C E CD E

F F

… …
Fig. 29. The crossbar connection unit, ccu, unset and set, from left. A pulse at T
toggles the construction and annihilation of the indicated ordinary transmission
cell, thereby closing and opening the switch. A pulse at P is propagated to output
O when the switch is closed.

of pulse signal to the next state, which constructs a right-pointing ordinary
transmission state in the left cell of the next machine state indicator, shown
with a double-line box in Fig. 27. The machine thus moves into state (ii). Pulse
output of the state machine is directed to various signal lines, providing control
to the other organs of the configuration. We consider these signal lines as separate
from the state machine. One may expect that the network of signal lines from
the state machine intersect many signal crossing organs.

The pulse corpus differs most from the standard architecture in that the
signal discriminator and memory unit are combined into one sub-configuration;
the instruction decoder. The instruction decoder combined with state machine
constitutes the supervisor of the self-replicator, and is built largely of signal
crossing organs; a total of 258 occur within the instruction decoder, and 436
overall. Further, the size of the instruction decoder is approximately 60% the
area of the self-replicator. The instruction code for the pulse corpus is shown in
Fig. 28. The reader should note that retraction of the construction arm implies
the construction of two ground states. Thus, these operations are combined into
a single instruction of the code.

The instruction decoder is organised into three sections, which in total act
as a 4-to-16 demultiplexer. This demultiplexer is the core functionality which
facilitates the translation of instruction code into construction and articulation
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Fig. 30. A 2-to-4 demultiplexer, built of four crossbar connection units. This
organ converts two input pulses into a single one-of-four output pulse. The region
bordered with a dashed line distinguishes between the first and second input
pulse. The regions with a solid line boarder are those crossbar connection units
that will be set if the first input pulse represents a zero bit on the tape. The
other two crossbar connection units will be set otherwise. The inputs are labeled
I and the outputs O, each with subscripts to indicate related logical value; for
outputs, subscripts correspond with the input pulse pattern that yields output
at the port, the first bit being leftmost in the subscript. S serves to distinguish
input pulse one from input pulse two within the 4-to-16 demultiplexer, which
follows downstream of the 2-to-4 demultiplexer.

signal. The first section gates alternating input signal between two input paths.
These two paths then serve as the inputs of a 2-to-4 demultiplexer, which outputs
are then input to the 4-to-16 demultiplexer. Like the memory unit, this organ
accepts pulse incrementally, and it is only upon input of the last pulse that
output is produced. Each pulse of input brings some kind of reconstruction.
The complete operation cycle of every sub-component of the instruction decoder
serves as its own reset.

The two demultiplexer sections share a common design, based upon the cross-
bar connection unit, ccu, shown in Fig. 29. The 2-to-4 demultiplexer employs a
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set of four ccu organs, while the 4-to-16 demultiplexer employs a set of sixteen
ccu organs. These sets are logically organised into squares, 2×2 and 4×4. Oper-
ation of the ccu is in response to three ordered pulses, the last being feedback
on organ output. The first such pulse, input at T, yields construction of a right-
pointing ordinary transmission state in the shaded cell of the figure. The second
pulse is accepted at P, and propagates to the confluent state at the left of the
shaded cell. All ccu organs in a row receive the same inputs at T, and the ccu
organs of columns receive the same inputs at P. The 2-to-4 demultiplexer is
shown in Fig. 30.

In addition to connection with an input of the construction arm control,
each of the output signals from a row of ccu organs is combined by logical or,
giving feedback to the T input of those same ccu organs. This signal resets the
states of the ccu organs, by destructing the component right-pointing ordinary
transmission state. A similar mechanism applies to the 2-to-4 demultiplexer. The
4-to-16 demultiplexer is identified by the 4×4 ccu array at the center to top of
catalog page 4.

In our discussion of rtco construction, we mentioned that the simplest pro-
grammed control is the one which makes no decisions on its own; the prime
example being compression of the tape. This first example self-replicator is not
so simple, for RL signal to the construction arm control is concomitant with
construction signal to the construction arm. That is, this configuration assumes
construction arm retraction for each act of construction. This automaton be-
havior provides a means to optimise the configuration description versus tape
length, and so reduce the time to self-replication. Yet, this also means that the
configuration is larger than it need be, for functionality comes upon the heals
of configuration. We expect that a description of this configuration viable for
self-replication will be no greater than nine times configuration size. The area
of this first example, a Nobili self-replicating cellular automaton, is 220 by 109,
or just under 24K cells. The number of cells within the perimeter of the config-
uration is roughly 18K. Further, many of these endo-perimetric cells are in the
ground state; it is likely the footprint can be significantly reduced. We estimate
that the minimal size is about 12K cells. Size minimisation of this configuration
is an effort left to readers.

We have thus shown that NCA self-replicators exist for which the ability to
cross packet signal is unnecessary. Our attention now turns to demonstration of
the size reduction benefit expected from the addition of service for packet signal
within NCA self-replicators.

Nobili packet corpus The packet corpus differs from the pulse corpus chiefly
upon the variation of instruction decoder versus memory unit and signal discrim-
inator, an increase of codon size to five bits, and the service of packet signal,
to include its crossing. The addition of packet signal and its crossing serves
two purposes. We wish to demonstrate the benefit of packet signal crossing to
the minimisation of configuration size. We wish also to demonstrate the maxi-
mal benefit obtained from ideal signal crossing. As this second example behaves
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Fig. 31. The NCA packet corpus memory unit, a first-in, first-out pulse to packet
register. Inputs are the signal 1 and the logical or of signal 0 and 1, labeled B.
The shaded cells indicate the mechanism of counting bits of input, and triggering
their output, which is provided in two signals, a pulse P (presence) and the
packet signal M (message). Boxed cells are memory states; note the lack of
output states in each neighborhood. This organ derives from the memory unit
given by Pesavento [15].

otherwise much as the first, we shall limit figures to those which demonstrate un-
familiar organs. We should mention, by way of full disclosure, that development
of the packet corpus was in direct response to limitations of the design given
by Pesavento [15]; that the corpus is not of a self-replicator. Each configuration
accepts descriptions represented in a common tape code, and tapes contain three
tape marks, not two. Also, the state machines represent more than four states;
six for the Pesavento [15] corpus, and seven for the packet corpus. Consequently,
neither configuration is minimally sized; smaller NCA self-replicators exist. Yet,
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for the packet corpus, these failures at size optimality are not of great extent; the
Pesavento [15] design compares less well. Hence, we may by this second example
obtain a good first approximation of the size reduction benefit of packet signal
service within NCA.

The design of our memory unit, shown in Fig. 31, being approximately 45%
smaller, is derived from the memory unit of Pesavento [15]. Both units accept five
bits per codon, and automatically emit the codon upon its complete acceptance,
readying for input of the next codon. Though unused, the Pesavento [15] design
includes configuration for the latching of signal, allowing held signal to be output
in multiple; our design eliminates this feature. The position of the right-pointing
ordinary transmission state in the shaded cell indicates the position of storage for
the next bit of input, located at the end of the adjacent right pointing signal path;
the organ is configured to accept the first bit of input. This indicator is paired
with another, represented by the lack of right-pointing ordinary transmission
state. This lacking state permits signal delivery to the memory states, which are
shown as boxed cells in the figure.

D D D D D D D D D D C D D D D D D D D C D D D D D D P

E F C F C F C F C F C C F C F C C C C C

C C C C C C C C C C C C E C D D C D E

E C E C E C E C E C D F C E M K K K K

D C C C C E D C D D D D C D D D M

D D E D E D E E E M D D D E

D F D F D F D F E D F D F D D D E M C C C C C C C C

C C C C C C C C C C C C C C D F D C F E D C E

E D E D E D E D E E D E D E D C C D C C D C E C C

E E F C E F E D D E F D C E

E C C C C C C C E F E C C

E E C E C E F C E

E E F C C C C C D D E

E E F F

P M N C

Fig. 32. The tape-mark service stage of the NCA multi-bit corpus signal dis-
criminator. Integral constructors are built of special transmission paths. The
shaded cells are gates, which alter state between a crossing organ and a two
input, one output logical and operator. The majority of non-ground states of
this organ synchronise signals P and M at output.

Input to our memory unit comes in two signals; a pulse B indicating receipt
of signal, and the 1 signal. If signal is received but it is not 1, then a simple
increment of pointer to storage cell suffices; the pulse increments the storage cell
pointer, along with the paired permission indicator. If 1 is received, then it is
placed in the storage cell, and the pointer increments. Output from the memory
unit is triggered by the wrap-around of the storage cell pointer; B is propagated
to the output control sub-configuration. The stored data is released last memory
cell first; delay in the output signal path versus delay in the output control sub-
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configuration ensures that the bits are properly ordered; most-significant bit
first. A right-pointing ordinary transmission cell is constructed just to the right
of the storage cell, starting output. As soon as the bit stored in the memory
state is emitted, the newly-constructed right-pointing ordinary transmission cell
is annihilated. In the two clock ticks between construction and annihilation, the
transmission cell conveys the stored bit from memory state to signal output
path.

The general signal discriminator is composed of a series of sub-configurations,
each consisting of a decoder and a signal squelch. These sub-configurations each
prohibit propagation of a specified signal upon its recognition. The signal TM

Detect is detected first, followed in order by the signals for the XR, XU and
RD instruction; SI is not implemented in the packet corpus. RL is indirectly
implemented and so needs no meta-level service; the construction signal 00000
yields no constructed state but, does yield automatic retraction of the construc-
tion arm. If none of these four signals is detected, output from the memory unit
propagates to the construction arm. The signal squelch applies to both memory
output signals, P and M. Figure 32 shows the sub-configuration for detection of
the tape mark ; it is by far the largest signal discriminator sub-configuration.

Two points of interest in this sub-configuration are indicated, by shaded cells
and a 4×6 boxed region. The shaded cells operate by side effect, this being the
conversion of state, from logical and to crossing organ, a behavior described
earlier in this text. The boxed region is the TM decoder. The decoder emits
a pulse upon input of TM, which serves to delete the right-pointing ordinary
transmission states that are located to the right of the shaded cells. The right-
pointing ordinary transmission states are reconstructed after a few dozen clock
ticks, restoring the signal crossing capability of the shaded cells. Hence, when
TM is detected, P and M are not propagated.

The instruction codes of the packet corpus and the Pesavento [15] corpus are
given in Fig. 33. Those codes representing the meta-instructions TM, XR, XU,
RL, RD, and SI are selected to allow unambiguous recognition with decoders,
and organ that accepts signal solely upon the logical and of selected bits. This
determines the order of service for the meta-instructions. The downstream de-
coders are served by a common squelch; only TM has a dedicated squelch. The
common squelch is a bit more complex, and is influenced as well by signal from
the state machine; it implements a complex interaction of signals with delay. As
downstream decoder operation is similar to that of the tape mark, they are not
examined in figures. The signal P is used during construction to trigger auto-
matic retraction of the construction arm. Hence, tape code is compressed. This
is true of the Pesavento [15] corpus, also.

The NCA packet corpus is shown on catalog page 5. The signal crossing or-
gans are shaded; dark grey identifies 121 crossers that carry pulse signal, and
light grey identifies nine crossers that carry packet signal. In the pulse corpus,
each instruction is delivered to the construction arm by a dedicated path. With
the packet corpus, construction signal is served by a common path. As packet
service in NCA is free, there was no special effort to route M around other con-
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00000 RL 01000 opr 10000 OPR 11000 SPU

00001 opr 01001 opl 10001 OPU 11001 XR

00010 opr 01010 opd 10010 OPL 11010 SPL

00011 spu 01011 spr 10011 RD (XU) 11011 TM

00100 opr 01100 spu 10100 OPD 11100 SPD

00101 opd 01101 spl 10101 XU (RD) 11101 SI

00110 spu 01110 spd 10110 SPR 11110 CON

00111 spd 01111 con 10111 Not Used 11111 Not Used

Fig. 33. The tape codes of the Pesavento [15] constructor, and the NCA packet
corpus self-replicator. These two codes are identical, save the swapping of codes
for the XU and RD instructions; packet corpus assignments are shown in paren-
theses. Neither packet corpus supports the SI instruction. Codes with capitalised
names are the expected codes; lower case names are unexpected but supported.

figuration. Rather, the common path is routed as any other path in the config-
uration. We may therefore infer that the represented reduction in configuration
consequential to packet service is near maximal, if not optimal.

The configuration is contained within a 55×118 region; just under 6500 cells.
As mentioned earlier, one finds opportunity for a small reduction in the endo-
perimetric cell count. The upper left region is an obvious example. There may
be available means to modestly reduce the size of other organs, too. As demon-
strated in the pulse corpus, general construction in the first quadrant is easily
supported with a tape code of four bit instructions, and the minimal number of
machine states is four. Yet, we do not expect any such reductions in configura-
tion size to be significant. By rough measure we therefore see that packet service
reduces configuration size by a factor of two.

The tape description of this self-replicator is about nine times the configura-
tion size; the combined configuration and tape is less than 70K cells.

Von Neumann pulse corpus We now turn to the conversion of the pulse cor-
pus NCA self-replicator, an NSRCA, into the equivalent vNCA self-replicator,
a vNSRCA. Conversion is sufficiently simple that details are not given in fig-
ures; the conversion is a logically trivial task, even if the mechanics of manual
translation are tedious. First, we remind ourselves that input to the instruction
decoder is pulse signal, via the two signal lines 0 and 1. Only one of these signal
inputs to the instruction decoder is active at any given time. Thus, for every
case of required signal duplication, the subsequent crossing of same can trivially
be phased in time such that no simultaneous convergence upon a signal crossing
organ occurs.

Similar arguments can be given for all other organs. For instance, the 2-to-
4 demultiplexer receives and emits only pulse signal. Operations of the 4-to-16
demultiplexer follows analogously the operation of the 2-to-4 demultiplexer. Fur-
ther, all packet signal, for operation of the read/write head and for construction,
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is generated and serviced external to the corpus of this self-replicator. Hence,
there is never a necessity that pulse signal simultaneously converge upon a signal
crosser within the configuration.

Of course, use of a filter-corrected cc, such as that shown in Fig. 12, in place
of the ideal NCA signal crosser, yields immediately a vNSRCA. Similar results
obtain from auto-initialised rtco. In either case, delay would likely be needed
to otherwise maintain signal synchronisation but, no such synchronisation is
required to obtain the signal crossing service provided by these two organs. The
resultant configuration will simply operate at a slower rate as compared to the
performance of the NCA version; such a self-replicator is considerably larger
than the pulse corpus NSRCA.

Yet, not much more difficult is the replacement of all ideal signal crossers with
the 4×5 cc presented in Fig. 10. The chief difference is the amount and place-
ment of additional delay. It seems reasonable that bigger organs would entail
the greater delay. We may therefore reasonably conclude that the configuration
obtained by this replacement, coupled with suitably tight packaging of compo-
nent organs, yields nearly the smallest possible pulse corpus self-replicator for
vNCA. We have made this replacement and compacted the configuration, ob-
taining a self-replicator that is bounded by a 272×132 rectangle. The perimeter
encloses approximately 27K cells, densely packed with non-ground states, giving
an upper bound on the size of a vNSRCA.

We have thus shown that vNCA self-replicators exist for which the ability to
cross packet signal is unnecessary; that worst case, the crossing of pulse signal is
sufficient to vNCA self-replication. The tape description of this self-replicator is
about nine times the size of the configuration, to give a combined size of 270K
cells.

Von Neumann packet corpus In transforming the packet NCA corpus into
a vNCA self-replicator, we elect to demonstrate that packet signal need not be
crossed in order that it be served. We also prefer to construct our tapes of four
bit codons, and return to the tape code used in our first example. Further, to
minimise configuration, we remove the code compression mechanism associated
with implied construction arm retraction, and decline to add other configura-
tion. Finally, we change configuration architecture slightly, to include a new
operator, logical negation; with this, we are able to encode five bit construction
signal into a four bit representation upon tape, demonstrating a different form
of code compression, and eliminating use of construction signal pulsers with the
construction arm control, such as were used in the NCA pulse corpus. While
we need not include either of the perfect signal crossers presented herein, we do
include mi, the Mukhopadhyay [12] signal inverter. The several figures for this
transformation show how the replacement of ideal signal crossers with the 4×5
cc affect standard architecture organs. The configuration is shown on catalog
page 7.

We begin with von Neumann’s requirement that a construct be initially pas-
sive. Till now, example self-replicator constructs have all strictly observed von
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Neumann’s requirement for initial configuration passivity, being started only af-
ter construction has been completed, and from a cell external to their corpus.
Here, we bend this rule, to the extent that auto-initialised organs are started
during replicant construction; i.e. the Mukhopadhyay [12] signal inverter. The
requirement for passivity until completion of construction may be preserved with
but a small change to automaton configuration. Compliance is effected by the
inclusion of a signal path from the location of start signal input to the start sig-
nal generator of the Mukhopadhyay [12] signal inverter, increasing self-replicator
size; this is the configuration that we decline to include. Interestingly enough,
restartability will not require that this path include a signal isolation feature;
the timing of the start signal relative to all other signals ensures that it will not
be propagated past the signal inverter, which itself accepts only one start signal.
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Fig. 34. The iss for vNCA, configured with 4×5 cc signal crossers; these are
shaded to ease identification. Operation of this organ is identical to that of the
organ given in Fig. 26.

Figure 34 shows the iss, with seven component 4×5 cc units; it is otherwise
identical in form and function with the iss shown in Fig. 26. The slight distortion
of separation between signal crossers, and related signal path deviations are the
sole consequence of replacing ideal signal crossers with the 4×5 cc. The organ is
larger, and its operation is slower but, the function is the same. Similar results
are obtained for the tape construction control, the halt gate, the state machine,
and the read/write head. More significant configuration change is confined to
other organs.

The tape mark discriminator and associated packet signal squelch are shown
in Fig. 35. Packet signal is sampled, and processed by a logical operator. Squelch
occurs by side effect of construction; the now well examined and timely annihi-



496 Buckley

M C D F D F D D D D F

F C C C C F E D F L C M

F C F E F D E D C C D C

F F C C C C E CC

D C D E D E C E

F D D F D D F E E

D C C D C C D C E

D C E D C E D D N

Fig. 35. The tape mark signal discriminator of the vNCA packet corpus. The
shaded region identifies the tape mark decoder; it is a logical and operator over
five variables.

lation and reconstruction of a confluent cell. We see here that packet signal can
be engaged in complex function without encumbering crossing.

The memory unit for the vNCA packet corpus holds four bits within its reg-
ister, and is composed of four one-bit memory cell assemblies, shown in Fig. 36.
Registers of arbitrary size may be obtained by the stacking of these assembly
units. The arrangement of assembly cells allows packet signal output along a
path that is external to other corpus cells, and so never occasions necessity for
signal crossing between memory unit operation and construction arm. The mem-
ory unit occupies a space of 1600 cells, comparable in size with the read/write
head. More space efficient mechanisms which provide these functional benefits
may exist. Not shown in the figure is that configuration which synchronises out-
put from the memory cells, nor additional signal crossing organs. As part of the
synchronisation process, the four bits taken from tape are prefixed by a logic
high valued bit; packet signal is five bits long.

The vNCA packet corpus tape code is divided into two parts, as shown in
Fig. 37, with low order bit patterns mapping to the corresponding logical inverse
of construction signal, and high order patterns mapping to meta-instructions.
The leading bit serves to anchor the bits of tape code, much like the decimal point
anchors the digits of a real number. This allows the well ordered decoders of the
signal discriminator to unambiguously distinguish all signal, save OR and OU,
which are served last. Service of OR appears as an override to the OU service.
Any signal not squelched by the signal discriminator is directed to the signal
inverter; squelched signals are TM, XU, XR, RL, and RD. For signals OU and
OR, packet signal is carefully altered before being passed to the signal inverter.
The five-bit output of the signal inverter is selected by the synchronisation pulse
emitted by the memory unit.

Input to the signal inverter occurs for the underlined codes shown in Fig. 37.
At the terminus of the signal inverter is located a confluent state configured
as a logical and operator. The operator is gated by the five bit signal 11111,
which is generated from the memory synchronisation pulse. The generated sig-
nal masks all the bits for the inverted packet signal, save the signals OR and
OU. For these two signals, substitute packet signal is delivered to the inverter,
yielding construction signal at output. By the mechanism of signal inversion,
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the entirety of those signal lines, the construction signal pulsers, and supporting
signal crossing organs found in the construction arm control of the two pulse cor-
pus self-replicators are subsumed. This is a significant reduction in configuration
complexity.
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Fig. 36. A one-bit memory cell assembly for the vNCA packet corpus. The
component one-bit memory cell is shown in three shades of grey in the figure
upper left, and is a space optimised version of the one-bit memory cell given by
Nobili and Pesavento [14]. The dark grey cells generate the signal stored in the
light grey cells. The medium grey cells are the reset signal generator. The two
boxed regions are cell-select gates, which indicate the cell of an assembly that
shall receive data to store, according to the presence of the central left-pointing
ordinary transmission state. Upon receipt of signal 0 or 1, the cell-select gates
are reset to closed; the next assembly in a register receives this signal via A,
opening its cell-select gates. The clear signal is C.

We do not claim that the vNCA packet corpus is the smallest possible vN-
SRCA; we can envision means to reduce the size of the configuration presented.
The greatest opportunity for reduction of configuration size comes with the
memory unit, and configurations which implement long term signal delays. For
instance, it may be possible that some repositioning of read/write head compo-
nents will allow reduction in associated signal delay. Other organs seem unlikely
candidates for configuration size reduction. We do not expect that any such
configuration size reduction will be significant. Rather, it is only with complete
removal of a major organ that significant size reduction may be obtained. Thus,
we argue the vNCA packet corpus is, in terms of configuration size, a near opti-
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mal self-replicator. The endo-perimetric cell count for the vNCA packet corpus is
11,932. The tape is approximately 12 times the size of the configuration, giving
a combined corpus and tape total of approximately 155K cells.

0000 CN 1000 sd 10000 11000

0001 SD 1001 XR 10001 11001

0010 SL 1010 od 10010 11010

0011 SU 1011 RD 10011 11011

0100 SR 1100 OU 10100 11100

0101 OD 1101 XU 10101 11101

0110 OL 1110 RL 10110 11110

0111 OR 1111 TM 10111 11111

Fig. 37. The instruction code of the vNCA packet corpus. Capitalised signal
names correspond with expected codes; those in lower case are supported. Tape
codes are shown at left; the prefixed form is shown at right. Underlined signal is
served by the inverter.

We have thus demonstrated the correspondence between the cellular au-
tomata of Nobili and von Neumann, given self-replicators for both environments,
and shown that the crossing of packet signal is not a requirement for the con-
struction of self-replicators within either system of cellular automata. None of
these self-replicators is a universal constructor. Our analysis of the mechanism
of construction and the problem of signal crossing within self-replicating cellular
automata suggests that the constructor which von Neumann was designing at
the time of his death is, in spite of its self-replicability, rather less than universal.
Indeed, given inclusion of active configuration within the product of construc-
tion, we hold that no constructor is universal, that for every constructor, one may
find configuration which that constructor cannot construct, but which another,
higher-order constructor can construct.

8 Modes of self-replication

Within cellular automata literature, we note a characteristic common to all given
self-replicators, that their construction is completely at the direction of their
mother. It may perhaps seem reasonable, even obvious, that a self-replicator
should need all its parts before it may properly function. Indeed, we know of no
published self-replicating cellular automaton which is able to function properly
with even one cell of its configuration improperly configured, such as by being
in one state when it ought be in another state. This is holistic self-replication.

Construction requires that a tape be read, that instructions be interpreted,
and that the constructor know when to stop constructing. Self-replication re-
quires that the construct described on tape be constructed, that the tape be
replicated, that the read/write head should rewind along the tape so that it may
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be read twice, among other tasks. Yet, when constructing, the constructor need
not know how to rewind the read/write head, nor how to replicate the tape,
nor even how to stop reading the tape. Additional configuration needed for the
performance of these tasks can be learned from the tape, and this just prior to
necessity, if that configuration can be added without adversely affecting behav-
ior [10]. This is self-replication by partial construction, a mechanism formally
presented in Buckley [2].

We know of only one configuration capable of partial construction, an ex-
tension of the vNSRCA mentioned in Mange [9, pp. 1932]. Though we have not
room here to present a thorough examination of the configuration, we mention
a few important details. Implemented for vNCA, the configuration is composed
entirely of pulsers, decoders and delays, and the vast majority of these organ-
ised into general recognisers, as described by Thatcher [16, pp. 149-150]. The
only exceptional sub-configurations are the arm of the read/write head and the
construction arm.

At the top level, the recognisers are organised into four coded channels, these
layered one after the other, with a feedback relationship between some layers
that is used to drive the read/write head. These coded channels implement a
language translation scheme without the need for sub-configurations like memory
units and signal squelches. Indeed, the only identifiable function of the standard
architecture represented in this configuration is the supervisor. The ability of this
automaton to perform any operation is therefore tied to the prior construction
of recognisers that translate associated instruction, as represented in the form
of signal.

The process of partial construction is that the mother configuration replicates
the tape, and constructs a small but critical portion of the daughter configura-
tion, which is then started. At this point, the mother retracts from the daughter,
and the daughter is left to complete its own development. The daughter then
reads its tape, following the instructions to complete construction of its configu-
ration. The configuration arm must have access to all the functional components
of the configuration, that they may be extended by new configuration. Further,
all configuration must remain functional, even as new configuration is added.
The configuration has but one construction arm, it alone adding configuration
to the self-replicator; no csc is employed.

The vNSRCA mentioned in Mange has the interesting property that at no
point within its configuration do signals actually cross; nowhere may be found
an intersection between signal paths. Rather, signal paths diverge and converge,
only. This configuration demonstrates that one may construct self-replicators
without need for the crossing of signal within vNCA.

We assert that partial construction offers a rudimentary computational model
of epigenetic developmental processes within self-replicating automata, and by
extension, a mechanism for ontogeny within artificial life, and machines.
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9 Results

We have reviewed the nature of signals and their crossing within von Neumann
and Nobili cellular automata, derived and characterised specific signal cross-
ing configurations, and applied these solutions to four self-replicators. We have
demonstrated that pulse signal is sufficient to self-replication, and that packet
signal can be serviced without crossing in self-replicators. We have given the
smallest possible pulse signal crosser for vNCA, and given self-replicators that
are markedly smaller than the design contemplated by von Neumann. We have
included in the discussion relevant historical context of past efforts at solving the
signal crossing problem. We have also reviewed the nature of configuration con-
structibility, and effective means of construction, including a conjecture respect-
ing self-replication within vNCA without use of a taped description. Finally, we
have presented the variation of self-replication by means of partial construction.

10 Comments

The historical content of our exposition is necessitated by our purpose, which
is not directly the presentation of self-replicators. The ancillary provision of
measurements of concrete example self-replicators, however served by this paper,
is also not our purpose. Rather, our purpose is the comparison of signal crossing
mechanisms as they affect the character of self-replicators, for both NCA and
vNCA. The importance of historical context centers upon the performance of
these solutions as applied within self-replicators, versus the justification of period
researchers for ending their efforts to construct and demonstrate a vNCA self-
replicator. Published literature records that perfect signal crossing was judged
by period researchers as necessary. Specifically, Burks [4] offers,

“ The von Neumann Memory Control required a real-time crossing
organ (arrangement of parts) in order to implement the self-replicating
encoded message repeatedly.”

Other fine examples are seen in the work of Lee [7, 8]. Instead, we have shown
that one may efficiently implement a vNCA self-replicator, serving either pulse
or packet signal, without need for perfect crossing. Indeed, and though we have
not room here to present the result, a self-replicating vNCA configuration exists
for which signal crossing is not required, even as it serves packet signal; Mange,
et al. [9] mention this partial constructor.

Reiterating the importance of partial construction, we extend to readers the
challenge given reviewers, a challenge which remains unsatisfied. Can the reader
identify any self-replicating cellular automaton for which any ten cells of the
initial configuration of said self-replicating cellular automaton (exclusive of any
external tape description) may be changed from their non-ground state, into the
ground state, such that the configuration retains the ability to self-replicate? We
claim that only one such human artifact exists; our partial constructor.
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Reviewers have suggested that referential use of private correspondence is
not helpful to discourse such as that presented herein. We argue for the contrary
case, and suggest that such correspondence acts to convert what may seem to
be opinion or speculation into corroborated fact. Further, that such reference
is to one yet living certainly implies the third party verifiability of supported
statements; e.g. both Arthur W. Burks and Renato Nobili are easily contacted
by email, and their email addresses are publicly displayed upon the internet.
Those who question the factualness of our statements regarding correspondence
with others are invited to do their own research.

We have mentioned that the Pesavento [15] design is not a self-replicator,
and attribute this to a failure to construct one specific cell of its configuration.
Nor will the Pesavento [15] design return to its initial condition, suitable to
restarting; it is a one-time constructor at best. To this we should like to add
that neither is the Pesavento [15] design an answer to the signal crossing prob-
lem of von Neumann, even if it did properly self-replicate. The NCA work of
Pesavento [15] is an analog of the von Neumann problem, not a solution, and its
acceptance as the latter by the scientific, and particularly the alife, community
is an insult to von Neumann, and to those who value truth. That this fictional
status continues to grace the Pesavento [15] design, especially by consequence
of editorial inaction on the part of the corresponding journal, is unconscionable.
This is our unequivocal opinion.

Readers may obtain full images of the four self-replicators presented in this
paper in PDF form by download from the world wide web, at the URL http:

//uncomp.uwe.ac.uk/automata2008/buckley/buckley.pdf
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The four holistic self-replicators discussed in this paper are available for
demonstration by direct request of the author.
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Abstract. A massively parallel processor array which combines image
sensing and processing is utilized for the implementation of a simple
cellular automata (CA). This CA is essential part of an image processing
task supporting object detection in real-time for an autonomous robot
system. Experiments are presented, which demonstrate that objects will
be detected only if they move below a specific velocity in the visual scene.
Based on these experiments we will discuss the role of configurations
changes if a CA is seen as a parallel processing computer. This leads us
to the conclusion that if CA are performing non-static data processing
tasks they might be better approached as sensor-driven parameterized
dynamical system rather than as parallel computers operating on initial
configurations only.

1 Motivation

Recent progress in chip design provides massively parallel processor arrays where
each processor is linked to its neighbor processors. Such systems are ideally suited
to perform low-level pixel-parallel image processing tasks. The SCAMP (SIMD
Current-mode Analogue Matrix Processor ) vision chip is one example of such a
parallel processor array that integrates image sensing and processing on a single
silicon die providing low-cost, low-power and high-performance vision system for
autonomous robot systems [5].

Unfortunately, the majority of current low-level pixel-based image processing
approaches are focused on 2-dimensional convolution operators and the analysis
of static features in static images. However, image processing in autonomous
robots is rather confronted with permanently changing signals and noise.

On the other hand, architecture and data processing of the SCAMP vision
system are able to instantiate 2-D cellular automata (CA). It is well known that
CA provide a rich reservoir of dynamical properties and behavior on a global
scale [7]. Our assumption is that nonlinear dynamical properties generated by CA
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are a promising substrate for the processing of complex and changing image data
for autonomous robot systems. However, methods and frameworks are missing
which allow a targeted design of CA supporting specific processing tasks on
image data. The following investigation is a first step towards CA-based processes
with high update rates (100 kHz) performing image processing in real-time in
embodied autonomous robot systems.

This contribution summarizes first simple experiments that demonstrate how
a CA can support image processing for a robot platform in a changing environ-
ment (including an active vision system and a manipulator). In particular we will
present an image processing task performed on different time scales. Based on
this example we will discuss the utilization of CA as data processing devices. This
discussion emphasizes the importance of changes in CA configurations during the
evolution of the system (here caused by visual input data). This view might be
contrary to traditional approaches, where CA are seen as discrete dynamical
system working as a parallel processing computer, “where data is considered
to be the initial CA configuration” [7]. Our hypothesis is that an application
of CA for “non-static” / robotic related image processing has to consider CA
as sensor-driven parameterized dynamical systems [6]. In consequence, the data
the system is operating on are the parameter values of the CA and their changes
over time caused by the visual input.

2 The SCAMP vision system

The SCAMP vision chip is a sensor/processor device, including a 128x128 array
of processor cells, arranged in a 4-connected neighborhood. Each processor also
integrates image sensor, for pixel-parallel image input. The processors operate
in a single-instruction multiple-data (SIMD) mode, i.e. all processors execute
the same instruction, issued by a central controller. The instruction set includes
arithmetic operations and neighbor transfers, which allows implementation of a
variety of pixel-parallel local computations, characteristic of early vision appli-
cations. SCAMP executes instructions at 1MHz rate, so that even fairly complex
operations can be easily implemented at video frame rates.

The general-purpose, software-programmable nature of the device enables the
execution of a variety of algorithms. In particular, CA can be easily implemented,
by writing simple programs to execute state update rules. The neighborhood
needs not be restricted to 4-connectivity, as data can be easily passed between
processors in several steps over larger distances.

The processors in the SCAMP chip operate on analogue data values, i.e. un-
like a conventional digital processor it natively operates on real-valued numbers,
albeit with a limited signal/noise performance and constrained dynamic range.
The out-of-range operation results in a soft saturation (sigmoid function), which
can be exploited to implement nonlinearities in the system [2]. Logic operations,
and discrete state-space CA can be implemented using thresholds (comparison
operations), however the native mode of operation of the chip is continuous-
value.
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Fig. 1. Robotic arm and manipulator system mounted on a table and the active
vision system, scanning the scenario with two cameras and a SCAMP vision
system.

3 The use of SCAMP in a robotic setup

The robotic scenario in which SCAMP is used consists of an active vision system
and a robot manipulator with 7 degrees of freedom (DOF). As one can see in
Fig. 1, the robot manipulator is mounted on a table. Sensory input driving
reaching and grasping is delivered from the active-vision system scanning the
table. Apart from SCAMP two additional cameras deliver visual inputs that can
drive the pan, tilt and verge motors of the active vision system. In the following
we present experiments where only SCAMP is used for visual input and the
pan-tilt-verge configuration is fixed. In other words the SCAMP camera doesn’t
move while scanning the table.

Confronted with such a robot system the first step is the implementation of
control systems performing goal-directed and robust gaze and reaching behav-
ior. However, for autonomous robots it is important that the system itself, i.e.
without human interaction, is able to trigger action sequences for reaching or
gazing. In consequence, the system needs to measure not only where an object
is located on the table but also whether or not it is moving, and if so, does it
move slow enough in order to reach it with its manipulator.

Due to the physical reality of our robot hardware, a simple pan-tilt-system,
obviously, can operate in a much faster way than an 7 DOF robot arm. Successful
reach movements can only be performed with object much slower than it is
necessary for a visual based object tracking with our pan-tilt system. Therefore,
we have implemented a process that detects objects in real-time depending on
the speed the objects move in the visual field. If an object is faster it becomes
invisible to the system. If an object emerges in the visual field then it is implicitly
given that it doesn’t move at all or at least slow enough to reach for it. The
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(a) (b) (c)

Fig. 2. Resulting processor values staring from an random initial configuration
(a). The grey values representing values around zero. The patterns in (b) emerge
from the inhibitory coupling (w = −0.25), while the pattern in (c) is generated
by the excitatory linking (w = 0.25).

sensitivity to changes in the visual input depends on a single parameter and
therefore the system can easily be adapted to different time scales of the different
actuators in the robot system (here we have a manipulator and a pan-tilt-verge
system). The core application of this image data processing task is provided by
a CA. The CA is instantiated by the SCAMP system, which we will explain in
the following section.

4 Embedding cellular automata into a robotic scenario

The structure of the applied CA is very simple and straightforward to implement
with SCAMP. Each processor Pn receives input from its four direct neighbor
processors Pn,N , Pn,S , Pn,E and Pn,W . Due to the analogue character of SCAMP
operating on currents, we have continuous values for all Pn. As we have already
mentioned, the lower and upper saturation domain resulting from out-of-range
operations match with a sigmoid function f [2]. The system can be formally
written as:

Pn(t + 1) = f (w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) ,

where w < 0 (here w = −0.25). In fact this CA implementation on SCAMP
is continuous-value CA with a nonlinear update rule, or as it is called in the
literature a discrete-time cellular neural network (DT-CNN) [4].

Since the values of the processors can be positive or negative this inhibitory
linking scheme generates an interplay of excitation and inhibition. Without visual
input and random initialization, the processor array evolves to a state where the
value of a processor is very likely the same of its direct and indirect neighbors.
This is represented by large regions and patches colored either black or white,
as shown in Fig. 2(b). These black and withe regions indicate the emergence of
clusters and closed regions containing processors whose values are driven into the
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. . . . . . . . . . . .

Fig. 3. Sequence of CA configuration (time step: 0,. . . , 9, 50, 70 and 90) without
resetting and continuous image data input.

same saturation domain, either in the upper or lower saturation. It is interesting
to see, that the opposite is the case for positive links between the processor (i.e.
w > 0). Such an excitatory coupling generates almost a chess-board pattern,
i.e. each direct neighbor processor is driven into the opposite saturation domain,
Fig. 2(c).

Considering the negative coupling between the processors it seems that the
growing black patches are perfect to indicate salience region within an image.
Therefore, we implemented the CA with negative couplings on SCAMP and
further on, used the visual data provided by SCAMP (128x128 grey value image)
as permanent input for this specific CA. Hence, the CA configuration at time
step (t + 1) is determined by the configuration at time t and the current value
of the corresponding pixel in the image (PIXn(t)):

Pn(t + 1) = f (PIXn(t) + w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) ,

where w = −0.25. In Fig. 3 an example of the resulting sequence of images is
shown. The black circular regions in the image which represent the objects on
the table are growing, even if initially they have very low grey values. This is
the result of adding the current visual input in each time step.

As the sequence in Fig. 3 is indicating, such a setup seems rather inapplica-
ble for non-static image data, i.e. moving objects or a moving camera. After a
number of time steps the whole image is black, because the black regions never
disappear again and the system becomes “blind”. In order to stay sensitive to
new visual stimuli we setup an additional reset mechanism, which resets the CA
configuration every n time steps. The CA configuration before the reset is the
output of our image processing. In this way the image processing is actually
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Fig. 4. Sequence of images representing the visual input PIX and the CA con-
figuration between the resets, done every 6th time step. The six images in each
line represent one period starting with the first state after the reset and ending
with the last state before reset. The first five images in each line represent the
visual input PIX at the first five time steps after reset. The last image repre-
sents the CA configuration before it is reset, i.e. the actual output data of the
process

established by two processes: the inner loop that updates the CA involving the
current visual input of SCAMP, and the outer loop reading the CA configuration
every n steps and resetting the CA configuration. As we will show in the next
section the output stream generated by the outer loop provides the properties
we are aiming for: objects on the table only emerge in the output image, if their
speed in the visual image is below a certain value.

5 Experiments with moving objects

In the following experiments we have reset the system every six time steps (n =
6). In order to give the reader an impression of the relation between output and
visual scene, we have plotted six images between each reset. The first five images
in this sequence represent the visual input data PIX for the first five steps after
each reset. The last image in this line the actual output / result of the process.
It is the CA configuration its reset.

In the first example shown in Fig. 4 we see at the front part of the table a
small object sliding into the scene. The first five images in the first line show this
event. The faster the object moves the more blurred it appears in these images.
Notice, these images represent the visual input data PIX which are fed into
the CA. The last image in this line shows the CA configuration representing
the actual output of this process. One can see, that the new object doesn’t
emerge in this image, despite the fact that it is clearly visible in four out of five
PIX images. Once the object has stopped on the table (second line of images) it
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. . .

Fig. 5. The representation of image data processing as in Fig. 4. See text for
explanation.

emerges in the output image. In other words, only after it has stopped it becomes
visible for the robot system.

Another example of object detection is shown in Fig. 5. There the new object
remains invisible for more than 12 time steps because it is moving to fast for
this configuration.

6 Conclusion

We have shown that a CA can provide image processing for an autonomous
robot system. Objects are only detected by the vision system if they move below a
certain speed. This quality of object detection simplifies the triggering of reaching
actions because if a stimulus emerges then it is guaranteed that it isn’t moving
to fast for the arm system and the robot can directly perform the related action
sequence without any further data processing.

The “insensitivity” to fast moving objects is determined by the frame rate
SCAMP is providing visual input. Within certain boundaries this frame rate is
a free parameter of the SCAMP vision system and therefore, this process can
easily be tuned to different time scales, even online.

The crucial element for detecting slow moving objects only is the continuous
input of new visual data into the CA at each time step. As the image sequences
in Fig. 4 and 5 clearly show occasional and limited appearance of low activities
in the visual data (low grey values) doesn’t immediately drive the output values
into the lower saturation. Only if a low activation in a region of high activations
is continuously measured then the corresponding CA units change and indicate
a object in the visual scene. This mechanism can be seen as accumulation of
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evidence and is frequently discussed for action-selection processes in biological
and artificial systems [3].

However, CA are usually referred to as computational devices that operate
only on initial configurations. The setup here could be seen as a counterpart of
this approach and we believe, our experiments give evidence that it is worth in-
vestigating CA operating with continuously changing inputs. Nevertheless, there
is a fundamental difference between a CA operating on initial configurations only
and a CA driven by permanent changing inputs. With respect to the update rule
describe above we can describe three principal ways CA can operate on image
data. The first possibility is that image data are only used for determining the
initial state of the CA, i.e. each processor Pn is initialized with the value of the
corresponding pixel in the image:

Pn(0) = PIXn(0).

After this initialization the system is updated according to the update rule which
doesn’t involve any image data:

Pn(t + 1) = f (w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) .

In fact we have a dynamical system without free parameter. Hence, its behavior
is determined by its initialization, a single image, only.

Another way of combining visual data and CA uses the image data for the
definition of a constant offset:

On = PIXn(0)

for each unit in the CA. This offset is a parameter that now determines the
update rule as follows:

Pn(t + 1) = f (On + w · (Pn,N (t) + Pn,S(t) + Pn,E(t) + Pn,W (t))) ,

where Pn(0) is arbitrary chosen. In this case we have a parameterized dynamical
system [1]. The system behavior of the CA is determined by the initialization
and the parameter On for each processor.

Comparing these two cases with the original update rule applied for our
robotic experiments:

P (t + 1) = f (PIXn(t) + w · (PN (t) + PS(t) + PE(t) + PW (t))) .

we see that our setup is the only process that can deal with changing image data.
In contrast to the other systems, where there is no way of feeding data changes
into the running process.

To sum up, the here introduced CA is, precisely speaking, an implementa-
tion of a parameterized dynamical system, whose parameters change according
to the image data. This is, what we call a sensor-driven parameterized dynam-
ical system, because parameter changes are driven by the image data which is
the sensory input of an autonomous robot system. Sensor-driven parameterized
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dynamical systems seem to be a promising approach to deal with changing in-
puts, since the two other alternatives of combining CA and image data are only
operating on static data. This observation let us conclude that CA should be ap-
proached as sensor-driven parameterized dynamical systems, if one is interested
in applications and novel computational paradigms for embodied robot systems.

Further on, as we have outlined above our continuous-value CA can also be
seen as discrete-time cellular neural networks. Research on DT-CNN has already
emphasized and exemplified the need of continuous input for visual data pro-
cessing [4]. However, as it is often the case in the domain of complex systems,
the phenomena are well know, but the challenge is to develop related appli-
cations as well as to derive general mechanisms that might lead to alternative
paradigms for information processing. In this paper we have demonstrated that
the SCAMP system is able to create complex dynamics based on CA in real-time.
Therefore, embodied robot systems equipped with a SCAMP vision chip seem
to be an efficient framework for bringing together the complex dynamics of CA
and complex image processing in real-time. In addition, autonomous robot sys-
tems together with the application of self-organized adaptation processes (e.g.
evolutionary algorithms) provide a context where the use of complex dynam-
ics for real-world scenarios can be systematically explored and analyzed. This
approach was demonstrated successfully within an evolutionary robotics frame-
work for small discrete-time dynamical systems (small with respect to the state
space) [6]. We believe SCAMP is a promising tool for scaling up this approach
massively.
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Abstract. Although being very simple to implement cellular automata
(CA) are able to perform complex computations. The understanding of
how they perform these computations is still vague. An efficient approach
is the use of evolutionary algorithms, as the genetic algorithm (GA), to
search for CA able to exhibit a desired computational behavior over
their rule space. One of the most studied computational tasks in this
context is the synchronization task (ST). In a previous work, a heuristic
based on four forecast behavior parameters was incorporated to guide
evolutionary search returning better radius-2 CA rules to solve ST. Here,
we analyze the influence of incorporating a heuristic based only on two of
these parameters into the genetic search. We also investigated a simple
strategy to preserve the diversity of the population formed by radius-2
transition rules. As a result of these investigations nine radius-2 CA rules
that solves ST with a good efficacy were found; all of them are better
than the best one previously published.

1 Introduction

The dynamics of a cellular automaton is associated with its transition rule. In
order to help forecast the CA dynamical behavior, several parameters have been
proposed, directly calculated from their transition table [8, 2, 20, 13]. However,
the decision problem associated with precisely forecasting the dynamic behavior
of a generic cellular automaton, from arbitrary initial configurations, has been
proved to be undecidable [3]). Thus, any set of parameters can only be expected
to help forecast the dynamic behavior of a cellular automaton.

Cellular automata have the potential to act as abstract machines that can
perform arbitrarily complex computations from local operations. Several re-
searchers have been interested in the relationships between the generic dynamic
behavior of a cellular automaton and its computational abilities as part of the
more encompassing theme of the relationships between dynamical systems and
computational theories [18, 19]. Various investigations have been carried out
on the computational power of CA, with concentrated efforts in the study of
one-dimensional CA capable of performing computational tasks [10]. One of the
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approaches in this kind of research is the use of evolutionary methods as search
procedures to find CA with the predefined computational behavior [4, 9, 5, 12].

Here, we show results obtained in a computational task named Synchro-
nization Task, ST for short, which was proposed in [4] and also investigated
in [11, 17, 14]. In this task, the goal is to find a one-dimensional, binary cellular
automaton that, given an arbitrary initial configuration, it has to reach a con-
figuration that cycles through two lattice types: all cells in state 0 in one time
step, and all cells in state 1 in the next time step.

Four forecast parameters have been used before as an auxiliary metric to
guide the GA optimization searching for rules able to perform ST [14]. The best
radius-2 CA rule for this task previously published presented an efficacy bellow
95% [14]. Here, we investigate the use of only two of them: sensitivity [2] and
neighborhood dominance [13]. Nine radius-2 CA rules with efficacy above 95%
were found; the best rules have efficacy around 96.3%.

2 Forecast behavior parameters

Through analysis of the dynamic behaviour exhibited by CA, it becomes clear
they can be grouped into classes. A few rule space classification schemes have
been used in the literature; for instance, Wolfram [18, 19] proposed a qualitative
behaviour classification, which is widely known. Later on, Li and Packard [8]
proposed a refinement to the original Wolfram classification, which divides the
rule space into six classes: Null, Fixed Point, Two-Cycle, Periodic, Complex (or
Edge of Chaos) and Chaotic.

The dynamics of a cellular automaton is associated with its transition rule.
In order to help forecast CA dynamical behavior, several parameters have been
proposed, directly calculated from its transition table [2, 7, 8, 13, 20]. CA rule
spaces with high cardinality make their parameterization a daunting task, which
entails the usage of more than a single parameter in order to achieve a better
characterization [2, 13].

It is not possible to expect the precise forecasting of a generic cellular au-
tomaton, from an arbitrary initial configuration. It has been proved, in [3], that
the decision problem associated with the latter generic proposition is undecid-
able. Hence, all we can expect is really a parameter that can help forecast the
dynamic behavior of a cellular automaton; in particular.

A set of five forecast parameters were selected in [13] and four of them were
applied in the ST experiments reported in [13]. In the evolutionary experiments
described in Section 5, only two parameters from that set were used: sensitivity
and neighbourhood dominance. Informally, they can be described as follows:

Sensitivity : is defined as the number of changes in the outputs of the transition
rule, caused by changing the state of a cell of the neighbourhood, each cell
at a time, over all possible neighbourhoods of the rule being considered [2].

Neighbourhood dominance : quantifies how much change is entailed by the
CA rule transitions, in the state of the centre cell, in respect to the state that
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predominates in the neighbourhood as a whole. The parameter value comes
from a weighed sum of the number of transitions of the CA rule in which
neighbourhood dominance occurs, with the additional feature that, the more
homogeneous the neighbourhood involved, the higher its weight [13].

3 Computational tasks

Cellular automata have the potential to embody models of complex systems,
and to act as abstract machines that perform complex computations with high
degree of efficiency and robustness. Various investigations have been carried out
on the computational power of CA, with concentrated efforts in the study of
one-dimensional CA capable of performing computational tasks [10]. The most
widely studied CA task is the density classification task (DCT) [9]. In this task
the objective is to find a binary one-dimensional cellular automaton that can
classify the density of 1s in the initial configuration of the 1D lattice, such that:
if the initial lattice has more 1s than 0s, the automaton should converge to a
null configuration of 1s, after a transient period; otherwise, it should converge
to a null configuration of 0s.

Fig. 1. Density Classification Task. Rule: 070447470700460705774757F777FF77

Figure 1 presents two space-time diagrams of a CA rule successfully perform-
ing DCT. It is a nontrivial task for a small-radius CA, since they rely only on
local interactions. On the other hand, DCT is trivial for a system with a central
controller or a central storage [10]. Performing this task well for a fixed lattice
size requires more powerful computation than can be performed by a single cell
or any linear combination of cells. Since the 1s can be distributed throughout
the CA lattice, the CA must transfer information over large distances. A kind of
global coordination is required to communicate cells that are separated by large
distances and that cannot communicate directly. However, it has been proved
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that no finite-radius, two-state CA with periodic boundary conditions can per-
form this task perfectly across all lattice sizes [6].

Another computational task previously studied was the synchronization task,
ST for short [4]. In this task, the goal is to find a one-dimensional, binary cellular
automaton which, given an arbitrary initial configuration of a lattice of N cells,
after T time steps, it should reach a configuration that cycles through two lattice
types: all cells in state 0 in one time step, and all cells in state 1 in the next time
step. T is the minimum time required to guarantee synchronization of all cells,
a parameter that depends on the lattice size (N).

Fig. 2. Synchronization task: (a) Radius-3 rule: FEB1C6EAB8E0-
C4DA6484A5AAF410C8A0 (b) Radius-2 rule: EAC38AE8

Figure 2 presents space-time diagrams of two different CA rules solving ST:
the first is a radius-3 CA rule and the second is a radius-2 one. The task is also
nontrivial since a small-radius CA employs only local interactions while syn-
chronous oscillation is a global property. The locality of interaction can directly
lead to regions of local synchrony and it is more difficult to design a CA that
will guarantee that spatially distant regions are in phase [4]. An effective CA
rule must transfer information over large space-time distances. There are several
one-dimensional radius-3 CA rules able to solve ST for any arbitrary lattice con-
figuration [4]. The radius-3 rule used in Figure 2 solves this task with 100% of
efficacy. Considering radius-2 rules, it is known that there are good rules with ef-
ficacy above 90% [14] but the upper bound limit is unknown. Figure 2 shows the
evolution of a radius-2 CA rule which solves ST with around 95% of efficacy [14].

4 Evolving cellular automata rules

Once a computational task is defined, it is not easy to find a cellular automaton
rule that performs it. Manual programming is difficult and costly, and exhaus-
tive search of the rule space becomes impossible, due to its high cardinality. A
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practical alternative has been the use of search and optimisation algorithms,
particularly evolutionary computation methods [1, 4, 5, 11, 12, 14].

Packard [16] was the first to publish results using a genetic algorithm as a
tool to find CA rules with a desirable computational behavior. He considered
one-dimensional CA rules as individuals in a population and defined their fitness
according to their ability to perform the specified task. In this way, the genotype
of the automaton was given by its transition rule, and the phenotype by its
ability to perform the required task. Crossover among two CA was defined by the
creation of two new transition rules, out of segments of two other rules; mutation
was achieved by the random flip of the output bit of one of the transitions of
the rule.

Other evolutionary computation techniques were used to find such kind of
CA rules. Genetic programming was also used as a search procedure for CA rules
to perform the density classification task [1]. Furthermore, for the same task, the
best known radius-3 rule was obtained by a coevolutionary approach [5]. It has
an efficacy of 86% in performing DCT.

Evolutionary methods were also used in the synchronization task. ST was
proposed by Das, Crutchfield, Mitchell and Hanson [4] and it was also investi-
gated in [11, 14, 17]. In the experiments reported in [4] genetic search was used to
look for radius-3 rules able to perform the synchronization task. Several radius-3
rules that perform the task with an efficacy of 100% were obtained. Although
the authors actually found perfect radius-3 rules, they did not obtain success
in CA with radius-2. In the latter space, they only found rules with virtually
0% of efficacy [4]. Later, Oliveira and collaborators [13] had evidenced that a
simple GA as the employed in [4] was able to find radius-2 rules with efficacy
around 80%. Moreover, by introducing a kind of parameter information it be-
came possible to find radius-2 CA rules with more than 90% of efficacy solving
ST.

In previous works, a simple GA environment was modified to incorporate a
heuristic based on some forecast parameters and it was used to find DCT and ST
rules [12, 14]. This approach uses parameter bands where good rules are more
likely to occur. Once this information is available, it is used in an active way, as
an auxiliary metric to guide the processes underlying the GA search.

In [12], four forecast parameters (sensitivity, neighborhood dominance, abso-
lute activity and activity propagation) had been calculated for six radius-3 CA
rules that performs TCD with good efficacy (above 80%) found in literature.
The parameters values were normalized between 0 and 1. It was observed that,
although the published rules were obtained by distinct search methods, the pa-
rameters fits in relatively narrow bands. The information of these bands was
incorporated as an auxiliary metric of the evolutionary search. It was inserted
through a heuristic that returns a value as bigger as closer are the rule parameters
to these bands. The best rule found in 100 executions of this experiment has an
efficacy of 80.4%. In another experiment performed without the incorporation of
the heuristic, the best rule has an efficacy of 76.4%. In [15] the parameter-based
heuristic was better investigated. An analysis of the individual contribution of
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each parameter in the improvement of the evolutionary search was made and it
was evidenced that the parameters sensitivity and neighborhood dominance are
the most important in DCT search.

In [14] a similar method was adapted for the synchronization task using CA
rules with radius-2. A first experiment with a standard GA was executed with-
out the information of the parameters. The best rule found achieves 82.8% of
efficacy. From the analysis of the best rules found in this experiment, desir-
able bands related to the four parameters had been gotten: sensitivity (0.36 to
0.38), neighborhood dominance (0.17 to 0.18), absolute activity (0.69 to 0.72)
and activity propagation (0.36 to 0.41). This information was incorporated and
GA was executed again. More rules with good efficacy had been gotten in the
parameter-guided experiment; the two top rules have efficacy of 94.2% and 93.2%
(measured in 10.000 different lattices of 149 bits), being the first one the best
published radius-2 CA rule for ST as far as we know. The hexadecimal code of
this CA rule is EAC38AE8; a space-time diagram of this rule was presented in
Figure 2.

5 Evolutionary environment

The individual contribution related to each parameter that composes the heuris-
tic used to guide DCT in [12] was better investigated in [15]. One of the main
conclusions is that sensitivity and neighborhood dominance were the most im-
portant parameters involved in this heuristic. Thus, a parameter-guided evolu-
tionary environment was implemented in [15] which allows to use different com-
binations of parameters in this search. The better results were obtained with the
couple of parameters cited before. Also, the results obtained with them in DCT
were better than those obtained with the heuristic composed by four parame-
ters in [12]. This good performance with DCT motivated us to develop a similar
approach to ST search.

The conception of the new environment was strongly based on the GA de-
scribed in [4] and in the parameter-guided evolutionary environment described
in [14]. Each individual of the population represents a radius-2 transition rule
and it is directly represented by a binary sequence of 32 bits. The environment
evolves a population of 100 individuals over 50 generations. At each generation,
each individual evaluation was obtained out of testing the efficacy of the automa-
ton in synchronizing a sample of initial configurations (IC) and in the adequacy
of its parameters to desirable pre-specified ranges. Additionally, elitism was used
at a rate of 20% (that is, the 20 best rules of the population at each genera-
tion were always preserved to the next); the other 80 individuals were obtained
through crossover and mutation. Parent selection for the crossover was made di-
rectly from the elite, without considering individual fitness. Standard one-point
crossover was used at a rate of 80%. Mutation was applied after crossover, in
each new generated individual, at a rate of 2% per bit.

The two-parameter-based heuristic was incorporate in GA environment in
a similar way as done in [14], in which four parameters were used. Basically,
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the parameter-based heuristic is coded as a function (referred to as Hp), which
returns a value between 0 and 100 for each transition rule, depending on the
rule’s parameter values.

Sensitivity Neighborhood Dom-
inance

Sensmin Sensmax Dommin Dommax

Range 1 0.35 0.49 0.15 0.19
Range 2 0.40 0.55 0.15 0.25
Range 3 0.42 0.53 0.17 0.21

Table 1. Desirable Parameter Ranges.

The first way to establish the heuristic is supplying the value ranges of the
parameters in which it would be desirable to obtain the CA rules, for some a
priori knowledge of the problem. Table 1 shows different ranges used in syn-
chronization task experiments considering sensitivity (Sensmin, Sensmax) and
neighborhood dominance (Domimin, Domimax). The ranges of each parameter
in Tab. 1 are interpreted as those with high probability of occurrence of the
desired behavior (that is, the ability to solve ST). In the case of the sensitivity
parameter and considering the first desirable range in the table, for example, it
indicates that there is a high probability of the rule being able to perform the ST
if its sensitivity is between 0.25 and 0.75. Hp component related to sensitivity
depends on its value, according to the following: if the parameter value is within
the interval (Sensmin, Sensmax), the evaluation is 100 (maximum value); oth-
erwise, the value linearly decays. A similar calculus is done for Hp component
related to neighborhood dominance. Finally, Hp value is a single average of the
two components. That is, the two parameters equally contribute to heuristic. Hp
is then used to bias the GA operation, in the following ways:

Selection : the fitness function of a cellular automaton rule is defined by the
weighted average of the original fitness function used in [4] — efficacy in
synchronizing 100 random ICs — and the Hp function. The fitness function
used for selection (F ), is a composition of the two previous functions, the
parameter-based component being weighted by Wh, and expressed as follows:
F = Fo + Wh * Hp
Hence, if Wh =0, the fitness function will be the same as that used in the
original experiment [4].

Crossover : NCROSS different crossovers are made, at random crossover points,
creating twice as much offspring; the two of them with the highest Hp value
are then considered for mutation.

Mutation : NMUT distinct mutations are made to a rule, so that the one with
the highest Hp value is selected for the new population.



Evolving cellular automata for the synchronization task 521

In the parameter guided experiments reported in section 4, it was used
Wh=0.4, NCROSS= 10 and NMUT =10. CA specification was the same as
in [4, 14]:

– Time steps in CA evolution: 320.

– Lattice size: 149 bits.

– Number of initial configurations (IC) used in the population evaluation at
each generation: 100 ICs. As explained in [4], these lattice configurations are
uniformly sorted to improve GA convergence.

– Number of initial configurations (IC) used in the final evaluation at last
generation: 10.000 ICs. These lattice configurations are randomly sorted.
The top 10 rules of the final population are submitted to this evaluation
which is more severe than the other one performed at each generation: the
sample size is 100 times bigger and the randomly generated IC is the worst
case to synchronize. The best one CA rule (out of the 10 rules tested) is
returned as the final result of the GA run.

The environment previously described is very similar to the one implemented
in [14] except to the number of parameters involved in heuristic Hp: two pa-
rameters instead of the four. However, after a series of experiments had been
performed, which will be described in the next section, something was enhanced
when GA dynamics was analyzed: there were a lot of repeated individuals in
the final population. The majority of experiments conducted in evolving cellu-
lar automata rules are strongly based on the environment described by Mitchell,
Hraber, and Crutchfield [9], which was developed to search radius-3 CA for DCT.
In this cited environment there is no extra strategy to preserve the diversity in
the rule population. By our own experience with DCT search and ST search, the
mutation rate is enough to maintain a good diversity in the population when
working with radius-3 rules which are formed by 128 bits. However, in the exper-
iments described in this work the GA manipulates radius-2 CA trying to solve
ST in this rule space. Such kind of rules is formed by 32 bits and apparently the
mutation is not sufficient to maintain a desirable diversity. Thus, we inserted
in our environment a simple strategy to avoid repeated individuals described as
follows. When a new solution is created, through the application of crossover and
mutation operators, before its insertion in the current population it is checked if
an individual identical to this one already exists. If so, the new individual (the
copy) is inserted with an evaluation equal to -1. It makes any individual that is
not a copy of some other one better than any copy. Even if a copy survives to the
next population, it has few chances to be selected, since the selection method
is very elitist and uses only the 20% best individuals to form crossover pairs.
Therefore, the chances of crossovers with different parents increase a lot. With-
out this strategy, we observe that several crossovers were made with identical
individuals resulting in identical offspring.
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6 Results

6.1 Experiments

The initial experiments were performed with an environment in which no strat-
egy to preserve diversity was implemented. Different desirable parameter ranges
were evaluated as heuristic Hp. Table 1 presents three parameter ranges related
to the experiments described in this section. These ranges were defined analyzing
the best rules obtained in our own experiments.

NDS-R1 NDS-R2 NDS-R3
1stRule 95.9% 96.2% 95.8%

2ndRule 95.7% 95.1% 95.2%

3th Rule 94.3% 94.5% 80.1%
4h Rule 93.5% 91.8% 75.3%
5th Rule 93.2% 87.5% 75.2%
#Rules>80%15 6 3

Table 2. No diversity strategy environment: efficacy of the five best rules ob-
tained in each experiment (measured in 104 initial lattices).

Each experiment was composed by 50 GA runs with the specification pre-
sented in last section. Table 2 presents the five best rules obtained in each ex-
periment reported here. The name of the experiment is related to the range (1,
2 or 3) used and to the environment employed (in the case of Tab. 2, all experi-
ments used no strategy to preserve the diversity). For example, the first column
presents the five best rules found in the experiment performed using the envi-
ronment with no diversity strategy and the range 1 to guide the genetic search
(NDS-R1). The table also presents the number of good rules (here considered as
efficacy above 80%) found in each experiment, out of the 50 GA runs.

All the experiments in Tab. 2 were able to obtain at least two rules with
efficacy above 95%, which are better than the best one published in [14]. In fact,
later we discover that the second best rule obtained in NDS-R2 was exactly the
same rule as the one reported in [14] with an efficacy of 94.2%: EAC38AE8.
A comparison between all the rules obtained in the experiments with efficacy
above 95% is given in the end of this section. The best rule obtained in NDS-R2
experiment was the unique to go beyond the limit of 96%. Considering the three
experiments reported in Tab. 2, it was possible to find 6 rules with an efficacy
above 95%, being that the best result previously published for radius-2 rules was
94.2%.

The final experiments were performed using the environment with the strat-
egy to preserve the diversity incorporated on it. The experiments were repeated
in this new environment using the ranges in Tab. 1.
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DS-R1 DS-R2 DS-R3
1stRule 95.8% 96.1% 96.2%

2ndRule 95.7% 95.3% 95.7%

3th Rule 95.6% 88,2% 95.6%
4h Rule 95.4% 87,9% 95.5%

5th Rule 95.3% 87,7% 94.9%
#Rules>80%37 14 16

Table 3. Diversity strategy environment: efficacy of the five best rules obtained
in each experiment (measured in 104 initial lattices).

Table 6.1 presents the five best rules obtained in each experiment reported
here. For example, the first column presents the five best rules found in the exper-
iment performed using the environment with the strategy to preserve diversity
and the range 1 in Tab. 1 to guide the genetic search.

In general, the number of good rules (efficacy above 80%) obtained in each
experiment have increased with the inclusion of the diversity strategy. The num-
ber of rules found with efficacy above 95% also increased and it was possible to
find two rules with efficacy above 96%.

6.2 Comparing the best rules

Table 6.1 presents the hexadecimal code of the radius-2 CA rules found with
efficacy above 95%. The table also presents the name of the experiment in which
it was obtained. It is possible to see that some rules have been found in different
experiments. For example, rule BD9EB000 was found in 3 experiments: NDS-
FX1, DS-FX1 and DS-FX3. Rule EAC38AE8 was obtained in NDS-FX2 but as
mentioned before it is exactly the same rule found in [14].

The actual evaluation of any CA rule performing an specific task considering
a lattice of Ncells is given by the number of successes of this rule in all the
2N possible configurations of this lattice. Historically, ST and DCT have been
studied in lattices of size 149; it is impracticable to evaluate any rule in 2149

initial configurations. Therefore, it is common to use a bigger sample to have
an estimate next to the actual evaluation, when comparing the performance of
different rules for a task. Table 6.2 presents the evaluation of the best rules
found in the experiments described in last section using a sample of 100.000
randomly generated lattices of 149 cells. This estimate is, therefore, more realistic
than the estimate done to the end of each execution in which all of the rules
have returned an efficacy above 95% in the respective experiments. Considering
all the experiments described in this work performed using the heuristic based
on sensitivity and neighborhood dominance heuristic, it was possible to find
nine rules that overcome the best previously published rule (EAC38AE8), which
presented in this more severe test an efficacy next to 95%. Five of them have an
efficacy next to 95.5% and the best four have an efficacy next to 96%.
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Rule Experiment Efficacy in 105

FD9E9042 NDS-FX2 96.3%
BDF68640 DS-FX3 96.3%
EA839AE8 DS-FX2 96.2%
AAE80AC0NDS-FX1 95.8%
BD9EB000 NDS-FX1 DS-FX1 DS-FX3 95.6%
E8AFBCA8DS-FX3 95.6%
BD9EB040 DS-FX1 95.5%
FFF28642 DS-FX1 95.5%
FD9EB002 DS-FX3 DS-FX3 95.5%
EAC38AE8Oliveira et al. [14], NDS-FX2 95.1%

Table 4. Efficacy of the best rules found (measured in 105 initial lattices).

7 Final remarks

It was possible to find three rules with efficacy above 96%. The hexadecimal
codes of the two best radius-2 rule evolved in our experiments are FD9E9042
and BDF68640. Both rules have an efficacy around 96.3%, measured in a sample
of 105 lattices of 149 cells. As far as we know, they are the best radius-2 rules pub-
lished to solve ST, using standard CA (synchronous update, periodic boundary
conditions and deterministic rules). The insertion of the heuristic based on only
two forecast parameters improved the performance of the evolutionary search.
In [14], two more parameters had been used: absolute activity and activity prop-
agation. One of the advantages on working with a lesser number of parameters is
that it is easier to conduct experiments trying to refine the desirable bands, since
there are a lesser number of variables to be adjusted. The incorporation of the
strategy to preserve the population diversity also revealed efficient, increasing the
number of good rules found in each experiment. Using this simple mechanism, it
was possible to get more two rules with efficacy above 96% and several rules with
efficacy above 95%. As future work, we intend to investigate the application of
the four parameters in different combinations (individual, two by two and three
by three). For this moment, we can advance that in experiments individually
using sensitivity and neighborhood dominance, the improvement obtained with
the incorporation of the heuristic is less significant than the observed with the
both parameters.
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Abstract. We describe the results our development of a two dimensional
CA highway traffic model capable of realistically simulating: a multi-lane
highway with multiple entry and exit ramps situated at various locations,
vehicle following, speed increment up to maximum speed, selectable on a
per vehicle basis, lane change to pass or to go back to the right-most lane
as it may be required by road rules in some jurisdictions, slowing down
or stopping to avoid obstacles. In this paper we describe the model and
hwCA.exe, the traffic simulator software packages in which the model
has been implemented.

1 Introduction

Unidirectional single-lane traffic, with no intersections and no entry or exit
ramps, is probably the simplest scenario of highway traffic that one can model.
This is easily described by means of a one-dimensional CA with periodic bound-
ary conditions. Rule 184 is the simplest one-dimensional CA model of this high-
way traffic scenario, Fig. 1: every particle, representing a vehicle, at every time
step, moves one cell forward provided that next cell does not contain any other
particle, see for instance [1] and [2]. If we assume that each cell may contain
either a “1” or a “0” and that each “1” represent the presence of a vehicle and
each “0” the absence of a vehicle, we can visualize vehicles moving forward at a
constant speed in the absence of vehicles ahead of them, or otherwise stopping.
According to Rule 184, at each time step, each vehicle tries to drive at a speed of
1 cell per time step, unless it is prevented from doing so by a vehicle immediately
ahead of it, in which case the vehicle stops in order to avoid a collision.

The Truth Table of Rule 184 is shown in Tab. 1, where the first row shows all
possible values at time t for three adjacent cells (ci−1 , ci , ci+1) and the second
row shows the next state for the centre cell, at time t+1. Cells ci−1 and ci+1 are
the neighborhood of cell ci . Nothing can be said about cells ci−1 and ci+1 at
time t+1 unless their entire neighborhood is known.
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Fig. 1. Unidirectional single-lane traffic, with no intersections and no entry or
exit ramps, i.e. Rule 184 with periodic boundary conditions.

Rule 184 is a rather simple traffic predictor, but it allows visualizing some
of the well known patterns of real highway traffic, i.e.: platoons of moving cars
separated by stretches of open road when traffic is light, and “traffic waves” mov-
ing upstream, that is in opposite direction to the movement of the vehicles, i.e.,
waves of stop-and-go traffic, when traffic is heavy. However, Rule 184 is of lim-
ited, if any, practical usefulness for traffic engineers and traffic managers when
they try to realistically model traffic flow. Various authors have developed more
complex CA models to more accurately simulate real traffic. See page 7 of [3]
for a list of well established models and subsequent pages for a description of
some of them. In 1992, Nagel and Schreckenberg proposed a stochastic traffic
CA able to reproduce several characteristics of real-life traffic flows, [4]. Their
model probably established CA as a valid method of modeling highway traffic
flow. A large number of models followed, studying more realistic topologies, e.g.
multilane expressways, intersections (e.g., [5] and [6] ), urban areas (e.g., [5], [7],
[8], [9], and [10]), etc.

We have developed a two-dimensional CA highway traffic model capable of re-
alistically simulating: a multi-lane highway with multiple entry and exit ramps
situated at various locations, vehicle following, speed increment up to maximum
speed selectable on a per vehicle basis, lane change to pass or to go back to the

Table 1. Truth Table of Rule 184.

Time t Current Pattern 111 110 101 100 011 010 001 000
Time t+1 Next state for centre cell 1 0 1 1 1 0 0 0
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right-most lane as it may be required by road rules in some jurisdictions, slowing
down or stopping to avoid obstacles. While our model is rather more complex
than Rule 184, it can be obtained by relaxation and extension of Rule 184. In
this paper we describe the model and hwCA.exe, the traffic simulator software
packages in which the model has been implemented.

2 The model

We plan on using this model for practical traffic engineering applications, to es-
timate “travel time” between two access ramps, an entry ramp and an exit ramp,
at different locations along the highway, once certain highway traffic parameters
are known at certain points of the highway. Our concern is primarily with effects
of flow and congestion on “travel time” through a long highway . We are inter-
ested in simulating simultaneously effects of phenomena studied individually by
others (e.g., platoons of moving cars separated by stretches of open road when
traffic is light, and “traffic waves” moving upstream, that is in opposite direction
to the movement of the vehicles, when traffic is heavy, very small number of
drivers exhibiting erratic behaviour and their effect on flow and congestion, etc).
The difference between our work and published research previously conducted
by others is that we model much longer highways, e.g. at least 500 km, and a
much higher number of vehicles, e.g. realistic traffic conditions over several days.

We can have any number of lanes, but the most typical configurations are
between 2 and 5 lanes. We are expected to be able to customize the model with
the actual length of a real highway and with the actual number and location of
entry ramps and exit ramps, modeling also their relative location. For instance,
in Canadian highways an exit ramp is often before an overpass bridge, while the
corresponding entry ramp is after such bridge. Our model is able to represent this
and to show the distance between the two ramps. This is achieved by converting
all distances into cell distances. Any cell or group of cells on the rightmost lane
can be defined as an entry or an exit ramp.

Vehicles are generated at each entry ramp according to a probability prede-
fined for that entry ramp. Each vehicle is instantiated with some properties, i.e.,
its vehicle type (i.e. car, bus, truck, truck with trailer, etc), its current speed (a
variable updated at each time step to reflect driving conditions), its maximum
allowable speed (constant through the trip, dependent on vehicle type but also
on the type of driver, i.e. prudent, law abiding, careless driver, etc.), its entry
ramp and its destination ramp (both constant through the trip), its time of entry
(constant after the trip is started), its time of exit (measured at the end of the
trip and used to measure various model performance indicators), its current cell
and its current lane (dynamically updated at each time step). Moreover, there
are some variables that are updated at each time step and help the vehicle to
autonomously move through the highway, changing lane, passing other vehicles
either on the left or on the right, as it may apply, accelerating, slowing down and
braking if necessary. All these variables are measured in number of cells. They
are: a velocity dependent safe distance, a look-ahead measure, a look back mea-
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sure, and closest obstacle location. At every time step, the vehicle assesses the
situation on the current lane, straight ahead, and immediately adjacent left lane,
if existing, and the immediately adjacent right lane, if existing, both forward and
backward. Once this information is obtained, the vehicle will act accordingly. A
number of aggregate variables are calculated and stored for off line processing.

Fig. 2. Simplified flow-chart of the algorithm used to implement the model.

A simplified flow-chart of the algorithm used to implement the model is
shown in Fig. 2. The initialisation phase sets up the data structure used to store
the highway. Vehicles are actually generated and instantiated during the sim-
ulation loop. Information about the location of each vehicle is stored twice in
the model: in the highway data structure and in each vehicle object. The reason
for this duplication is that the information stored in the highway data struc-
ture is global in scope, that is, accessible to all vehicles and is used by each
vehicle to check the status of a possible destination cell, defined as a boolean
variable either“EMPTY” or “NOT-EMPTY”, to avoid accidents (see Fig. 3 for
an example of subset of the highway). The highway contains information about
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Fig. 3. Subset of the highway data structure showing a “1" where a vehicle is
present and an empty space (a zero in the corresponding memory location) where
no vehicle is present.

vehicles without knowing to which vehicle this information applies. Subsets of
this “anonymized” aggregate information will be used in the future of our work
to derive “travel time” information suitable for traffic engineers and traffic man-
agers.

2.1 Neighbourhood

While traditionally we look at CA neighbourhoods of the von Neumann type
(i.e., the four cells orthogonally surrounding a central cell on a two-dimensional
square lattice) or of the Moore type (i.e., the eight cells surrounding a central cell
on a two-dimensional square lattice), in our model we look at a vehicle position
dependent neighbourhood like the one of Fig. 4.

Fig. 4. Example of 5 lanes highway. The vehicle being considered is located at
cell ci on Lane 2. Its neighbourhood consists of two parts: the forward tilted
lines show “Forward Neighbourhood”(consisting of cells ci+1, ci+2, ci+3, ci+4,
and ci+5 on lanes 1, 2, and 3), while backward tilted lines show “Backward
Neighbourhood” (consisting of cells ci, ci−1, ci−2, and ci−3 on lanes 1 and 3).

If the vehicle under consideration is shown with a “V” on “Lane 2”, we distin-
guish a “Forward Neighbourhood” consisting of cells ci+1, ci+2, ci+3, ci+4, and
ci+5 on lanes 1, 2, and 3 (forward tilted lines in Fig. 4), and a “Backward Neigh-
bourhood”, consisting of cells ci, ci−1, ci−2, and ci−3 on lanes 1 and 3 (backward
tilted lines in Fig. 4). The exact number of cells making up a neighbourhood
depends on the experiment being conducted. We define two parameters, LookA-
head and LookBack, both measured in number of cell, to delimit the two subsets
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of the neighbourhood. The way the two parameters are set depends on the exper-
iment being conducted. We have run experiments where all drivers are assumed
to be prudent and used for both parameters the maximum allowable number of
cells that can be covered in one time step, i.e. the maximum speed. We have
run experiments where LookBack is equal to the maximum allowable number of
cells that can be covered in one time step and LookAhead is a constant, speed
independent, smaller number. We have also run experiments where LookBack
is equal to the maximum allowable number of cells that can be covered in one
time step and LookAhead is a smaller number dependent on the speed of the
vehicle under consideration. The selection of the most realistic scenario is work
currently in progress for which we are seeking feedback from traffic engineers.
Examination of this neighbourhood, at each time step, results in each vehicle set-
ting five boolean variables (i.e. FrontRight, FrontStraight, FrontLeft, BackRight,
and BackLeft) to be used for decision making purposes for highway navigation
at that time step.

Fig. 5. Example of 3 lanes highway. The vehicle being considered is located at
cell ci on Lane 1. Its neighbourhood consists of two parts: the forward tilted lines
show “Forward Neighbourhood”(consisting of cells ci+1, ci+2, ci+3, ci+4, and ci+5

on lane 0, 1, and 2), while backward tilted lines show “Backward Neighbourhood”
(consisting of cells ci, ci−1, ci−2, and ci−3 on lanes 0 and 2). From the neigh-
bourhood point of view this scenario is equal to the one of a 5 lanes highway,
Fig. 4.

The scenario of a 3 lanes highway is shown in Fig. 5. From the neighbourhood
point of view this scenario is equal to the one of a 5 lanes highway, Fig. 4. However
the situation is completely different in the case of a 1 lane highway, Fig. 6,
where the “Backward Neighbourhood” is completely missing and the “Forward
Neighbourhood” is limited to cells ci+1, ci+2, ci+3, ci+4, and ci+5 on lane 0. In
this situation, only accelerating, decelerating, and braking are possible and the
operation of the model is not too different from Rule 184, the only difference
being that speeds other than 1 cell per time step are possible.The scenario of
a 2 lanes highway is shown Fig. 7, where the vehicle is shown in the leftmost
lane. In this case the neighbourhood consists of two parts: the forward tilted lines
show “Forward Neighbourhood”(consisting of cells ci+1, ci+2, ci+3, ci+4, and ci+5

on lanes 0 and 1), while backward tilted lines show “Backward Neighbourhood”
(consisting of cells ci, ci−1, ci−2, and ci−3 on lane 0). Similarly in Fig. 8 we can
see the case of a 2 lanes highway where the vehicle is shown in the rightmost
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Fig. 6. Example of 1 lane highway. The vehicle being considered is located at
cell ci on Lane 0. Its neighbourhood consists the forward tilted lines, cells ci+1,
ci+2, ci+3, ci+4, and ci+5 on lane 0.

Fig. 7. Example of 2 lanes highway. The vehicle being considered is located at
cell ci on Lane 1. Its neighbourhood consists of two parts: the forward tilted lines
show “Forward Neighbourhood”(consisting of cells ci+1, ci+2, ci+3, ci+4, and ci+5

on lanes 0 and 1), while backward tilted lines show “Backward Neighbourhood”
(consisting of cells ci, ci−1, ci−2, and ci−3 on lane 0).

lane. In this case the neighbourhood consists of two parts: the forward tilted lines
show “Forward Neighbourhood”(consisting of cells ci+1, ci+2, ci+3, ci+4, and ci+5

on lanes 0 and 1), while backward tilted lines show “Backward Neighbourhood”
(consisting of cells ci, ci−1, ci−2, and ci−3 on lane 1).

2.2 Cell size and time step duration

To use this model for practical traffic engineering applications, we must assign a
realistic length value, in metres, to each cell and a realistic time value, in seconds,
to each time step of our simulation. Perusing the literature, it is possible to find
that the most common length chosen for a cell is 7.5 m, see for instance [3], [4],
[12]. This has been chosen because it corresponds to the space occupied by the
typical car plus the distance to the preceding car in a situation of dense traffic
jam. The traffic jam density is given by 1000/7.5m approximately equal to 133
vehicles/km, a figure deemed realistic by traffic engineers. We agree with the cell
size of 7.5 m. This size allows us to model also busses, trucks, and trucks with
trailers, just by assigning to them more than one cell. Thus, given the length of
the highway in km, we take the integer part of (km x 1000.0/7.5) to determine
the length of the highway in cells. After careful consideration, we have decided
to assign the value of 3 seconds to each time step. Thus, the minimum speed
of a vehicle advancing by one cell at each time step is equivalent to 9 km/h
(that is, 7.5 × 3600/3 = 7.5 × 1200 = 9000 m/h). This allows representing
most realistic and legal speeds observed in Canadian highways, with a vehicle
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Fig. 8. Example of 2 lanes highway. The vehicle being considered is located at
cell ci on Lane 0. Its neighbourhood consists of two parts: the forward tilted lines
show “Forward Neighbourhood”(consisting of cells ci+1, ci+2, ci+3, ci+4, and ci+5

on lanes 0 and 1), while backward tilted lines show “Backward Neighbourhood”
(consisting of cells ci, ci−1, ci−2, and ci−3 on lane 1).

advancing by a maximum of 11 cells per time step, that is, 99 km/h, as the
speed limit is at 100 km/h. Nothing prevents modeling the presence of a few
cars violating this speed limit. Lower number of seconds per time step would not
allow sufficient granularity for our purposes. If higher resolution of the velocity
is required, it would always be possible to assume that each digital time step is
equivalent to a larger number of seconds. Other authors have preferred to choose
a different cell size and different time steps duration for various reasons related
to the experiments that they needed to conduct. For instance, Hafstein et al.,
[11], have chosen a cell size of m 1.5 and a time step of 1 second, with a speed
resolution of 5.4 km/h. In their model a passenger car occupies between 2 and
5 contiguous cells, depending on the type of car and a truck occupies always 5
continuous cells.

3 The software

We called our software program hwCA.exe, for HighWayCA. The presence of
“exe” in the name hwCA.exe is due to the fact that the early stages of design,
coding, and testing have been carried on under Microsoft Windows XP. We de-
signed it using object-oriented design methodology and coded it using the C++
programming language, using only features of the language that are compati-
ble with the ISO/IEC JTC1/SC22/WG21 standard, to insure portability across
various operating systems.

3.1 Private member variables of “Class Vehicle”

In what follows we show some of the private member variables of Class Vehicle.
The static counters are global to the class (i.e., they belong to the class not to the
object) and are incremented, as and if applicable, whenever an object constructor
is executed and decremented, as and if applicable, whenever an object destructor
is executed.
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class Vehicle

{

private:

static long unsigned int VehicleCount;

static long unsigned int CarCount;

static long unsigned int BusCount;

static long unsigned int TruckCount;

static long unsigned int LongTruckCount;

VehicleType Type;

speed CurrentSpeed;

speed MaxSpeed;

cell EntryRamp;

cell DestinationRamp;

time TimeOfEntry;

time TimeOfExit;

cell CurrentCell;

cell SafeDistance;

cell Obstacle;

cell LookAhead;

cell LookBack;

lane CurrentLane;

bool FreeFlags[5];

};

3.2 Data types

We defined an enumerated custom data type called VehicleType, as follows:

enum VehicleType {CAR, BUS, TRUCK, LONGTRUCK};

It is used to define all possible types of vehicles known by the model. Different
vehicle types result in different occupancy numbers, i.e., different number of cells
occupied by each vehicle. The car is the only type of vehicle that occupies only
one cell. For the purpose of evolution of the CA, the neighbourhood of each
vehicle is defined always in relations to the back of the vehicle and the extra
length is absorbed within the dimensions of the variable SafeDistance, which for
all vehicles longer than one cell will always be represented by a bigger number
than for vehicle occupying only one cell. At this stage, other vehicle types can
be added only by modifying the definition of a number of switch statements,
and recompiling the source code. We plan on allowing this modification from
configuration file, at run time, for future versions of this program.

We have defined four custom data types as follows:

typedef long unsigned int cell;

typedef long unsigned int speed;
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typedef long unsigned int time;

typedef short unsigned int lane;

//

// where

//

//#define ULONG_MAX 0xffffffffUL

//#define USHRT_MAX 0xffff

The reasons for defining these data types is to improve source code read-
ability among project collaborators and to allow changing the actual “machine”
data type in the future. Types “cell”, “speed”, and “time” allow specifying up
to 4,294,967,295 items, well beyond our needs and expectations. For instance,
given a cell size of 7.5 m, the maximum length highway that can be represented
with this data type is long 32 million km and the maximum simulation time is
3.5 million hours. “Speed” is represented with this data type only because it is
expressed in cells per time step and, thus, it must have the same data type as
cells. Clearly, these dimensions are excessive. However, as we have considered
using a much smaller cell size (e.g., 1.5 m) to capture the dynamics of such
phenomena as abrupt braking, we felt that we should allow for the maximum
possible dimensions. We plan on changing the definition of these custom data
types to optimize the use of computing resources.

3.3 The navigation algorithm

The main simulation loop for each vehicle is equivalent to the following source
code, that is, at each time step, the time is compared with the maximum duration
of the simulation.

for(TimeStep = 0; TimeStep < CYCLES; TimeStep++)

{

DisplayHighway(TimeStep);

if(V.GetCurrentCell() < V.GetDestinationRamp())

V.Run(TimeStep);

}

(Pseudo-code showing the action taken at each time step for each object of type “Ve-
hicle”)

If the last cycle has been reached, the simulation is halted. If the program is
running in “display mode”, the utility to display the highway is updated. This is
possible only for short highways or for segments of the highway. Under normal
execution, the results of each time step are stored on disk, for the entire highway.
Information about the current cell where each vehicle is located is retrieved. If
this current cell is not yet close to the destination ramp, the navigation algorithm
is run. If the destination ramp is within short distance, the vehicle is directed to
the exit.

The actual Navigation Algorithm, for every vehicle, consists in (Fig. 9):



Development of CA model of highway traffic 537

Fig. 9. Simplified FlowChart showing the Navigation Algorithm.

– acquiring information about the neighbourhood of the cell where the vehicle
finds itself at the beginning of the time step

– calculating the five boolean flags (i.e. FrontRight, FrontStraight, FrontLeft,
BackRight, and BackLeft) and the first obstacle straight ahead, if any

– actually navigating

The actual navigation, in the simplest case, consists in checking the flag
FrontStraight. If it shows that the current lane is free, the vehicle checks if it is
moving on the rightmost possible lane. If it is, simply it increments the current
cell location as required by the current speed and increments its speed according
to the preset acceleration, if it has not yet reached its maximum allowed speed.
If the vehicle is not on the rightmost possible lane, checks if both FrontRight
and BackRight are simultaneously “FREE”. If they are, it moves to next lane
to the right and increments the current cell location as required by the current
speed and increments its speed according to the preset acceleration, if it has
not yet reached its maximum allowed speed. If the vehicle determines that the
FrontStraight boolean flag indicates that the current lane is “NOT-FREE”, it
first checks if FrontLeft and BackLeft are simultaneously “FREE”. If they are,
it moves to the next lane to the left and increments the current cell location as
required by the current speed and increments its speed according to the preset
acceleration, if it has not yet reached its maximum allowed speed. If FrontLeft
and BackLeft are not simultaneously “FREE”, that is, one or both of them is/are
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“NOT-FREE”, it checks if both FrontRight and BackRight are simultaneously
“FREE”. If they are, it moves to next lane to the right and increments the current
cell location as required by the current speed and increments his speed according
to the preset acceleration, if it has not yet reached its maximum allowed speed.
If they are not, it slows down.

3.4 Slowing down or braking?

One of the difficulties of modeling and simulating highway traffic by means of
CA is that, at every time step, only the neighbourhood is known. The only
information about past history is what can be derived from the current state
of the neighbourhood. Thus, from the point of view of the vehicle moving at
full speed, a fixed obstacle ahead (e.g., a stalled vehicle) is not distinguishable
from a slow moving vehicle ahead. We have designed the interaction among
CurrentSpeed, CurrentCell, SafeDistance, Obstacle, LookAhead, and LookBack
in such a way that a vehicle moving at full speed can come to a full stop within
two or three time steps of detecting an obstacle, depending of its distance at the
time of detection. If the obstacle is just a slower vehicle, the trailing vehicle can
just slow down and, as soon as conditions allow for it, it can pass. If the obstacle
is a permanent obstacle (e.g., a stalled vehicle), the moving vehicle will either
pass on a different lane or stop and wait until it is safe to pass.

Fig. 10. Highly improbable, but not impossible, sequence of obstacles

In Fig. 10 we show a highly improbable, but not impossible, sequence of
obstacles that has proven very challenging for the slowing down and braking
algorithm. The leftmost “brick wall” occupying the rightmost and the centre
lane is easy to overcome if no other vehicle is arriving on the leftmost lane.
However, most algorithms have difficulties coping with the two brick walls on the
leftmost and centre lane, i.e. the second set of obstacles from the left. The reason
for this difficulty is that the five boolean flags (i.e. FrontRight, FrontStraight,
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FrontLeft, BackRight, and BackLeft) are all in the “NOT-FREE” value when
the vehicle is in the “valley”, on the rightmost lane, between obstacles. Indeed,
the neighbourhood, as shown in Fig. 4 or in Fig. 5 is too wide to accommodate
this topology. Three solutions are possible:

– keeping track of the situation at previous time steps, thus violating the CA
paradigm and moving toward agent based simulation

– introducing fuzzy logic control in the slowing down and braking algorithm
– making the dimension of the front neighbourhood a function of the vehicle ve-

locity, thus showing FrontRight, FrontStraight, and FrontLeft to be “FREE”
on a reduced neighbourhood, while they would appear to be “NOT-FREE”
at higher speed

We favour the last alternative.

4 Conclusion

We presented an abstract of our research, the development of a two dimensional
CA highway traffic model capable of realistically simulating: a multi-lane high-
way with multiple entry and exit ramps located at various locations, vehicle
following, speed increment up to maximum speed selectable on a per vehicle
basis, lane change to pass or to go back to the right-most lane as it may be
required by road rules in some jurisdictions, slowing down or stopping to avoid
obstacles. We plan on using this model for practical traffic engineering applica-
tions, to estimate travel time between two access ramps, an entry ramp and an
exit ramp, once certain highway traffic parameters are known at certain points of
the highway. Our concern is primarily with effects of flow and congestion through
a long highway on travel time. The difference between our work and published
research previously conducted by others is that we model much longer highways,
e.g., at least 500 km, and a much higher number of vehicles, e.g. realistic traffic
conditions over several days.

5 Future work

Work currently underway includes comparison with known published models for
individual phenomena e.g. drivers exhibiting erratic braking behaviour, drivers
unnecessarily changing lane, vehicle suddenly stalling while driving at full speed,
and their effect on flow and congestion on the highway. After having verified each
of these and other behaviours, we will simulated their impact on traffic by gener-
ating a number of vehicles exhibiting the behaviour under consideration based on
probability distributions obtained from traffic engineers. Upon successful com-
pletion of this work we will estimate “travel time” between two access ramps,
an entry ramp and an exit ramp, once certain highway traffic parameters are
known at certain points of the highway. Given the size of the highways to be
modelled, the number of vehicles, and the length of the simulations, we will use
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grid computing.
The software developed so far can be defined as an application framework, that
still requires software skills when working on a new experimental scenario. We
plan on making this software user friendly and to allow its use for people more
comfortable with the application domain than with the software implementation
domain.
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Abstract. A framework for Genetic Programming (GP) based strat-
egy to automatically evolve Cellular Automata (CA) rules is presented.
Evolving Cellular Automata rules with Genetic Programming offers ad-
vantages, at least, in terms of readability and generalization ability. Both
aspects are relevant advantages in case of real-life complex systems sim-
ulations: readability allows the final user to read and understand the so-
lution proposed by the Genetic Programming based system, and simply
adapt it to domain knowledge; generalization ability, the most important
performance evaluation criteria for artificial learning systems, allows to
apply generated rules to classes of configurations that share common
patterns in the reference context. In particular, we describe the applica-
tion of the proposed framework based on GP to evolve agent behavioral
rules in a system of situated cellular agents (SCA) modeling pedestrian
evacuation dynamics.

1 Introduction

The task of designing and producing Cellular Automata (CA) rules that exhibit a
particular behavior is generally considered a very difficult one. Several solutions
to automatically solve this problem by means of computer simulations based
on Genetic Algorithm (GAs) [1, 2] were proposed (see for instance [3, 4, 5]
and [6] for a review). The work of Sipper and coworkers represents a noteworthy
contribution to the field (see for instance [7, 8, 9, 10]). In all those works the
objective was to find CA rules that performed simple computational tasks or
that could be used to simulate logic gates. In this work we propose a framework
to evolve CA rules, based on Genetic Programming [11, 12] and apply it to
learn behavior rules for a system of situated reactive agents (Situated Cellular
Agents [13]) simulating pedestrian evacuation dynamics according to SCA, a
generalization of CA approach [14].

The main motivation of adopting GP, instead of GAs, for evolving CA rules
are related at least to readability and generalization ability. In GP, in fact, so-
lutions that undergo the evolutionary process are, generally speaking, computer
programs written, as much as possible (see Sect. 2 for a more detailed discus-
sion), in a human comprehensible language. On the other hand, when generating
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CA rules with GAs, potential solutions are normally CA transition rules repre-
sented as strings of characters as explained in [15], i.e. in a very compact and
efficient, but at the same time rather cryptic way.

In this work, behavioral rules will be expressed like simple computer pro-
grams. The specific syntax in which these programs are expressed will be ex-
plained in Sect. 3. However the reader may simply refer to transition rules in
a CA-based simulation model. According to SCA modelling approach, human
crowds are described as system of autonomous, situated agents that act and
interact in a spatially structured environment. Situated agents are defined as
reactive agents that, as effect of the perception of environmental signals and
local interaction with neighboring agents, can change either their internal state
or their position on the structured environment. Agent behavior is specified in
terms of L*MASS [16] formal language while execution environment for SCA
agents is provided by SCA platform [17]. Interaction between agents can occur
either locally, causing the synchronous change of state of a set of adjacent agents,
and at–a–distance, when a signal emitted by an agent propagates throughout the
spatial structure of the environment and is perceived by other situated agents
(heterogeneous perception abilities can be specified for SCA agents).

Generalization is one of the most important performance evaluation criteria
for artificial learning systems, in particular for supervised learning [18]. In recent
work (discussed in Sect. 3.3), some interesting strategies have been proposed to
improve GP generalization ability. In the pedestrian dynamics application con-
text, it is particularly important that agent behavioral rules have a good gen-
eralization ability. This system performance can provide interesting advantages
and improvements in terms of forecasting abilities and in the detection and pre-
vention of critical situations (i.e. they should be able to work “reasonably” also
for “new” situations, that have not been used to train the system and generate
the model).

To the best of our knowledge, GP has never been used before to evolve CA
rules, except for the noteworthy exception of [19], where GP is used to auto-
matically generate an efficient rule for the majority (or density) task. For what
concern the integrated adoption of MAS and GP, in [20] MAS self-organization
cooperative mechanisms have been proposed to develop a programming lan-
guage in which each instruction-agent tries to be in cooperative state with other
instruction-agents and system environment. In [21], similarly to our proposal, a
system of agents learn a communication protocols according to a GP approach.

2 Genetic programming

Genetic programming (GP) [11, 12] is an evolutionary approach which extends
Genetic Algorithms (GAs) [1, 2]. As GAs, GP works by defining a goal in the
form of a quality criterion and then using this criterion to evolve a set (also called
population) of solution candidates (also called individuals) by mimic the basic
principles of Darwin evolution theory [22]. Differently from GAs, the evolving
GP candidate solutions are, generally speaking, computer programs. The quality
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of the individuals composing populations, or their likelihood of survival, is often
called fitness and it is usually measured by an algebraic function called fitness
function.

In synthesis, the GP paradigm breeds computer programs to solve problems
by executing the following steps:

1. Generate an initial population of computer programs.
2. Iteratively perform the following steps until a given termination criterion

has been satisfied:
(a) Execute each program in the population and assign it a fitness value

according to how well it solves the problem.
(b) Create a new population by applying the following operations:

i. Probabilistically select a set of computer programs to be reproduced,
on the basis of their fitness (selection).

ii. Create new computer programs by genetically recombining randomly
chosen parts of two selected individuals (crossover), with probability
pc.

iii. Copy some of the selected individuals, without modifying them, into
the new population (reproduction), with probability 1− pc.

iv. Create new computer programs by substituting randomly chosen
parts of some individuals with new randomly generated ones (muta-
tion) with probability pm.

3. The best computer program appeared in any generation is designated as the
result of the GP process at that generation. This result may be a solution
(or an approximate solution) to the problem.

Typical termination criteria are: a pre-determined number of iterations (also
called generations) have been executed or a satisfactory solution has been found.
Representation of GP individuals, initialization of GP populations, selection,
crossover and mutation operators and a brief introduction to the theoretical
foundation of GP are discussed below.

2.1 Representation of GP individuals

The most common version of GP, the one originally defined by Koza in [11], con-
siders individuals as LISP-like tree structures. Thus, the set of all the possible
structures that GP can generate is the set of all the possible trees that can be
built recursively from a set of function symbols F = {f1, f2, . . . , fn} (used to la-
bel internal tree nodes) and a set of terminal symbols T = {t1, t2, . . . , tm} (used
to label tree leaves). Each function in the function set F takes a fixed number of
arguments, specifying its arity. Functions may include arithmetic operations (+,
−, ∗, etc.), mathematical functions (such as sin, cos, log, exp), boolean oper-
ations (such as AND, OR, NOT), conditional operations (such as If-Then-Else),
iterative operations (such as While-Do) and other domain-specific functions that
may be defined. Each terminal is typically either a variable or a constant, defined
on the problem domain. The function and terminal sets should be chosen so as to
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verify the requirements of closure and sufficiency: the closure property requires
that each of the functions in the function set be able to accept, as its arguments,
any value and data type that may possibly be returned by any function in the
function set and any value and data type that may possibly be assumed by any
terminal in the terminal set. The sufficiency property requires that the set of
terminals and the set of functions be capable of expressing a solution to the
problem.

2.2 Initialization of a GP population

Initialization of the population is the first step of the evolution process. It con-
sists in the creation of the program structures that will later be evolved. If no a
priori problem feature is known, populations are typically initialized with ran-
dom individuals. The most common initialization methods in tree-based GP are
the grow method, the full method and the ramped half-and-half method. Those
methods are described in [11] and will not be discussed here.

2.3 The selection operator

At each generation, individuals have to be chosen for survival and mating. Many
selection algorithms have been defined so far, the most popular ones being fitness-
proportional or roulette wheel, ranking or tournament selection. Those methods,
defined in [11], share two common properties: individuals with a better fitness
have a higher probability of being selected compared to the ones with worse
fitness and all individuals in the population must have a probability of being
selected larger then zero. The selection algorithm used in the experiments pre-
sented in this paper is the tournament selection. It works as follows: a number
of individuals, called tournament size, is chosen randomly and the one with bet-
ter fitness is then selected. This procedure is repeated N times, where N is
the population size. The tournament size allows to adjust selection pressure. A
small tournament size causes a low selection pressure and a large tournament
size causes a high selection pressure. This method is widely used in GP mainly
because it does not require a centralized fitness comparison between all individ-
uals in the population. This allows GP systems to save computational time and
provides an easy way to parallelize the algorithm.

2.4 Crossover

The crossover (sexual recombination) operator creates variation in the popula-
tion by producing new offspring that consist of parts taken from each parent.
The two parents, that will be called T1 and T2, are chosen by means of one of
the selection methods introduced above. Standard GP crossover [11] begins by
independently selecting one random point in each parent (it will be called the
crossover point for that parent). The crossover fragment for a particular parent
is the subtree rooted at the node lying underneath the crossover point. The
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Fig. 1. An example of standard GP crossover. Crossover fragments are included
into gray forms.

first offspring is produced by deleting the crossover fragment of T1 from T1 and
inserting the crossover fragment of T2 at the crossover point of T1.

The second offspring is produced in a symmetric manner. Figure 1 shows an
example of standard GP crossover.

Because entire subtrees are swapped and because of the closure property of
the functions, crossover always produces syntactically legal programs, regardless
of the selection of parents or crossover points.

2.5 Mutation

Mutation is asexual, i.e. it operates on only one parental program. Standard
GP mutation, often called subtree mutation [11], begins by choosing a point at
random within an individual. This point is called mutation point. Then, the sub-
tree laying below the mutation point is removed and a new randomly generated
subtree is inserted at that point. Figure 2 shows an example of standard GP
mutation.

This operation, as it is the case for standard crossover, is controlled by a
parameter that specifies the maximum depth allowed and limits the size of the
newly created subtree that is to be inserted.

2.6 GP parameters

Once the GP user has decided the set of functions F and the set of terminals
T used to represent potential solutions of a given problem, he still has to set
some parameters that characterize evolution. A list comprising some of these
parameters is the following one:
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Fig. 2. An example of standard GP mutation.

– Population size.
– Stopping criterion.
– Technique used to create the initial population.
– Selection algorithm.
– Crossover type and rate.
– Mutation type and rate.
– Maximum tree depth.
– Presence or absence of elitism (i.e. survival of the best individual(s) into the

newly generated population).

The setting of each one of these parameters represents in general a crucial choice
for the performance of the GP system. Much of what GP researchers know about
these parameters is empirical and based on experience.

2.7 GP theory

After reading the description of GP approach given so far, one question may
come natural: why GP should work at all? This question can be made more
precise by splitting it into the following ones: why the iterative GP process
should allow to build solutions of better and better fitness quality? And why
should it allow to find a solution that is satisfactory for a given problem? Or even
better: what is the probability of improving the fitness quality of solutions along
with GP generations? What is the probability of finding a satisfactory solution
to a given problem? The attempt to answer these questions has been one of
the main research activities in the GP field since its early years. Being able to
answer the above questions surely implies a deep understanding of what happens
inside a GP population along with generations. One may think of recording some
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numerical values concerning individuals of a population along with generations
and of calculating statistics on them. Nevertheless, given the complexity of a
GP system and its numerous degrees of freedom, any number of these statistical
descriptors would be able to capture only a tiny fraction of the system’s features.
For these reasons, the only way to understand the behavior of a GP system
appears to be the definition of precise mathematical models. Among others,
references [23, 24, 25] contain a deep discussion of GP precise mathematical and
probabilistic models and show a large number of interesting properties of GP,
including its asymptotic convergence to a globally optimal solution.

3 Evolving with genetic programming pedestrian
behavior rules in evacuation dynamics

In this section we will describe how the GP framework above introduced has
been applied to improve a modeling and simulation framework for pedestrian
dynamics (i.e. SCA4CROWDS [26]).

SCA4CROWDS is an ongoing research aiming at developing formal and com-
putational tools to support the design, execution and analysis of models and sim-
ulations to study potentially complex dynamics that can emerge in Crowds and
Pedestrian Dynamics as effect of physical and emotional interactions. Potential
exploitations of this research are oriented to support the design and management
of public spaces and events, and human sciences (i.e. social psychology) in theirs
studies on crowds behavior [27]. SCA4CROWDS formal model that we developed
as an extension of CA exploiting MAS advantages in modeling heterogeneous
systems. The proposed approach has recently been presented within Pedestrian
Dynamics modeling and simulation research area [26]. SCA4CROWDS provides
a modeling framework based on an extension of CA (Situated Cellular Agents)
where autonomous interacting agents share a spatial environment and behave
according to individual behavioral rules and local available information. The
main advantages in adopting an approach based on GP to generate agents’ be-
havioral rules is towards experiments and robust analysis of performances of
public spaces and structures (i.e. security and comfort).

3.1 SCA approach to pedestrian dynamics

According to SCA modelling approach, human crowds are described as system of
autonomous, situated agents that act and interact in a spatially structured envi-
ronment. Situated agents are defined as reactive agents that, as effect of the per-
ception of environmental signals and local interaction with neighboring agents,
can change either their internal state or their position on the structured envi-
ronment. Agent autonomy is preserved by an action–selection mechanism that
characterizes each agent, and heterogeneous MAS can be represented through
the specification of agents with several behavioral types through L*MASS for-
mal language. Interaction between agents can occur either locally, causing the
synchronous change of state of a set of adjacent agents, and at–a–distance, when
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a signal emitted by an agent propagates throughout the spatial structure of the
environment and is perceived by other situated agents (heterogeneous perception
abilities can be specified for SCA agents).

SCA model is rooted on basic principles of CA: it intrinsically includes the
notions of state and explicitly represents the spatial structure of agents’ environ-
ment; it takes into account the heterogeneity of modelled entities and provides
original extensions to CA (e.g. at–a–distance interaction).

According to SCA framework, the spatial abstraction in which the simulated
entities are situated (i.e. Space) is an undirected graph of sites (i.e. p ∈ P ),
where graph nodes represent available space locations for pedestrians and graph
edges define the adjacency relations among them (and agents’ suitable movement
directions). Each p ∈ P is defined by

〈
ap, Fp, Pp

〉
, where ap ∈ A ∪ {⊥} is the

agent situated in p , Fp ⊂ F is the set of fields active in p and Pp ⊂ P is the set
of sites adjacent to p. Pedestrians and relevant elements of their environment
that may interact with them and influence their movement (i.e. active elements
of the environment) are represented by different types of SCA agents. An agent
type τ =

〈
Στ , P erceptionτ , Actionτ

〉
is defined by:

– Στ : the set of states that agents of type τ can assume;
– Perceptionτ : Στ → WF × WF function for agents of type τ : it asso-

ciates each agent state to a pair (i.e. receptiveness coefficient and sensitivity
threshold) for each field in F ;

– Actionτ : the behavioral specification for agents of type τ in terms of L*MASS
language [16].

A SCA–agent is defined by a type τ , its current state (s ∈ Στ ) and position
in Space (Space is the undirected graph of sites p ∈ P , where P is the set of
available positions for situated agents). Agent internal architecture is composed
by three tasks that define the agent actual behavior (i.e. Perception, Deliberation,
and Action) and two knowledge containers:

– Agent Knowledge Base (AKB) is the internal representation of agent
state and of its local perceptions (e.g. set of fields active in its site, set of
empty sites in its surrounding). The AKB updating can be the effect of agent
actions or of a change in the agent environment perceived by the agent (e.g.
an adjacent site becomes empty, a new field reaches the agent site or the
agent moves to another site).

– Agent Action Set (AAS) collects the set of actions that are allowed to
the agent in terms of L*MASS language. AAS is defined according to the
agent type and cannot change during agent execution.

SCA approach does not specify a standard way to define agents’ perception,
deliberation and action. SCA platform (the execution environment for SCA-
based models) has been designed in order to be incrementally extended to sev-
eral execution strategies. In our experiments we adopted a synchronous–parallel
execution method for the system (i.e. at each timestep each agent update their
AKB perceiving their local environment and selects the action to be performed).
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A conflict resolution strategy (indicated below as site exchange) has been intro-
duced in order to solve deadlock situations when more than one agent has chosen
the same destination site. The phase between perception and execution is de-
liberation that is, the component of an agent responsible of conflict resolution
between actions, when multiple actions are possible. SCA approach has been
already used for pedestrian dynamics, and some well–known phenomena (i.e.
Freezing by Heating and Lane Formation) observed by social psychology empir-
ical studies [28] have been successfully reproduced.

3.2 Evolving pedestrian behavior

In order to automatically generate rules for pedestrian dynamics during evacu-
ation, we propose a GP setup inspired by the well-known artificial ant on the
Santa Fe trail problem, first defined in [11] and later deeply studied in [25]. The
simulation space has been defined as a regular grid populated by a set of agents.
In a complex situation like evacuation, agents should coordinate and behave
according to a common strategy, in order to obtain best system performances
(e.g. total evacuation time or number of evacuated pedestrians). In this work,
GP is proposed to evolve agent behavior towards a sort of navigation strategy
for agents that maximizes a given evacuation objective. In the model, room
exit is an given location in the environment (i.e. regular grid), typically located
close to room borders, but unknown to agents (unless located in neighboring
positions). Agents are scattered randomly in the grid, facing different directions
and all of them have a limited perception ability on the surrounding environ-
ment (local view on its neighborhood only, as in CA). Even if the set of agents
actions is quite simple (e.g. move ahead, lest of right), a number of different
behaviors during each evacuation may be identified. The set of terminals used
by GP for this problem are T = {Right, Left, Move} and corresponds to the
actions an agent can perform according to this simplified SCA-based model of
a pedestrian crowd: turn right by 90◦, turn left by 90◦ and move forward in the
currently facing direction. When an agent moves into the grid cell identifying
the exit, we consider that it terminates its path. The set of functions may be
F = {IfObstacleAhead, Progn2, P rogn3}. IfObstacleAhead is a conditional
branching operator that takes two arguments and executes the first one if and
only if an obstacle is present in the case that is adjacent to the agent in the
direction the agent is facing, and the second one otherwise. An obstacle may the
the border of a path or the one of the grid, or even another agent. Progn2 and
Progn3 are common LISP operators. Progn2 takes two arguments and causes
the ant to unconditionally execute the first argument followed by the second
one. Progn3 is analogous, but it takes three arguments, that are executed in an
ordered sequence. An individual built with these sets F and T can be considered
as a “program” that allows an agent to navigate the grid. An example of such
program can be:

IfObstacleAhead(Prog3(Left, Left, Move),Move)
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In the presented case study we considered as fitness function, the number
of agents that have reached the exit before a given number of time steps. A
time-out limit has to be fixed sufficiently small to prevent a random walk of the
agents to cover the whole available area and thus finding the exit by hazard.

3.3 Genetic programming generalization

Next step in this research work will concern the application of known techniques
to improve the generalization ability of GP to our framework for pedestrian
evacuation dynamics. Generalization is particularly important for this kind of
application. In fact, the same evacuation strategy may be suitable not only for
one particular situation or space configuration, but a set of, so to say,“similar”
or analogous situations. Many techniques have been developed in the last few
years to increment GP generalization ability, as discussed in [29, 30]. A detailed
survey of the main contributions on generalization in GP has been done by
Kushchu in [29]. Another important contribution to the field of generalization
in GP is due to the work of Banzhaf and coworkers; in particular, in [31] they
introduce a new GP system called Compiling GP System and they compare its
generalization ability with that of other Machine Learning paradigms. Further-
more, in [32] they show the positive effect of an extensive use of the mutation
operator on generalization in GP using sparse data sets. In [33], Da Costa and
Landry have recently proposed a new GP model called Relaxed GP, showing its
generalization ability. In [34], Gagné and coworkers have recently investigated
two methods to improve generalization in GP-based learning: 1) the selection
of the best-of-run individuals using a three data sets methodology, and 2) the
application of parsimony pressure to reduce the complexity of the solutions. A
common agreement of many researchers is the so called minimum description
length principle (see for instance [35]), which states that the best model is the
one that minimizes the amount of information needed to encode it. In this per-
spective, preference for simpler solutions and overfitting avoidance seem to be
closely related, given that it should be more likely that a complex solution incor-
porates specific information from the training set, thus overfitting it, compared
to a simpler solution. But, as mentioned in [36], this argumentation should be
taken with care as too much emphasis on minimizing complexity can prevent
the discovery of more complex yet more accurate solutions. In [37, 38] Vanneschi
and coworkers empirically show that multi-optimization on the training set can
be in general thought of as a good strategy to improve GP generalization ability.

In synthesis, the main known techniques to improve GP generalization ability
are:

– add noise to data (in this case, paths and space configurations);
– dynamically change the training set during learning;
– multi-optimization of the training set;
– automatically driving GP search towards regions of the search space com-

posed by small and simple programs, in order to avoid overfitting.
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As explained in [29] (where GP generalization on the artificial ant problem,
that is similar to the application we propose here, is discussed), generalization
can hopefully be obtained when the target function has “similar” characteristics
on the training set as well as on test data. In case of pattern reconstruction
applications, this mean that patters on which the system has been trained have
to be as similar as possible to the ones the system has to handle in the testing
phase. For obtaining this, the training phase has to be performed by submit-
ting to our system many, and possibly different between them, “typical” space
configurations.

4 Conclusions

Evolving Cellular Automata rules by means of Genetic Programming may prove
particularly suitable, especially in simulations of real-life complex systems like
pedestrian dynamics for evacuation. In fact, in those cases, a short set of simple
instructions are usually given to crowds. Those instructions are not personal-
ized and are often the same for different (although similar) situations. They can
include advices about particular behaviour or directions to walk, or any other
similar instruction and they often do not change in similar environments. Genetic
Programming offers the following advantages in such situations: (1) readability,
given that the proposed solutions are represented as human-like computer pro-
grams; (2) generalization ability, given that many techniques (some of which have
been discussed in this paper) have been recently proposed to improve Genetic
Programming generalization ability. These two points are particularly impor-
tant, since point (1) allows the final user to read and understand the solution
proposed by the Genetic Programming based system, and eventually modify it
by hands according to some domain specific knowledge; point (2) allows to ap-
ply the same rules to classes of configurations, and not only to particular, well
defined cases.

In the future, we plan to realize a Genetic Programming environment for ro-
bust learning of evacuation scenarios strategies, by automatically applying some
of the most popular heuristics used to increment Genetic Programming general-
ization ability, such as adding noise to data, dynamically changing the training
set during learning, multi-optimizing on the the training set and automatically
driving GP search towards regions of the search space composed by small and
simple programs, in order to avoid overfitting. This environment will be tested
on real and complex evacuation scenarios, whose data will be collected by means
of sensor networks or cameras.
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Abstract. Since 1991 I have been to apply cellular automata (CA) to
the problem of time series analysis generally and to forecasting Foreign
Exchange (FOREX) prices, specifically [1]. Based on a number of back-
tests I have run, I now believe the answer to the question, “Is the market
a Computer?’ to be ’Yes!’ This paper provides a very general discus-
sion of my basic research using CA concepts for market price forecasting
using what I call Trend Machine (TTM); a simplistic but perhaps ef-
fective conversion of 1D CAs to market forecasting. Specific algorithms
and parameters are proprietary at this time. The paper is limited to
making the conceptual connection between CA and markets and to an
historical narrative of my efforts. A Simple Cellular Automata Model for
FX Market Forecasting is written for a wide audience of CA theoreti-
cians and market practitioners. I am neither a computer scientist nor a
mathematician; I am a trader, since 1973, and researcher with passable
programming skills in Visual Basic, Smalltalk (Dolphin), Prolog (Visual)
and my current platform of choice, C#.net. I have my own programming
team; some of whom have been with me since the mid-1980s. I developed
the successful Jonathan’s Wave expert system-neural network hybrid in
the mid-1980s for commodity futures. The Trend Machine grew out of
my conclusion AI methods — expert systems, neural networks, genetic
algorithms — applied to the markets were fundamentally curve-fitting
methods and functionally no different than conventional approaches such
as stochastics, moving averages and oscillators. My interest in CA is
purely practical — to find a consistent, risk-tolerable method of fore-
casting currency prices.

1 Introduction

My ‘seed’ idea for Trend Machines (TTM) came from reading, Three Scientists
and Their Gods while doing consulting for the Winnipeg Grain Exchange in
1991 [2]. The book included an interview with and narrative about Ed Fredkin
who brought CA out of the shadows in the 1970s. I had coincidently been working
on a method for describing market prices in binary notation, ‘Binary Charting’
for a program Bar Chart Stat Pro which analyzes bar chart sequences (’1’ = ’Up’
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and ’O’ = Down as the basic syntax.) Like peanut butter and chocolate in the old
Reese’s commercial, the two ideas happily collided! The Eureka Moment came
late one evening while my family was vacationing in Pensacola, Florida shortly
after completion of the Winnipeg job. I woke my daughter, Brandy. We rushed to
the local convenience store, purchased several packages of small wooden matches
(much to the consternation of the store clerk) and experimented with a variety
of a game described in Further Mathematical Diversions [3].

Some of the early TTM research, coding and back-testing was done with my
Jonathan’s Wave programming team of Richard Rowe (St. John’s, Newfound-
land, Canada), Antonio Riga (Toronto, Ontario, Canada) and James Bickford
(Boulder, Colorado, USA). I lost contact with both Mr. Rowe and Mr. Riga in
the mid-1990s; Mr. Bickford passed away in 2007. Curiously it was Mr. Rowe who
very early on anticipated a problem I was not to acknowledge until much later
— that my ‘perfect world’ TTM would run aground because of the Traveling
Salesman P-NP Problem. My attempts to solve this issue cost me considerable
time and effort but I did discover some interesting thoughts on P-NP which are
beyond the scope of this paper.

I believe (after 17 years) I am very close to a significant breakthrough in
algorithmic trading — but only the markets can, and will, tell the tale.

2 The Trend Machine — basic assumptions

Market forecasting methods have not been successful over the long term. Why?
Techniques may be profitable for limited periods of time and/or specific environ-
ments, such as trending markets or trading markets. Success would be measured
by profitability in diverse market conditions, for significant periods of time with-
out dramatic ’draw downs’ or deterioration of the capital base.

Two primary factors — directional movement and volatility — can reasonably
describe the environment of any market. These primary market environments
(MEs) plus two secondary environments — Thickness and Rhythm and a tertiary
environment, Shape, describe every market [4].

Directional Movement (DM) is the net change in prices from a given price-
time unit, x, to the next price-time unit, x + 1. Volatility is the aggregate price
change over that same period given a minimum fluctuation value. DM might be
measured in a 900 arc from the horizontal chart axis representing zero to the
vertical chart axis representing a real number of ’4’ or ’10’ or defining whatever
precision is needed. V may be measured as a percentage of 100% and divided in
kind as DM. ‘1-1’ would represent a market with low directional movement and
low volatility. ‘10-10’ would represent a market with high directional movement
and high volatility. ME effectively smoothes prices and has a wide variety of
applications.

Most market forecasting techniques are linear. Proportionality is assumed
between two or more factors. A change in factor ‘X’ causes a proportionate and
constant change in factor ‘Y’. This is an assumption about markets implied in
all pattern recognition techniques.
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But pattern recognition suffers some major theoretical flaws. Patterns (or
input), no matter how sophisticated, identified as similar may lead to widely
divergent output. If ‘X’ then ‘Y’ is not true of market data. Traders may rec-
ognize this from the ’sensitivity to initial conditions’ of chaos theory. Nor is the
converse true (If ‘Y’ then ‘X’). Even if ‘X’ then ‘Y’ is true, the converse is a
logical fallacy — modus ponens.

Internalizing the pattern search does not help. Expert systems, neural net-
works and even genetic algorithms suffer the same pattern recognition flaw as
do moving averages, relative strength and stochastic tools. At best they are
non-linear tools seeking linear information.

The author built the first expert system for market forecasting in the 1980s,
Jonathan’s Wave. In AI Expert magazine [5] Harvey Newquist described it as
a hybrid expert system neural network. In futures, it generated a 48% annual
return with a zero expectation of a 50% drawdown and negatively correlated
with other trading systems at the time [6]. I wrote about Jonathan’s Wave twice
for Futures magazine [7].

At an AI conference in 1991 I suggested these difficulties to the attendees
and elicited a very negative response [8].

Complexity theory studies processes resistant to linear analysis. Economies,
ecologies, physical and life sciences are all areas with processes falling under the
complex category. Information theory, game theory, encryption and coding and
even corporate decision-making may be added. These processes seem to possess
an internal organization not describable, much less predictable with linear meth-
ods of logic, mathematics or statistics. The markets appear also to be complex
processes.

Some non-linear processes, such as the markets, generate time-series data as
a by-product.

– Complex processes share several features; different types of complexity are
defined by dominant features. In addition to resistance to linear methods
and tools the most important are:

– Complex processes cannot be broken down and analyzed piece-by- piece.
Nor can they be ’reverse engineered.’ Study of the effect does not lead to
knowledge of the cause. This is the finis for pattern recognition.

– Complex systems are sensitive to initial conditions. A very small change in
initial conditions may lead to enormous changes latter in the process. This
is the defining characteristic of closed-end processes associated with chaos
theory.

– Complex processes often manifest abrupt changes from one kind of behav-
ior (’continuity’) to another kind of behavior (’discontinuity’). Catastrophe
theory studies such open-ended systems. Why does a sideways market ’sud-
denly’ break out into a trending market?

– Recursive/Fractal: The behavior of complex systems is often played out at
many different levels, all with great structural similarities. That is, each level
is a macrocosm of the level below it and a microcosm of the level above.
Another way to state this is that the processes are dimensionally recursive.
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– Very simple system elements and rules create surprisingly diverse and com-
plex behavior.

– Complex processes self-organize information. They appear to adapt by gen-
erating new, internalized rules. This self-organization can be likened to a
computer program calling a sub-routine or a function with a new value.
Complex systems behave as computational entities!

Consider the analogous characteristics of price markets: stocks, commodities,
currencies, including the performance of investment fiduciaries:

– Linear methods have failed. The markets cannot be analyzed piece by piece.
Nor does the study of the behavior (prices or information patterns) yield
information about causes.

– The markets, as open-ended processes, are sensitive to minute input changes
— the buy order that turns the market.

– Trading ranges suddenly erupt into trends, and visa versa.
– Two simple elements or rules create the complex tapestry of the markets:

‘buy’ and ‘sell.’
– Hourly, daily, weekly and monthly bar charts of a stock or commodity ex-

hibit many structural similarities. Without labeling it would be impossible
to decide the time frame of a chart.

– I believe self-organization is the Major Market Force.

Discounting, the smoothing of spreads and the gradually lessening of the
effectiveness of new market indicators are examples of the market utilizing self-
organization as an adaptive ‘immune system.’ Discounting is a minor example
of the market self-organizing input (buy and sell orders) into prices (output).

Is it possible to forecast the behavior of complex processes, especially those
that generate time-series data as a by-product, especially stocks, currencies (FX)
and commodities?

Since 1991 I have explored the investment markets, particularly currencies
and commodities, as a complex process. Despite some initial excitement, chaos
theory didn’t catch. Although markets do appear to be recursive, that function
does not seem sufficient to generate forecasts of any real accuracy. I will discuss
inter-dimensional recursiveness later in this paper. Markets are open-ended and
chaos applies primarily to closed-end processes. Catastrophe is a much better
try, but catastrophe does a better job describing than predicting.

Markets self-organize buy and sell orders into prices. It does this by the mech-
anism of an internal algorithm determining how much UP a buy order creates
and how much DOWN a sell order creates. The ongoing flow of behavior (prices)
is non-linear. This behavior is impossible to predict without some knowledge of
the underlying algorithm for the market in question.

The markets may not be predictable using computers, per se, but may be very
predictable as computers — as computational entities. Pattern recognition tools
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and linear methods study the market-computer’s screen dump. What needs to
be studied is the program or algorithm generating the prices I see on the market-
computer screen. I have been looking at the markets ’inside-out’ (or ’outside-in’)
just as pre-Copernican astronomers took the Earth as the center of the solar
system. The Market in the Machine!

The market is the pattern, and it is continually unfolding across the frontier
of ‘now.’

The data by-product of any market encrypts useful information about the
underlying process.

Many processes generate data as a by-product. The market is a complex
process and prices are the primary by-product. Assumption: the by-product
carries information about the underlying process. Please keep this in mind: prices
are the by-product of an underlying process.

Algorithmic Forecasting (the term as first used by this author in 1992) at-
tempts to duplicate the algorithm that creates or describes at least a part of
the self-organizing behavior of a data producing complex process. Once this al-
gorithm is found, the process can be modeled (on a regular computer!) and ran
through the barrier of ‘now’ into the future.

Today, generally, the terms ‘algorithmic forecasting’ and ‘algorithmic trad-
ing’ reference any automated trading system or scheme in all market classes —
securities, commodities and FOREX.

Viewing the market as a computer or computational entity solves two great
mysteries of technical analysis:

1. How is information about prices transmitted from the past to the future?
2. Do past prices influence future behavior?

The markets behave as an algorithm with a feedback loop. Prices at T[ime]1
(input) are at least partially organized by a market’s specific algorithm. This
yields new prices at T2 (output) that in turn becomes input for the next iteration
of the algorithm, leading to prices (output) at T3. Buy and sell orders become
the algorithmic parameters.

In sixteen years of research I’ve been able to draw two conclusions: a) the
underlying algorithm is a major factor in prices, but not the only factor, b) the
degree to which it is a factor ebbs and flows resulting in our conclusion that ‘The
markets may be ‘busted’ from time to time for relatively short periods of time.’

Are yet-to-be-entered orders Acts of God, or can they be predicted?
Clearly I cannot predict new orders perfectly, in advance. But the market-as-

computer tells us the algorithm of a market creates a sieve, or template, through
which all orders must pass. In programming, a function may return a different
value each time it is called, but the value is delimited by the parameters of the
function.
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It may be possible to find ‘basins of attraction’ or ‘areas of criticality’ —
areas in price and time to which new orders are pulled or attracted. Limits in
commodities are an artificially created basin of attraction. This is an assumption
of TTM v2.x, please see the sections below.

Can the markets, or any other data-producing complex process be modeled
for algorithmic forecasting to ‘tease out’ self-organizing, algorithmic behavior?

The model I developed uses cellular automata (automaton, singular) as the
basis of a market-as-computer model. A typical cellular automaton may be vi-
sualized as a grid of squares, or cells. Imagine an infinite chessboard, or chart
grid.

The first cellular automata gedanken experiments of the famous John Von
Neumann. He developed many details of CA after a suggestion of Stanislaw
Ulam. My first exposure to CA was in 1971 when I attended a lecture by Pro-
fessor Ulam at the University of Colorado in Boulder. (Chess Tradition in Man’s
Culture, hosted by Professor Eugene Salome; lecture by Professor Ulam — Chess
and Mathematics.)

A two dimensional cellular automata (2D-CA), the ’infinite chessboard’, is
composed of five elements:

1. The cell universe
2. The individual cell(s)
3. The cell state
4. The cell neighborhood
5. The cell rules or algorithm.

The Cell Universe is a continuous arrangement of cells; the infinite chess-
board.

A Cell is an individual unit, usually square or rectangular (but occasionally
polygon tiled) within the cell universe; ‘King 5’ or ‘Queen Bishop 15,000’ on the
infinite chessboard.

The Cell State refers to the condition of a cell. Usually a cell has only two
states — ON or OFF (colored, uncolored). It is possible for cells to have multiple
or even ‘fuzzy’ states.

The Cell Universe State may refer to either the current state of all the cells
in a CA, or a collection of all prior universe states (generations) and the current
state (generation) in some models.

The Cell Neighborhood is a selected group of cells surrounding a given cell.
Cell neighborhoods may be either local or remote. Cells in a local neighbor-
hood are physically adjacent to the cell. Remote cells are not adjacent. Two
typical local neighborhoods are the Von Neumann neighborhood (side adjacent
cells) and the Langton neighborhood (side adjacent and diagonal adjacent cells).
Neighborhoods may also be state local or state remote.

Cell Rules or Algorithms are sets of instructions telling a given cell what
state to assume in the next generation in response to the state condition of its
neighbors in the current generation. Cell rule sets are usually simple, but may
be large in number.
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Neighborhood ’state conditions’ may be very simple or enormously complex.
Meta-level CA’s may be used to define state conditions. I have spent more time
exploring state conditions than any other factor in my lengthy and exhaustive
research. In a typical CA only the state conditions of the neighbors in the current
generation are used. But it is possible for cell rules (and neighborhoods) to rely
on several previous generations (i.e., state remote). In one experiment I used a
CA algorithm to determine which neighborhoods to use a Trend Machine.

A CA is the sequential iteration of the cell rules resulting in changes to each
successive generation of the cell universe.

As they progress from generation to generation CAs evolve into one of four
types of behavior:

1. Death — all cells die and go to OFF
2. Stasis — a finite loop of cell universe states repeats. It may take several

thousand iterations of the cell rules for a CA to display Stasis.
3. Random — cell behavior changes and fluctuates without rhyme or reason.

Random CAs almost always evolve into Death or Stasis.
4. Life — the CA generates new and interesting behaviors. Cells are born and

die; groups prosper and falter. Complexity increases and the CA exhibit
self-organization.

It seems impossible to predict the type of CA from the cell rules without
actually running the CA. Two extremely similar rule sets may lead to life and
death. This, in fact, is the quietus for TTM v1.x, as below.

CAs are examples of computational entities. Cells states act as both input
(data) and (program). Cellular automata are being used today to study many
complex processes; especially those for which self-organization is a primary char-
acteristic. The emerging science of A-life grew out of early CA experiments. CAs
of Type 4 mimic the complete topology of life: birth, death, reproduction, adap-
tation and mobility.

Who is the market participant who has not had occasion to exclaim that the
market seems often to have ‘a life of its own?’

3 Work and efforts to 1999 — TTM v1.x

A Trend Machine (TTM) uses a mapping calculus to convert a CA into a market
model for the purpose of algorithmic forecasting. By modeling market price data
as a CA it is easy to search for the algorithms that self-organize buy and sell
orders into market prices.

The TTM calculus converts each element of a CA into a Trend Machine
component:
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CA TREND MACHINE

cell state price up / price down
cell neighborhood price history
cell universe the market
cell rules algorithm engine/ca-base
previous state previous price
current state current price
next state future price

In a simple 2D Trend Machine (TTM) each iteration of the CA moves forward
in time (from left to right) and the cell universe is the collection of cell universe
states. A basic 2D calculus would integrate rules forcing iterations into a single
vertical column causing the CA to mimic a bar chart showing the range of high to
low prices over a specified period of time. Another involves mapping formations
such as the gliders found in Life to price chart formations.

TTM and CAs may be constructed in one, two, three or n-dimensions.
The Algorithm Engine (AE) is roughly equivalent to the inference engine in

an expert system. The algorithm engine consists of three components:

1. The basic structural design for building algorithms
2. The variables that can be altered within the AE
3. The seed or initial cell universe state

Re-writing refers to the method used to convert market prices (or other time-
series data) to TTM states and back again into market prices. Re-writing may
be, and often is, inter-dimensional. Two dimensional CAs may be ‘rewritten’
to generate binary, on-dimensional CAs. CAs may also be cross-dimensional, as
data output from ’sound’ may be re-written to a ‘visual’ dimension. In this sense,
algorithms as dimensionally recursive!

In a one dimensional TTM (1D-TTM) there is no grid. Cell states are simply
‘1’ or ‘0’. In the basic model a ‘1’ state would mean prices UP over the previous
state and ’0’ would mean prices DOWN from the previous state. There is only
one cell in each iteration of the cell universe. A sequence of cell states becomes
a binary string. This effectively converts the market data ‘by-product’ into CA
ready-to-use material!

I have worked primarily with 1D-CAs, but 2D, 3D and n-dimensional models
(especially cross-dimensionality) have some fascinating possibilities.

It is theoretically possible to describe a higher dimensional TTM or CA in
a one-dimensional scheme. Encoding the information in the binary string does
this. (It has been previously demonstrated that a one-dimensional CA is a Turing
Machine and all CAs of dimensionality 1 + n can be described in 1 dimension,
see The Emperor’s New Mind by Roger Penrose.)

Indeed, since the limitations of generating uniqueness from a binary string
are definitional-limited by the length of the seed, the most useful algorithms
for The Trend Machine come from 2D-CAs which have been re-written to 1D,
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although this researcher has found a method to generate unique 1D CAs. It
is, unfortunately, probably impossible to predict the output of these algorithms
without actually running them. Unique binary strings are also more plentiful at
2D and 3D levels.

Fig. 1. Basic ordinal diagram. Each ‘1’ and ‘0’ may represent either an ordinal
value (Up/Down) or a cardinal value (Up/Down with fixed, specific numeric
value to each unit), in some re-writing schemes.

The binary string output of a 1D-TTM may be re-written (converted to/interpreted
as market data) in many different ways. For example, see Fig. 1:

– Last (Close Only)
– Point and Figure
– Bar-Range / Horizontal Cluster
– Bar Range / Vertical Cluster
– Candlestick
– Pretzel
– Mercury1

Current versions of TTM use an ordinal ’stacked semaphore’ configuration
of High, Low and Last prices:

HIGH 10011101010110110100110101000
CLOSE 10010000111101110110101010100
LOW 01101111010101011110100010101

1 Charting techniques developed by FXpraxis.
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Specific cell-states, neighborhood rules, functions (parameters) and transition
rules are currently proprietary.

There are many different possible rewrite schemes — even for binary. While
‘High, Low, Close’ here means ‘from the previous unit’ CAs may and do take
rules from other than the nearest (or, dominant) neighbor. Such distant neighbor
seeding can significantly increase the number of possible unique algorithms. The
string representations of ‘1’ and ‘0’ may also be either ordinal or cardinal values,
simply ‘UP’ or ‘UP 1.5 Units.’ Converting to cardinal would probably increase
effectiveness but cannot be done until the Caching Problem (see below) is solved.

Using my Market Environments methodology [8] has allowed my work to
remain in the ordinal domain.

I have already mentioned higher dimensions can be encoded in binary strings.
It is also possible to re-write directly between dimensional models.

A RAM or Representational Automata Machine is a CA modeled in n-
dimensional state-space. A RAM might model all the factors of a 3D-CA (price,
volume, open interest) and add, for example, volatility and an inter-market re-
lationship. Like 3D-CAs RAMs allow for such specific factor mapping.

Four steps are involved in making a forecast using a Trend Machine:

1. Convert the market data (prices) to a binary format. Ordinal data conver-
sion smoothes the data and leaves only directional movement and limited
volatility information.

2. (a) Use the Algorithm Engine to find or build the algorithm most closely
fitting the data.

(b) Search the CA-base for the closest match to the data.
3. Convert the binary CA string to prices using the appropriate format.
4. Concatenate the string to generate a forecast.

Forecast 2a is a perfect world. I have not been able to build a robust algorithm
engine that would generate and algorithm from a data string output. Given the
data can you systematically construct the algorithm (backward construction)?
Probably not. Given the algorithm can you predict the output without actually
running the algorithm itself (forward construction). Perhaps. All my TTM v1.x
models have instead used a CA-base, 2B.

The current TTM CA-base consists of strings from 28 unique ’methods’ with
multiple permutations, parameter sets and seeds within each model. I am con-
stantly on the hunt for new methods in 1, 2, 3 or n dimensions or in cross
dimensional space.

The hunt for algorithms leading to unique strings is fascinating — and a bit
addictive. I have at least managed to classify algorithm types and have a general
sense of what will definitely not work — lead to uniqueness. I seek a method for
determining what definitely will work.

An example of a extremely simple algorithm: Calculate π to x precision.
Convert the odd numbers to ‘0’ and the even numbers to ‘1.’ For example:
3.14159265358979323846→ 3.01000110001000010111
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4 Significant issues

Back-testing is used to find many secondary parameters, such as how long a
CA-Base string is needed to generate a forecast — and how long is the forecast
meaningful.

The most significant issue has been the failure to find a general purpose
Algorithm Engine (AE) that would take a binary string and find appropriate
algorithms to generate that string and forecast-concatenations thereof. It appears
neither a forward-chaining AE (predicting a string from an algorithm without
running it) and a backward-chaining AE (mechanically finding an algorithm to
match a string) are possible. But, on the side, I continue to toy with the idea
simply because of its enormous attractiveness.

In 1999 a friend and fellow FX trader, Sylvestor Torini, suggested a ‘CA-
Base.’ The idea, quite simply — develop a database of binary CA strings. At
specific time increments (5-minute, 1-hour, etc) the program would convert mar-
ket data to the appropriate binary template and search the CA-Base for a perfect
match. For example, a string of n1–n500 where in n501–nX would be reconverted
to price format and used as the forecast.

It quickly became apparent a CA-Base of any value would be HUGE. Because
of the ‘sensitivity to initial condition premise’ it is only a perfect match that will
do.

I saw immediately computer processing speed would not solve the problem.
Given Moore’s Law I calculated it would be many years before the Base could
be analyzed with even 5-minute price data! I began to investigate the Trav-
eling Salesman, P-NP Problem. Though not identical, the two problems have
remarkably similarities.

I spend two years looking for caching algorithms of many varieties; a method
for using the free time between increments to pre-sort the CA-Base. Having
worked with a group of Go programmers in the UK I spent some effort on
Monte Carlo sampling but that floundered quickly for me. By early 2006, I was
somewhat stymied and TTM v.1.x seemed to have run its course.

I spent more time on the P-NP Problem and considered the possible solutions
types: A complete solution, an approximation solution and a special-case solu-
tion. Run out on the complete solution thread, knowing that an approximation
solution was a poor fit for a CA model, I was left with the special case solution
to work with and ponder.

5 Current efforts — TTM v2.x

It was at lunch with my lead programmer, the late Jim Bickford, in June of 2006
that I devised the strategy currently in place — and which shows substantial
promise.

Jim labeled the idea ‘One-Dimensional Catastrophe Topologies’ (ODCT) —
accurate, but something of an ontological and semantic stretch. The method
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is not dissimilar to the Bar Chart Stat Pro program (FXpraxis, 2002) which
analyzes sequences of price bars of four types — Inside, Outside, Bear and Bull.

Instead of using the entire CA-Base I am extracting only strings which rep-
resent or lead to

1. A high percentage of ’0s’ [downtrend],
2. A very high percentage of ’1s’ [uptrends] ,
3. Nearly equal ‘0s’ and ‘1s’ [trading markets], and
4. some ‘special case’ string ‘formations’ that offer real-time trading opportu-

nities.

Even this represents a rather largish Base, but I am constantly pruning
and filtering to make it manageable and applicable to smaller and smaller time
frames. In the quest to drop time-frame size, my most current work (February
2008) involves using and searching as a function of Market Environments (ME)
of directional movement (DP) and Volatility (V) instead of prices. This may, in
turn, lead to a simplified CA-Base.

It is important to recognize profiting in a market does not require the forecast-
ing of exact prices. Forecasting Directional Movement and Volatility is adequate
to the task, even with a precision of 20%-25% against an arc of 900 on a price
chart.

The most significant advantage of the current approach — the ODCTs may
be searched offline and not real-time while the markets are running. A still
numerically significant but much smaller portion of the CA-Base needs to be
searched real-time, see example in Fig. 2.

6 Price-time frames or increments

It became apparent several years ago there was a high correlation between length
of time frame and (a) number of forecasts generated and (b) accuracy of forecasts.
The shorter the time frame used, the more forecasts are made and the higher
they rank statistically. I don’t have enough data on time frames of under 15-
minutes but it seems intuitive this is an exponential function, or nearly so. One
point — it is clear the longer the time frame the more ‘noise’ there is in the
data. The theory of high frequency trading may, indeed, be correct [10]!

Today I am able to use 15-minute data and am confident further work will,
using allow increments below 1-minute by using (1) an ODCT CA-Base to ana-
lyze offline, (2) ME to smooth the incoming data and (3) a redesigned CA-Base
to take full advantage of ODCT and ME.

7 TTM v2.x — The trade-off

In theory, an Algorithm Engine or complete CA-Base search will hit all available
trading opportunities. But even a very limited scan of a CA-Base using a variety
of caching methods (which will, of course, already filter out many trades) using
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Fig. 2. Comparison of prices for the EUR/USD currency pair (Euro to US Dol-
lar) against a match from the ODCT offline CA-Base. The bars to the left of the
vertical line are the ODCT match. The bars to the right of the vertical line are
the forecast by concatenating the ODCT match. The program was set to seek
only perfect matches of a minimum of 20 pre-forecast units.

1-hour data cannot match the number of trades generated by ODCT with 15-
minute data with a full scan.

I continue to search the (still expanding) CA-Base for ODCTs and am in
the process of categorizing and further analyzing the latter. My next (and fi-
nal?) step in the process is to integrate the components into a real-time algo-
rithmic trading program. My programming team is investigating NinjaTrader,
www.ninjatrader.com, for this application. Ninja is particularly suitable be-
cause its scripting language, NinjaScript is a C# subset.

8 Explorations

When one ponders a problem for 17 years many interesting side roads are dis-
covered; if only one could walk them all!

I continue to dream of a general purpose algorithm engine.
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I am exploring a CA-Base populated with binary genetic algorithm strings
and using GA as a filter/caching methodology.

I can see more conventional forecasting methods such as expert systems uti-
lizing the TTM methodology.

Other time-series models and problems may benefit from the TTM methodol-
ogy. I have briefly investigated manufacturing process control as one possibility.

I have spend almost all of my time on a 1D TTM model. The possibilities
for 2D, 3D and nD models is staggering. With limited time and money I decided
early just ‘not to go there.’ Of particular interest to me is a 3D-TTM using Price,
Volume and Open Interest in commodity futures. But many of my algorithms
were found by using 2D CAs and collapsing them into 1D. Although the methods
are testable it is doubtful they would pass full academic scrutiny.

I have not discussed my research or methods in generating unique binary
strings and consider it to be proprietary to my work.

9 Discussion

I continue to believe a method of forecasting market prices with extreme accuracy
and very low risk parameters is possible. If it is possible it is only so in a very
limited set of market conditions and over very short periods of time. Thus, the
quest to operate using very fine price-time increments of 1-minute or less.

If such a method is to be found it will be in the use of non-linear tools and
methods. Of those I have concluded cellular automata most closely matches the
ontology of markets. 35 years in the markets tell me linear methods are ‘closed’
and have little or no predictive value.

I am currently back-testing TTM v2.41 and anticipate trading at least a
prototype model in 2009. I have attempted to attract interest for final research
and trading funds from a number of major players in the FX space to no avail.
There is a curious dÈj‡ vu for me to the reception Jonathan’s Wave received at
the same stage in development, circa 1985. A company with a vision finally ‘took
a chance’ and did very well because of the success of that program. Curiously,
today, the large hedge funds are known as the world’s ultimate risk takers — but
in fact, are very conservative, in-the-box thinkers. I consider their quantitative
analysis tools, for example, to be deficient and have developing my own methods,
based on my Market Environments methodology.

I hope to make TTM v2.x updates available on my website2 and am happy
to discuss my research (within reason) with others.
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Abstract. We study applicability of information entropy for the detec-
tion of distributed denial-of-service (DDoS) attacks in a packet switching
network (PSN) model by monitoring entropy of packet traffic at selected
routers in a network. Given a certain PSN model setup (i.e., topology,
routing algorithm, and source load) a “natural” entropy profile, a sort of
“fingerprint” of the given PSN model setup, characterizes normal PSN
model operation, i.e. normal packet traffic. Whenever, the entropy de-
viates from its “natural” profile in significant way, it means that some
packet traffic anomaly is emerging. Detecting shifts in entropy in turn
detects anomalous traffic and, in our virtual experiment, a ping DDoS
attack.

1 Introduction

Distributed denial-of-service (DDoS) attacks are network-wide attacks that can-
not be detected or stopped easily. They change “natural” spatio-temporal packet
traffic patterns, i.e. “natural distributions” of packets among routers. Thus, they
change “natural” entropy or “fingerprint” of normal packet traffic. Detecting shifts
in entropy of packet traffic monitored at selected routers may provide means for
detecting anomalous packet traffic. We explore this possibility and study entropy
based detection of DDoS attacks in a packet switching network (PSN) model.
Our model is a modification of a CA like PSN model of the Network Layer of
the 7-Layer OSI Reference Model and its C++ simulator, Netzwerk, developed
by us in [1], [2], [3], and [4]. Using this model we study entropy based detection
of ping type DDoS attacks.

Our paper is organized as follows. First, we provide background information
about attacks affecting PSNs in general and DDoS in particular. We briefly
summarize DDoS attacks detection methods not based on information entropy
and discuss how the DDoS attacks change the character of the flow of packets in
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the PSNs. We introduce the concept of entropy and explain why and how it can
be used to detect anomalous traffic, thus, potentially to detect DDoS attacks.
We briefly describe our existing abstraction of PSN and its simulator, Netzwerk
and explain how they have been customized to model a ping type DDoS attacks.
Next, we introduce the definition of entropy functions used by us in detection of
DDoS attacks in our virtual experiments. We present selected simulation results
and our conclusions.

2 Attacks on packet switching networks — short review

The packet switching technology was conceived by Paul Baran as a way to com-
municate in the aftermath of a nuclear attack, as a sort of resilient command
and control network [5]. Though no implementation of packet switching network
has ever had to undergo the test of its ability to withstand a nuclear attack the
Internet, one of the best known applications of packet switching technology, is
constantly under attacks of different types, e.g.: intrusion (unauthorised access),
capturing (packet tapping), phishing (an “attempt to criminally and fraudulently
acquire sensitive information”, [6]), computer worms (self-replicating computer
programs covertly sending copies of themselves to other nodes over the network
[7]), computer viruses (“computer programs able to copy themselves, eventually
mutating, and infecting other computer without permission or knowledge of the
user”, [8]), denial of service attack (“an attempt to make a computer resource
unavailable to its intended users.”, [9] ) , and many others. Purpose and scope of
these attacks are different, ranging from the commercial to the political domain,
and often serve only the self actualization of the perpetrators.

We investigate how information entropy can be applied for detection of dis-
tributed denial-of-service (DDoS) attacks in a CA like packet switching network
(PSN) model by monitoring entropy of packet traffic at selected routers in a
network. The most common implementation of denial-of-service (DoS) is the
distributed DoS (DDoS) attack. The attack is “distributed” because the attacker
carries on his/her actions by means of multiple computers, located at various
network nodes, called “zombies”, and almost always controlled in a covert and
surreptitious way without any knowledge of their legitimate owners. Thus, DDoS
attack is a network attack that explores asymmetry between network-wide re-
sources and local capacity of the target (victim) machine to process incoming
packet traffic. In DDoS attack the victim machine and its neighbouring nodes
become quickly saturated with buildup of intended congestion, such that they
cannot respond to legitimate traffic any longer [9].

Our study focuses on the type of DDoS directing a huge number of “ping”
requests to the target victim of the attack. This type of attack exploits the
“Internet Control Message Protocol” (ICMP). “Ping is a computer network tool
used to test whether a particular host is reachable across an IP network”, [10]. “It
works by sending ICMP ‘echo request’ packets to the target host and listening
for ICMP ‘echo response’ replies. Ping estimates the round-trip time, generally
in milliseconds, and records any packet loss, and prints a statistical summary
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when finished.”, [10]. By issuing a huge number of ping ‘echo requests’ from a
very large number of “zombies” spread all over the network, it is possible to
cripple the target victim and make it unable to conduct any network activity
other than answering the ping ‘echo requests’ and, eventually, rendering it so
overloaded that it will come to a standstill. Various types of ping based DDoS
attacks exist, including, but not limited to the popular “ping flood”, [11], and
“ping of death”, [12]. Computer experts often quoted as an example of these type
of attacks the Mafiaboy attacks against Amazon, eBay and other big sites on
February 2000 [13], [14]. The Mafiaboy attacks caused millions of dollars damage.

3 Review of DDoS attacks detection methods

Since DDoS attacks are network-wide attacks they cannot be detected or stopped
easily. The detection of DDoS attacks is usually studied from three different
perspectives: 1) near the victim; 2) near attack sources; and 3) within transit
networks, see [15] and reference therein. In these approaches packet data (e.g.,
headers, aggregate flows, and correlations) are analysed with the aim of dis-
tinguishing normal traffic from attack packets. However, it is a very difficult
task because in many DDoS attacks packets are “normal-looking” and the exist-
ing methods are not accurate enough to distinguish between normal and attack
packets. For early detection of DDoS flooding attacks Yuan and Mills in [15] pro-
posed monitoring macroscopic network-wide effects of shifts in spatio-temporal
patterns of packet traffic. Their proposed method is based on studying spatio-
temporal correlations of packet traffic monitored at a number of observation
points in a network. They have shown in [15] that given a sufficient number of
observation points one can infer a shift in packet traffic patterns for larger ar-
eas outside the observation routers. Thus, their proposed method of macroscopic
network-wide monitoring can provide cues when more detailed analysis of packet
traffic should be commenced against potential DDoS attack.

4 Entropy based detection of DDoS attacks

In our study inspired by [16], we use information entropy, i.e. a measure of
uncertainty, to detect DDoS attack by monitoring entropy of packet traffic at
selected routers in a network. The thermodynamic concept of entropy provides
a measure of the disorder of a system, i.e. a measure of the degree to which the
probability of the system is spread out over different possible states. The ther-
modynamic entropy theory has been design to describe the configuration of a
system based on a series of outcome probabilities in such a way that high entropy
relates to high probability of outcome and low entropy relates to low probabil-
ity of outcome. Thus, there is the equivalence between thermodynamic entropy
and amount of uncertainty one has about an outcome. Namely, frequently oc-
curring events provide less information then infrequently occurring events, and
this links thermodynamic and information entropy. If the information entropy
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of the outcome/system is low we are less ignorant about the uncertainty about
the outcome/system and this may be used in the detection of DDoS attacks.

Since DDoS attacks are purposely created by humans they must affect natural
“randomness” and “natural structure and order” of packet traffic under normal
conditions. Thus, DDoS attacks must affect the entropy of “normal packet traffic”
and by detecting the shifts in packet traffic entropy one may in turn detect
anomalous traffic. By building first a “fingerprint”, i.e. a profile of entropy of
packet traffic under normal conditions one may establish a baseline against which
the shifts in entropy can be measured for DDoS attack detection purposes.

In our study of entropy based detection of DDoS attacks we use modification
of our PSN model of the Network Layer of the 7-Layer OSI Reference Model and
its C++ simulator, Netzwerk [1], [2], [3], [4]. In what follows we describe briefly
our PSN model and its modification.

5 CA like PSN model and its modification

Our PSN model [1, 3], like in real networks is concerned primarily with packets
and their routings; it is scalable, distributed in space, and time discrete. It avoids
the overhead of protocol details present in many PSN simulators designed with
different aims in mind than studying macroscopic network-wide dynamics of
packet traffic flow and congestion. We view a PSN connection topology as a
weighted directed multigraph L where each node corresponds to a vertex and
each communication link is represented by a pair of parallel edges oriented in
opposite directions. In each PSN model setup all edge costs are computed using
the same type of edge cost function (ecf ) that is either the ecf called ONE
(ONE), or QueueSize (QS), or QueueSizeP lusOne (QSPO). The ecf ONE
assigns a value of “one” to all edges in the lattice L. Since this value does not
change during the course of a simulation this results in a static routing. The
ecf QS assigns to each edge in the lattice L a value equal to the length of
the outgoing queue at the node from which the edge originates. The ecf QSPO
assigns a value that is the sum of a constant “one” plus the length of the outgoing
queue at the node from which the edge originates. The routing decisions made
using ecf QS or QSPO rely on the current state of the network simulation.
They imply adaptive or dynamic routing where packets have the ability to avoid
congested nodes during the PSN model simulation. In our PSN model, each
packet is transmitted via routers from its source to its destination according
to the routing decisions made independently at each router and based on a
minimum least-cost criterion. The PSN model uses full-table routing, that is,
each node maintains a routing table of least path cost estimates from itself to
every other node in the network. The routing tables are updated at each time
step when the ecf QS or QSPO is used. They do not need to be updated for
the static ecf ONE, see [1], [3]. We update the routing tables using distributed
routing table update algorithm.

In our simulations to study DDoS attacks we use a version of PSN model
in which each node performs the functions of host and router and maintains
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one incoming and one outgoing queue which is of unlimited length and operates
according to a first-in, first-out policy, see [3] for other options. At each node,
independently of the other nodes, packets are created randomly with probability
λ called source load. In the PSN model all messages are restricted to one packet
carrying only the following information: time of creation, destination address,
and number of hops taken.

In the PSN model time is discrete and we observe its state at the discrete
times k = 0, 1, 2, . . . , T , where T is the final simulation time. At time k = 0,
the set-up of the PSN model is initialized with empty queues and the routing
tables are computed. The time-discrete, synchronous and spatially distributed
PSN model algorithm consists of the sequence of five operations advancing the
simulation time from k to k +1. These operations are: (1) Update routing tables,
(2) Create and route packets, (3) Process incoming queue, (4) Evaluate network
state, (5) Update simulation time. The detailed description of this algorithm is
provided in [1], [3].

For our study of DDoS attacks we modified the above described PSN model
to allow modeling a PSN containing one victim computer and a user defined
number of "zombies" either located at specified nodes or located at random.
Start and end of attack time can be specified separately for each zombie. As in
most real life cases, "zombies" continue to carry on their normal jobs during the
attack, i.e. they act also as sources, destinations, and routers of legitimate data
transfers. However, each "zombie" also sends a packet to the victim at each time
step of the simulation.

6 Discussion of simulation results

Netzwerk simulator provides information about a number of network perfor-
mance indicators, i.e. number of packets in transit, average number of packets in
transit, average delay time of packets delivered, average path length, average speed
of delivery, throughput, and critical source load, [3]. The impact of DDoS attacks
on network performance indicators and spatio-temporal packet traffic dynamics
will be discussed elsewhere. Here we focus on entropy detection of DDoS attacks.

We calculate entropy of packet traffic passing through monitored routers of
PSN model as follows. Let M be a set of N monitored routers or nodes. The set
M may include all network nodes except “zombies” and the victim. We index all
routers in the set M by the parameter i (i.e., i = 1, . . . , N). We denote by q(i, k)
a number of packets at the outgoing queue of a router i at time k. At each time
k we calculate probability density function p(i, k) of packets queuing at a router
i of the set M as follows

p(i, k) =
q(i, k)

∑N
i=1 q(i, k)

.

We calculate entropy function of packet traffic monitored at routers of the
set M as
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H(M, k) = −
N∑

i=1

p(i, k) log p(i, k),

using convention that if p(i, k) = 0, then p(i, k) log p(i, k) = 0.
For the purpose of our study of entropy based detection of DDoS attacks we

carried out simulations for PSN model setups with network connection topology
isomorphic to Lp

�
(37) (i.e., periodic square lattice with 37 nodes in the horizontal

and vertical directions) and each of the three types of ecf (i.e., ONE, QS and
QSPO). Thus, we considered PSN model setups Lp

�
(37, ecf, λ), where ecf =

ONE, or QS, or QSPO, and λ is a value of source load that the network
is operating under normal conditions. We studied DDoS attacks for source load
value λ = 0.040. At this value each PSN model setup is free of any congestion, i.e.
is in its free flow state. The critical source load value λc , i.e. the phase transition
point from free flow to congested network state, for each of the considered PSN
model setups is as follows: λc = 0.053 for Lp

�
(37, ONE), and λc = 0.054 for

Lp
�

(37, QS) and Lp
�

(37, QSPO). For details how to estimate λc see [3]. Since
we always start simulations of PSN model setups with empty queues, each time
we started DDoS attacks after the initial transient time, i.e., when the network
was operating already in its normal steady state for some time. For each of the
considered PSN model setups we started the DDoS attacks at time k0 = 20480
that was much larger than the transient times and allowed the attacks to last
until the final simulation time, T = 131072 (the same for all PSN model setups).

For each PSN model setup operating under normal conditions, i.e., in the
absence of any attack and for each considered set M of monitored routers we
calculated first entropy function H(M, k). Thus, we built first a “natural” entropy
function, a sort of “fingerprint” profile of the given PSN setup, characterizing
normal PSN operation, i.e. normal traffic. Next, we calculated entropy function
H(M, k) for each PSN model setup being under a DDoS attack. We considered
a series of separate DDoS attacks each characterized by a number of active
“zombies”. In this series, while increasing number of “zombies”, we maintained
locations of the “zombies” from the previous DDoS attacks, i.e. we added only
new “zombies”. We calculated entropy functions H(M, k) for sets M of different
sizes, i.e. with different numbers of monitored routers. Also, for each number of
monitored routers we considered sets M that differed in locations of monitored
routers. We selected monitored routers locations randomly using different seeds
of random number generator.

As mentioned earlier, for each monitored set of routers our entropy algorithm
first builds a “natural entropy” or “fingerprint” profile of the network’s normal
behaviour in the absence of any attack. For the considered PSN model setups
our simulations showed that entropy functions of packet traffic monitored at 5%
of all network routers (i.e., at 68 routers out of 1369 routers in our model) may
already deviate significantly downward from their “natural profiles” when the
network is under DDoS attack with four or more “zombies”, see Fig. 1, Fig. 2,
and Fig. 4 We observe on these figures that if DDoS attack is sufficiently strong
the entropy functions almost immediately and sharply deviate downward from
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Fig. 1. Plots of “natural entropy” profile (i.e., with 0 attackers) and entropy
functions of packet traffic monitored at 5% of randomly (with seed 1) selected
routers during DDoS attacks in PSN model with Lp

�
(37, ONE, 0.040) setup. The

horizontal superimposed plots correspond to attacks with 0, 1, 2, and 3 attackers.
The initial decrease in entropy of packet traffic is similar for DDoS attacks with
4, 5 and 6 attackers. However, after the initial transient time the dynamics of
entropy functions is different for these attacks.

the “ “natural entropy” profiles. In all the figures the horizontal plots correspond
to “natural entropy” profiles calculated for the selected sets of monitored routers.
The locations of monitored routers in Fig. 1 and Fig.3 are the same but they are
different from the locations of the routers in Fig. 2, and Fig. 4 which are the same
on both of these figures. In Fig. 1, Fig. 2, and Fig. 4 plots of entropy functions
for network under DDoS attack with 1, or 2, or 3 “zombies” are superimposed
with the respective entropy “fingerprint” plots, i.e when number of attackers is
“0”. This is because for these numbers of “zombies” the attacks are weak, in
particular, when networks are using adaptive routings. Our simulations showed
that to detect weak DDoS attacks one needs to monitor larger number of routers.
In Fig. 3 all entropy plots corresponding to DDoS attacks are superimposed with
the “fingerprint” plot. From Fig. 3 and Fig. 4. we see that for a give number of
monitored routers behaviours of calculated entropy functions of packet traffics
depend on routers locations. Thus, in a case of weak attacks and a small number
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Fig. 2. Plots of “natural entropy” profile (i.e., with 0 attackers) and entropy
functions of packet traffic monitored at 5% of randomly (with seed 2) selected
routers during DDoS attacks in PSN model with Lp

�
(37, ONE, 0.040) setup. The

horizontal superimposed plots correspond to attacks with 0, 1, 2, and 3 attackers.
The initial decrease in entropy of packet traffic for DDoS attack with 5 and 6
attackers is faster than for the attack with 4 attackers.

of monitored routers the selection of their locations can affect significantly our
ability to detect DDoS attacks. Our simulations showed that by adding to the
original set additionally 15% of routers out of their total number in a network
(i.e, by monitoring 20% of all routers, in our case 274 out of 1369) the entropy
functions of packet traffic behave qualitatively the same as in Fig.4. Thus, one
can detect anomalies in packet traffic using them because when the values of
entropy functions sharply decrease from the “fingerprint” profiles shortly after
the beginning of DDoS attacks this means that they detect with certainty the
presence of an infrequent event, i.e. an emerging anomaly in packet traffic. In
our simulations these anomalies were caused by DDoS attacks.

Our simulations showed that for each set M of monitored routers the plots
of entropy functions of packet traffic for PSN model setups with ecf QS and
QSPO are qualitatively and quantitatively similar. However, they differed from
the corresponding entropy functions of packet traffic for PSN model setup with
ecf ONE. This can be seen from the figures. Fig. 1 and Fig. 2 display entropy
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Fig. 3. Plots of “natural entropy” profile (i.e., with 0 attackers) and entropy
functions of packet traffic monitored at 5% of randomly (with seed 1) selected
routers during DDoS attacks in PSN model with Lp

�
(37, QSPO, 0.040) setup.

All entropy plots are superimposed.

functions for PSN model setup using ecf ONE and Fig. 3 and Fig. 4 display
entropy functions for PSN model setup using ecf QSPO. Thus, our ability to
detect DDoS attacks depends also on the type of routing algorithm used by a net-
work. It is much easier to detect DDoS attacks by calculating entropy functions
of packet traffic for networks using static routing than dynamic ones. The static
routings do not have the ability to route packets avoiding congested network
nodes. Thus, congestion develops very quickly along the paths from “zombies”
to the victim and around the victim altering “natural packet traffic” and the en-
tropy “fingerprint” profiles. For networks using dynamic routings packet traffic
is more evenly distributed across each network and it takes longer for congestion
to develop, most likely, first around the victim and from there to spread out
into the network. The build up of congestion and spatio-temporal packet traffic
dynamics under DDoS attacks we will discuss elsewhere.
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Fig. 4. Plots of “natural entropy” profile (i.e., with 0 attackers) and entropy
functions of packet traffic monitored at 5% of randomly (with seed 2) selected
routers during DDoS attacks in PSN model with Lp

�
(37, QSPO, 0.040) setup.

The horizontal superimposed entropy plots correspond to DDoS attacks with 0,
1, 2, and 3 attackers. The entropy decrease for DDoS attack with 4 attackers is
smaller than for attacks with 5 and 6 attackers for which the entropy plots are
almost superimposed.

7 Conclusions

DDoS attacks change “natural” spatio-tempral packet traffic patterns, i.e. “nat-
ural” distributions of packets among routers. We have demonstrated that these
changes may be detected by calculating entropies of packet traffic distributions
among a small number of selected monitored routers. Thus, one can detect
anomalies in packet traffic using entropy based detection methods because the
values of entropy of packet traffic sharply decrease from the “fingerprint” profiles
shortly after a start of DDoS attack, meaning with certainty presence of an infre-
quent event, i.e. an emerging anomaly in packet traffic. In our simulations these
anomalies were caused by DDoS attacks. Our simulations showed that to detect
changes in entropy caused by weak DDoS attacks one needs to monitor larger
number of routers and/or pay attention to their locations within the network
while selecting them for monitoring. We have observed that stronger DDoS at-
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tacks cause significant and almost immediate changes in entropy of packet traffic
monitored even at a small number of routers regardless of their position. Addi-
tionally, we observed that it is much easier to detect DDoS attacks by calculating
entropy of packet traffic for networks using static routing than dynamic ones.
In conclusion, we demonstrated the ability of entropy to detect DDoS attacks.
However, several questions need to be explored further, i.e. how to select the
monitored routers and how many of them so that entropy can detect anomalous
packet traffic regardless of its intensity.
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Abstract. Greenberg-Hastings (GH) cellular automata are known
to mimic electrical properties of cardiac cells. The GH rule is modified to
resemble self-excitation of the heart pacemaker cells. A plain square lat-
tice connections, usually used in cellular automata models of the cardiac
tissue, are rewired to induce heterogeneity in the intercell connections.
The rewiring rule is local in relation to cellular automata construction’s
idea, and the rule sets up the preference to dense connectivity between
cells. Simulations show that the heterogeneity in topology qualitatively
influences oscillatory properties of the system. The intrinsic dynamics of
the cellular automaton drives the self-organization of network state to
the oscillatory one. However, the strength and diversity of oscillations
depend not only on intrinsic cellular dynamics but also on underlying
topology. Large variety in oscillations is interpreted as the better flexi-
bility to response effectively to the actual needs of the body.

1 Introduction

Gil Bub, Alvin Shrier and Leon Glass in [1, 2] have discussed simple two di-
mensional cellular automata (CA) to explain the role of intercell relations in
propagation of impulses in the cardiac tissue. They compared the appearance of
multiple spirals on CA states to the electrical activity of the ventricle undergoing
the fibrillation. They found that the impaired communication between cells led
to the breakup of the spiral waves.

The model considered by Bub et. al is the adaptation of the Greenberg-
Hastings (GH) model [3, 4]. In the original GH model an automaton aI is as-
signed to each site of a regular lattice. The subscript I refers to the location in
the lattice. The neighborhood of a site corresponds to its K nearest neighbors.
The states of the automaton are firing (F ), refractory (R) and activity (A). The
update rule is as follows:
— if aI(t) = F then aI(t + 1) = R
— if aI(t) = R then aI(t + 1) = A
— if aI(t) = A then aI(t + 1) = A unless the number of automata in the firing
state at time step t in the neighborhood of I is greater than some threshold TF ;
then aI(t + 1) = F .
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The three-state CA model can be easily generalized to the n-state CA model
by considering time intervals nF and/or nR in which the automaton stays in
firing and refractory states correspondingly, and then switches to the next state.

Bub et. al modified the GH model to account for the physiological property
of the spontaneous activation of a cardiac cell. They considered the possibility
of self-excitation of each automaton:
— if aI(t) = A then, with probability p, aI(t + 1) = F independently of the
states of its neighbors.

Moreover, they also found that the spatial heterogeneity is an important
ingredient in the global organization of dynamics in the considered system [2].
Therefore they considered the regular two-dimensional system proposed by Markus
and Hess [5] modified by implementing different local cell densities.

Spontaneous activation is the inherent feature of each cardiac cell which con-
stitute the pacemakers [6]. The regular impulses, that result in rhythmic con-
tractions of the heart, begin at the first cardiac pacemaker called the sinoatrial
(SA) node. The activity of the SA node spreads throughout the atria causing
the atrial contraction. This activity is passed to the atrioventricular (AV) node
— the second cardiac pacemaker. Specialized conduction pathways: bundle of
His and Purkinje fibers conduct the impulse throughout the ventricles causing
the ventricle’s contraction in unison.

At AUTOMATA 2007 workshop in Toronto, we presented features of a one-
dimensional system of CA where each automaton had the property of self-
excitation, namely, each automaton must switch to the firing state after nA

steps spent in the activity state. We referred to such CA as FRA-CA.

Our studies of the two FRA-CA have shown that only the following stable
states are possible, [7, 8]: the rules adjusted evolution — if the result of both rules:
intrinsic and interactions between the automata, is the same; the alternating
impacts evolution — if within each period two events of impacts take place: the
first event means A automaton is impacted by B automaton —A is switched to
firing, and then the second event occurs — B is impacted by A what switches B
to firing; the quiet evolution — there are not any impacts between the automata.

One can say that the alternating impacts evolution is the maximally active
dynamics since both cells of a pair intensively interact with each other all the
time. Because of the intensity of impacts the intrinsic periods of both automata
are shortened to the shortest period possible T ∗ = nF + nR + 1. The other
two solutions: the rules adjusted evolution and the quiet evolution, are also
periodic but the period is equal to the intrinsic period of the FRA-CA, i.e., to
T = nF + nR + nA .

Moreover, it has appeared that in case of a line of FRA-CA with the open
boundary, the system always reaches a periodic state with only one of the two
periods either T or T ∗ . Depending on the model parameters the probability to
find which of the two periods T or T ∗ occurs, depends on the relation between
nF and nR. If nF ≤ nR, then we have only the solution with the period T . If nF

is slightly greater than nR, then the solution with the period T ∗ is significantly
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more probable. Finally, if nF >> nR, then the solution oscillates with the T ∗

period .
It has also been found that if nR > nF then all automata follow the rules

adjusted evolution. It is possible because the rule adjusted evolution is of the
diffusive type. This case is physiologically interesting because it is known that
the time used by a cardiac cell for the firing state is shorter than the time spent
in the refractory state or during the activity state [9]. Therefore in our further
analysis, though trying to be general, we concentrate on FRA-CA systems which
have this property.

Searching among details of particular configurations of systems which evolve
with the period T ∗ we have discovered that for emerging stabilization with T ∗, it
is enough that there exists a single pair of automata which performs the alternat-
ing impacts evolution. The periodicity of that pair is then propagated to the both
ends of a line because the rest of the pairs have their phases adjusted. Hence,
high frequency oscillation of the whole system results from self-organization of
all automata and, moreover, it relies on the two automata activity. In this sense
the line of FRA-CA can be considered as the approximation to the cardiac
pacemaker. However the arrangement in a line is far from the known cellular
organization of the SA node. Therefore it is interesting to investigate how other
network relations influence the FRA-CA system properties as the model of the
cardiac pacemaker.

In the following, we concentrate on the influence of the network topology
to generate regular oscillations of the total CA state. The FRA-CA will be lo-
cated in nodes of the complex network, however, the network design will be
strongly physiologically motivated [10, 11]. Section 2 contains both the phys-
iological motivation and details of the network construction. Then, in Section
3, we will investigate the periodicity in the FRA-CA systems. In particular we
will consider the problem whether the sharp transition between the two peri-
ods T and T ∗ is still present. We especially concentrate on the systems where
nR = nA = 2nF . The paper is concluded in Section 4.

2 The network topology

Until the middle of the previous century the heart tissue was considered as
a syncytium — a multi nucleated mass of cytoplasm that is not separated into
individual cells [10]. Due to the development of the electron microscopy it became
clear that cardiac cells — myocytes, were long but individual units, bounded on
ends by intercalated discs. Soon it was found that each disc was a measurable gap
which separated the opposing cell membranes. That gap junction has appeared
as highly structured. Each gap junction consists of many mechanisms which
provide a pathway for direct cell-to-cell communication between adjacent ones.
Therefore in a simplified picture one can approximate the cardiac tissue by a
network consisting of branched chains of elongated cells which are connected by
gap junctions — the only way to transmit the interactions.



On modeling of the heart pacemaker by cellular automata 589

Some network characteristics of the cardiac tissue are known. It appears
that a typical myocyte which constitutes the canine SA node has about 4.8±0.7
nearest neighbors which are located as [11]: (a) about 0.7± 0.5 side-to-side, (b)
about 0.6± 0.7 end-to-end ,and (c) about 3.5± 1.9 lateral.

Hence about 74% of connections are lateral. Moreover, the side-to-side and
lateral connections have relatively small gap junctions, and therefore their effi-
ciency in transmiting signals is considered less effective than in the case of the
end-to-end connections. Notably the crista terminalis cells (the cardiac tissue
which conducts signals from the SA node to the AV node) have about 60% of
6.4± 1.7 neighbors connected as end-to-end.

Taking into account the physiological observations we see that the linear
topology is evidently to simple to represent the connections between SA nodal
cells. The next topological candidate is a square lattice. Let us consider the
regular square lattice with the linear size L. To replicate the nodal properties
listed above we introduce the preference to lateral connections in the following
way:
(I) For a given probability d, a vertical or horizontal link is created with d/2
probability while any diagonal edge is created with 2 ∗ d probability.

Fig. 1. Construction of a network: most of connections are diagonal because of
(I) rule; the leftmost and rightmost cells of each row are outputs of the system
(inputs to crista terminalis) and all of them are linked to their neighbors by the
end-to-end connections; the red lines illustrate the rewiring rule (II): the AB
edge is exchanged by the AB’ edge. Color on-line.

It is easy to see that the canine SA node structure is about to be restored if we
work with d = 0.45, see Fig. refnetwork. The cells from the leftmost column and
rightmost column are considered as the interface to the crista terminalis cells.
Therefore we additionally link them via horizontal connections to its neighbors.
Moreover, it happens, especially when d is small, that isolated cells appear. To
cure this unrealistic situation, we connect such cells to their nearest right cells.
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By these two extra rules, some additional horizontal connections are present in
the system. In case of d = 0.45 the resulting network has about 10% vertical,
11% horizontal and 79% of diagonal connections.

The introduced structure is flat. To make the surface uneven we propose
rewiring procedure. The rewiring rule is local to obtain the best possible relation
to CA idea, and additionally the rule sets up preference to dense connectivity
between a cell and the network. The rewiring consists of the following rules: see
Fig. 1:
(II) Let p be the probability of rewiring
(i) For a given cell A when choosing its neighbor to disconnect, a less connected
cell is preferred. The probability to unlink the B cell from the vertex A is cal-
culated as follows:

punlink =
p

deg(B)

(ii) The rewiring is local what means that a new cell B′ will be linked to the cell
A chosen only from the actual neighbors of B automaton.
(iii) To preserve the line structure, any horizontal connection is forbidden to be
rewired. Unlinking from a leaf is forbidden also.

Fig. 2. Left figure: the vertex distribution in considered networks. Right figure:
a part of a typical configuration with actual connections. All neighbors of some
randomly chosen vertex with high degree are presented — red lines. The green
lines correspond to connections within the Moore neighborhood of the chosen
vertex. Numbers are degrees of vertices. Color on-line.

In Fig. 2 (left) we show the vertex degree distributions in the networks which
result after applying the above algorithm to each edge with p = 0.01 and repeat-
ing the procedure 0, 100 and 500 Monte Carlo steps (MCS). It appears that due
to locality in rewiring the network is only slightly modified, see Fig. 2 (right) for
a typical example of the connections which are established after 100 MCS. The
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network is almost flat but slightly heterogeneous — there are several vertices
with the vertex degree twice larger than the average vertex degree.

3 Results

The physiological observations show that the lengths of the firing and refractory
phases of a cell activity are fixed. Hence fixed timings nF , nR and nA are the
proper approximation to the reality. However, to weaken the stiffness of deter-
ministic rule let us consider the possibility to shorten values of nF , nR and nA

in each time step. Formally, let us propose that a cellular automaton performs
the stochastic evolution governed by the following rule:

— If at a time step t the state of the FRA-CA is
(

σ
s

)
(t) then in the next

time step t + 1, the state of the isolated FRA-CA is given as:

(σ

s

)

(t)
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where σ ∈ {F, R, A}, nσ ∈ {nF , nR, nA} and next(F ) = R, next(R) = A,
next(A) = F .
— If a network of N FRA-CA is given and
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tomaton located in the I-th node, and NI is the set of the Ith node neighbors.
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(
σ
s

)

I
(t) =

(
A
a

)

and there are more than TF neighbors J ∈ Ni such that
(

σ
s

)

J
(t) =

(
F
f

)

then
(

σ
s

)

I
(t + 1) =

(
F
1

)

; TF is the threshold for an external
signal to initiate the firing state of the Ith cell.

By the above rule there is a nonzero probability to switch the automaton state
from the current one the next state in the automaton’s intrinsic cycle. If ξ >> 1
then we restore the deterministic evolution. Notice, for ξ > 1, only very few last
steps could be skipped. Therefore the effective timings are closely determined
by the values of nF , nR and nA and the basic oscillations have periods are only
slightly smaller than T or T ∗.

Finally, let as assume that the threshold TF for firing an automaton equals
to 1, i.e., at least two neighbors in the firing state are needed to switch an
automaton from the state of activity to firing. However, since the horizontal
connections are known to be much larger and more efficient than others, we
additionally assume that their influence is doubled. Hence only one left or right
neighbor being in the firing state activates the adjacent cells.

The system activity must rely on the cell-to-cell connection. Therefore we will
observe properties of single cells. Let us investigate properties of (a) an automa-
ton from the output APoutput, i.e. a cell chosen from the leftmost or rightmost
column, (b) an automaton chosen from a subset of all densely connected au-
tomata APleader , and (c) a typical automaton APcell. All automata to study
are selected at random. Then we convert the states of the chosen automata into
the function of the membrane electrical potential — called Action Potential and
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denoted AP: (the linear approximation is physiologically justified [6])

if the automaton state is
(

A
a

)

, then AP (t) = AP 0
A + a(AP 0

F − AP 0
A)/nA; if the

state is
(

F
f

)

then AP (t) = AP 0
F + f(AP 0

R −AP 0
F )/nF ; finally, for

(
R
r

)

we have

AP (t) = AP 0
R+r(AP 0

F −AP 0
R)/nR where AP 0

A = −65mV , AP 0
F = −40mV , and

AP 0
R = 20mV are the SA nodal cell’s Action Potential values at the beginning

of the corresponding phases.

Fig. 3. Left column: typical series of electric activity of randomly selected au-
tomata: two of the output cells, two of the whole system, two of the most
densely connected. Right column: power spectra of the chosen automata sig-
nals, log plots. Upper part corresponds to nF >> nR, bottom part corresponds
to nF << nR. The rewiring algorithm is not applied.

In Figs. 3–5 we present signals obtained for nF = 10, and for nR = 5 (what
refers to the case when nF is significantly larger than nR) and nR = 20 (which
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Fig. 4. Left column: typical series of electric activity of randomly selected au-
tomata: two of the output cells, two of the whole system, two of the most
densely connected. Right column: power spectra of the chosen automata sig-
nals, log plots. Upper part corresponds to nF >> nR, bottom part corresponds
to nF << nR. The rewiring algorithm is applied for 100MCS.

corresponds refers to nF is significantly smaller than nR). In these figures we
look for the presence of the transition in the dominating oscillation. The value nA

is chosen large, namely nA = 20, to better visualize the difference between the
two periods T and T ∗. Each figure of 3–5 corresponds to the different network
topology. To identify oscillations in signals we calculate the power spectrum S(f)
from the 10 000 time steps of stationary signals. The power spectra are found by
the Fourier transform.

One should notice that in all plots the maxima in the power spectra are
evidently present, though they are wide and moved to the right from the limit
values 1/T and 1/T ∗. Both these effects are due to the stochasticity in the
dynamics.
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Fig. 5. Left column: typical series of electric activity of randomly selected au-
tomata: two of the output cells, two of the whole system, two of the most
densely connected. Right column: power spectra of the chosen automata sig-
nals, log plots. Upper part corresponds to nF >> nR, bottom part corresponds
to nF << nR. The rewiring algorithm is applied for 500MCS.

In Fig. 3 — the case when the rewiring algorithm is not applied, we see that
there is the transition in the oscillation frequency. If nR = 5 then the basic
frequency is closely related to T ∗ — all randomly selected automata evolve with
the shortest possible period, while if nR = 20 then the chosen FRA-CA oscillate
evidently with 1/T .

If the rewiring algorithm is applied for 100 Monte Carlo steps, see Fig. 4,
then the dominant frequency for nR = 5 corresponds to T ∗ as in the case of
the flat network. However, the power spectra of signals received from FRA-CA
characterized by nR = 20 are significantly different from the ones obtained in
case of the flat network. In the plots of the time series, left column of Fig. 4,
different lengths of the activity phase occur. This directly shows that all frequen-
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cies between 1/T and 1/T ∗ can be present in the system. Hence the transition
here means admitting evolution with the wide spectrum of possible oscillations.

When the structure of the network is modified strongly — the case when
the rewiring algorithm is applied for 500 MCS, see Fig. 5, the transition dis-
appears. The dominant frequency is related to the active oscillations with the
period T ∗ independently of nR, though the oscillations with T are also present.
The two randomly selected automata evolve with switching between these two
oscillations.

In Figs. 3–5 , AP (t) of few randomly chosen cells are shown. However we
also have investigated some average properties of the system. Namely, we have
studied oscillations in signals representing the number of FRA-CA staying in
the firing state in the leftmost column and in the rightmost column, i.e., in the
mean output signals. We also have counted the total signal — number of all cells
which are in the firing state. It has appeared that these signals have the same
oscillatory properties as it has been described considering properties of AP of
the selected automata. Therefore we can claim that our observations are general.

Now, let us assume that a given frequency f is present in a signal if its power
spectrum value S(f) is greater than 1. For the spectra presented in Figs 3–5 in the
right columns it means that all fs above zero are collected. In Fig. 6 we present
all frequencies extracted in this way from the spectra of APoutput, APleader and
APcell when nF = 10, nA = 20 and for different values of nR. The results are
presented according to the three types of network settings: no rewiring, 100 MCS
of rewiring and 500 MCS of rewiring. The black points correspond to 1/T and
1/T ∗ frequencies.

Since we have simulated many FRA-CA systems with different values of nF

and nA, we can state that Fig. 6 is typical with respect to both fixed values.
The transition in periodicity is evidently present in all FRA-CA systems located
on stochastic homogeneous networks, see Fig. 6 first row. The transition points
are about nR ≈ nF /2. Hence, the transition takes place at lower nR value than
it has been observed in the network with the plain line topology. The strength
of the oscillations can be estimated by appearance of higher harmonics of the
basic frequencies. In all plots obtained for the not rewired network, the second
harmonics of the T period is present. So the system basically evolves according
to the cellular intrinsic dynamics.

On the other hand, when the network is strongly modified in the result of
rewiring algorithm applied for 500 MCS (the bottom row in Fig. 6), the prevailing
frequency is related to 1/T ∗. However 1/T frequency is also present. Especially
cells which are not densely linked to the network may evolve with their intrinsic
period.

The case of the network, where the local rewiring rule was applied for 100
MCS, is different from the both cases described above. The wide interval of
frequencies is noticeable. This variety of frequencies is related to all possible
shortenings of the activity time nA. It seems that the dynamical self-organization
of FRA-CA is not as fixed as it happens when FRA-CA are placed on other
considered networks.
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Fig. 6. Oscillations that are strongly present in the power spectra: {f : S(f) ≥
1}, of cellular signals: APoutput, APleader and APcell (in columns), for different
network models (in rows). nF = 10, nA = 20 and nR = 2, 3, . . . 40.

In Fig. 7 we show snapshots from a stationary state of the best, in our opinion,
FRA-CA pacemaker. One can observe that the activity of the state is governed
by clusters of CA which are in the firing state. Moreover, these clusters have
the spiral shapes. We believe that emergence of such patterns is the indicator
that the evolution relies on automata with adjusted phases. We also believe that
in the centers of the spiral patterns there are few automata which are tightly
joined together by a kind of alternating impacts evolution. These sources of the
spiral patterns are long living structures, though a kind of a stochastic walk of
these centers can be observed. This walk is probably related to the stochasticity
in the intrinsic dynamical rule.

4 Conclusions

Electrophysiological properties of the sinoatrial node have been studied exten-
sively in various species such as rabbits [13] or dogs[11]. But the observations
found in these studies are valid also for the human sinoatrial node. Emanuel
Drouin observed that “the electrical behavior of adult human SA node pace-
maker cells resembles those of SA nodal tissue of different animal species" [12].
He concluded his research on the human SA nodal cells saying “the latter ideally
mimic the former". Therefore, when modeling the SA node, one can base on bi-
ological observations obtained from investigations of either animals or humans,
equivalently.
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Fig. 7. Two snapshots from a stationary state of the FRA-CA system on the
rewired network. (100MCS, nF = 10, nR = 20, nA = 20.) Cells in the firing state
are plotted in red (gray), other states are plotted in blue (dark gray).

Cellular automata have been used to model biological systems of different
types, see, e.g., [14] for the review. In particular, cellular automata are known to
model accurately the excitable media, see e.g. [15, 1, 2]. Our proposition is related
to the GH model of the excitable media. The GH rule has been adjusted to
resemble the self-excitation property of the SA nodal cells. Moreover, the square
lattice topology, usually used in cellular automata models of the cardiac tissue,
has been modified to mimic the physiologically known fact, namely heterogeneity.

Our simulations have shown that the heterogeneity in topology qualitatively
and quantitatively influences on the oscillatory properties of the system. The
total state of FRA-CA is self-organized to produce an oscillatory state. However,
the strength and the rate of the oscillations depend not only on the properties of
intrinsic cellular dynamics but also on the underlying topology. If the automata
interconnections are flat (though resembling the vertex degree characterization of
the SA nodal connections) then the transition between the two limit frequencies
1/T ∗ and 1/T occurs when nR increases. When the two-dimensional topology
is locally modified then we observe the presence of the interval (1/T, 1/T ∗) of
oscillations. However, if the network connections are strongly modified then only
the two limit oscillations 1/T and 1/T ∗ are simultaneously present independently
of the intrinsic automata dynamics.

Cardiological control means the adjustment of the heart rate. This is achieved
by the two contrary acting neuronal systems: parasympathetic and sympathetic.
Both systems influence the heart rate by sending bursts of impulses through the
neuronal network what leads to release of acetylcholine — the parasympathetic
transmitter, or noradrenaline — the sympathetic transmitter, at the myocytes.
In response the myocyte elongates (the parasympathetic activity) or shortens
(the sympathetic activity) its time to the self-activation [16].
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Such control can be directly implemented into the FRA-CA dynamics by
elongating or shortening the activity time nA. However the change will be ef-
fective in FRA-CA only if the intrinsic periodicity T is present. In the systems
considered the frequency 1/T is present however its role is different — from the
only possible (the flat network) to staying apart (the most rewired network).
Therefore, in our opinion, the FRA-CA systems, where the network of flat in-
tercellular connections is only slightly modified, seem to be better prepared to
respond to the external control. Verification of this hypothesis is the aim of our
further development of the model.

The simulations were performed with 10 000 FRA-CA. It is known that
the human SA node consists of about 70 000 cells[6]. Hence to obtain the one-
to-one mapping we should increase the size of simulated systems. Moreover, it
is known that the SA nodal cells are not identical. Fortunately, the differences
between cells are systematic — the further from the center of the sinus node, the
difference between a center cell and a periphery cell is more evident. Therefore
then enlarging the system one can easily incorporate the fact of the cell diversity.
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Abstract. Wound healing is a complex physiological process, requiring
restoration of the barrier function of skin. Human skin equivalent models
(HSEs) have been proposed as a valuable in vitro tool for understanding
the biology of epidermal wound repair while also providing a significant
new platform for studying growth, response and repair of human skin
subjected to treatment under strictly regulated conditions. Experimental
evidence of regeneration of the epidermis in HSEs demonstrates inter-
esting dynamics as the barrier function is restored. We present a cellular
automata model that describes the development of a multilayered struc-
ture in order to explore the role for calcium dependent differentiation.
Comparison of the simulation model with experimental data shows that
the calcium-tissues interaction is an autopoiesis mechanism that sustains
the tissue structure.

1 Introduction

Skin, the largest organ in the body, performs many important roles including
protection against physical and chemical insults, regulation of temperature and
fluid loss. To restore the protective barrier function of skin, the body needs
to close any wound damage as quickly as possible. If we are to understand
the complex process of wound healing, the employment of biological models is
essential. In particular, the use of in vitro three-dimensional skin models —
human skin equivalents (HSEs) — holds promise for the study of wound healing
with and without potential therapeutic agents. Human skin may be viewed as
consisting of two parts: a dermis, which is mainly a connected collagen matrix
populated by a variety of cellular components including an embedded vascular
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structure, and an epidermis, which is composed predominantly of a cell type
known as keratinocytes in different states of differentiation.

An HSE, as simplified analogue of human skin, is a construct grown upon
de-epithelialized and de-cellularised dermis harvested from patients undergoing
cosmetic surgery. A central portion of the upper surface of this substrate is
seeded with keratinocytes that have been isolated from the same donor [2]. The
construct is then maintained in a nutrient bath with the construct positioned
at the air-liquid interface. Hence in a fashion analogous to in vivo skin, nutrient
is supplied to the cells of the epidermis from below, while the upper surface
is exposed to the atmosphere. The initial colony of keratinocytes increases in
number and spreads laterally, while developing in thickness it quickly establishes
a spatial structure analogous with that of human epidermis.

Fig. 1. (left) HSE construct as seen from above. Diameter of colony (stained)
approx. 10mm. (right) Histological section through HSE construct showing stra-
tum basale (B), stratum spinosum (S), stratum granulosum (G) and stratum
corneum (C). (source: J. Malda)

The epidermis in both the construct and real skin, consists of: stratum basale,
stratum spinosum, stratum granulosum overlain by a layer of dead cells known
as stratified corneum. Each layer performs a different function and is character-
ized by keratinocytes in different states of differentiation. The lowermost layer,
the stratum basale, contains the only cells that proliferate, usually identified
as either keratinocyte stem cells and transit amplifying cells. These proliferating
cells are all attached to a basement membrane that separates the dermis from the
epidermis. Transit amplifying cells that no longer proliferate detach themselves
from the basement membrane and start to differentiate into non-proliferating
spinous cells. Continuous cell proliferation at the base of the structure causes
cells to be pushed upwards away from the dermis-epidermis interface. As the
spinous cell are pushed further from the basement membrane they undergo fur-
ther differentiation to form the thin stratum granulosum layer. The death of
these cells produces the keratinized layer or stratified corneum.
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A proposed mechanism modulating the differentiation of the keratinocytes
and thus regulating the layering of epithelial tissue depends on the establish-
ment and maintenance of a calcium gradient. Such a gradient is observed in
both human skin and the HSE. Calcium has been implicated in the production
of strong inter-cell linkages that are most prevalent in the upper stratum granu-
losum layer and as a trigger for keratinocyte differentiation. The exact origin of
this gradient, the manner in which it is maintained is unknown. The elucidation
of this mechanism forms the basis for the investigation described in this paper.

Our hypothesis is that the calcium gradient and the differentiated tissue are
an autopoiesis system with the calcium gradient maintained by the differenti-
ating tissue while the continued differentiation of keratinocytes and hence the
layered structure of the epidermis is driven by the calcium gradient. We have
employed a cellular automata (CA) method of simulating this mechanism both
because of the discrete nature of the skin cell states and because of CA’s proven
ability to capture other autopoiesis systems [1, 5, 3].

2 The simulation

In order to prevent any confusion that may arise from our simulation of biolog-
ical tissue and cells with typical cellular automaton terminology, the individual
matrix units of the CA model described in this paper will be referred to as boxes
rather than cells. The term cell will be exclusively used for biological cells.

The aim of the simulation is to investigate the relationship between cal-
cium concentration and the spatial pattern of cell differentiation found in the
HSE. The simulation is built upon the following simplified biological assumptions
about the HSE:

– The HSE epidermal tissue consists of cells and a surrounding extra-cellular
fluid.

– Cell proliferation only occurs in a single layer of cells at the base of the
epidermis.

– Cell proliferation occurs at a constant rate independent of calcium concen-
tration.

– Any new cell that is produced by proliferation displaces the parent cell from
the basal layer.

– Any new cell contains no accumulated calcium.
– Cell proliferation results in adjacent cells being moved within the tissue.
– The calcium concentration at the base of the epidermis is kept at a constant

concentration.
– Calcium can diffuse freely throughout the extra-cellular fluid of the tissue.
– If present in the extra-cellular fluid, calcium is accumulated by cells at a

constant rate.
– Cells have a constant death rate.
– Cells can also die when they have accumulated a maximum set value of

calcium.
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– When cells die they release all of their accumulated calcium into the sur-
rounding extra-cellular fluid.

– Dead cells are removed from the tissue and assumed to occupy no space.

2.1 The program

The program is written in Sun Microsystems Java 6.0 and the source code
is available at: http://gpettet.googlepages.com/hse.java 5. A java applet
of the simulation, embedded in a web page is available at: http://gpettet.
googlepages.com/CalciumTissueModel.html 6. The simulation is based on a
two dimensional 100 × 100 array of box objects and represents a 2D vertical
section through the HSE. The left and right edges of the matrix are linked. A
box can contain a single cell object and an integer value of calcium. A box has
two sets of values, time now and time next for cell occupancy and calcium. This
allows synchronous updating of cell states. A cell can also contain an integer
value of calcium and can be in one of two states; connected to the basement (0),
or within tissue mass (1).

2.2 The algorithm

A. Create a new cell in a box in the middle of the base vector of the matrix.
B. Set that cell state 0.
C. For each box in the base vector of the matrix:

1. If the box contains a cell, set the number of calcium unit in the box to
a constant preset value.

D. For each box in the matrix:
1. If the box contains a cell or is next to a box that contains a cell ran-

domly redistribute any calcium units between itself and its 4 surrounding
neighbours.

2. If the box does not contain a cell or is not next to a box that contains a
cell set the calcium value to zero.

E. For each cell in the simulation:
1. If a random value is less than the death rate value then kill cell and

transfer any cell calcium to the box that it was occupying and remove
cell from box.

2. If the cell is in a box that contains calcium, take up one unit of calcium
from the box to the cell.

3. If the cell contains more than 60 units of calcium then kill the cell and
transfer any cell calcium to the box that it was occupying and remove
cell from box.

F. For each cell of the simulation that is in state 0 (Basement cells)
1. If a random number is less than the growth rate;

5 (note page also at http://ric.colasanti.googlepages.com/hse.java)
6 (note page also at http://ric.colasanti.googlepages.com/CalciumTissueModel.
html)
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i. Try each of the four neighbours of the box that the cell occupies;
a. shift all cells in that direction.

ii. If the shift has been successful;
a. move cell.
b. set cell to state 1.
c. create new cell in vacated space and set to state 0.

G. repeat C.

3 Experiments

The simulation was first run with a calcium refresh value of 2, and run for 6500
iterations. The average tissue thickness was sampled every 100 iterations. At
the end of the simulation the distribution of calcium within cells and boxes was
noted by averaging the values across each y vector of the matrix. The experiment
was repeated with refresh values of 3 and 4. The average tissue thickness was
sampled every 100 iterations for each experiment.

4 Results

Figure 2 shows a time series from a simulation of an HSE tissue model for
intervals of 100, 600, 1200, and 3000 iterations. The calcium refresh level for this
experiment was set at 2 units. The simulated tissue is based on a two dimensional
100× 100 array of boxes and shows a 2D vertical section through the HSE. Set
(a) shows the distribution of cells within the matrix. The green colored cells
at the base of the matrix indicate that these cells are capable of proliferation.
The cells above this layer are the non-proliferating spinosum cells that move
up through the tissue. The increasing red color of the cells located higher in
the tissue indicates the increased levels of calcium that have been accumulated
within those cells.

The time series shows an increase in tissue thickness and a subsequent col-
lapse back to a thinner but constant thickness. Set (b) is the matching display
of free calcium within the matrix, this is the calcium that is held in the box not
the cell. It can be seen that up to the point of tissue collapse there is very little
free calcium in the tissue except at the base of the matrix where it is contin-
uously refreshed and from the burst of calcium from randomly dying cells. At
the point of tissue collapse however there is a large concentration of free calcium
that spreads as a wave across the top of the matrix. This becomes a standing
wave of calcium within the thinner but constant thickness of the tissue.

Figure 3 shows the distribution of calcium within the tissue at 6500 iterations,
a point at which the tissue has stabilized to a constant thickness. The calcium
profile is measured as the average calcium across the complete width of the
simulation. The calcium refresh level for this experiment was set at 2 units.
The profile shows the levels of free calcium, cell accumulated calcium and the
combined total calcium. It can be seen that the graph reproduces the results seen
in the time series displays. It shows that the maximum level of free calcium, 10
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(a) (b)

Fig. 2. A time series from a simulation of a human skin equivalent (HSE) model.
The simulation is based on a two dimensional 100 × 100 array and represents
a 2D vertical section through the HSE. Set (a) shows the distribution of cells,
green indicates basement cells while increasing red color represents levels of cell
accumulated calcium. Set (b) shows distribution of free or interstitial calcium,
increasing blue color represents increasing free calcium levels. The time series is
for 100, 600, 1200, and 3000 iterations, increasing down the column. The calcium
refresh level was set at 2 units.

units, occurs in a band near the top of the tissue. The concentration falls off
either side of this peak. The concentration lower within the cell mass is close
to zero only increasing to 2 at the base of the matrix. The level of cell bound
calcium increases to a maximum value of 60 units at the top of the tissue and
then falls sharply. The total calcium, free plus cell accumulated, follows the same
pattern.

Figure 4 shows the evolution of tissue thickness over time for three sepa-
rate calcium refresh levels: 2,3 and 4 units. All three sets show the same overall
behavior that was seen in the time series displays, that the tissue increases in
thickness up to a maximum level and then collapses back to a thinner but con-
stant thickness. The graph shows that at the point at which the tissue thickness
has stabilized the experiment that has the lowest calcium refresh level, 2 units,
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Fig. 3. A measurement of the average calcium distribution within a simulation
of an HSE model. The distribution was for a calcium refresh level of 2 units. The
profile was taken at 6500 iterations and shows; free calcium, cell accumulated
calcium and the combined total calcium.

Fig. 4. The change in thickness, measured in average number of cells across the
complete array, of a set of simulations of an HSE model for three calcium refresh
level of: 2, 3 and 4 units.

has the thickest tissue and the experiment that has the highest calcium refresh
level, 4 units, has the thinnest.

5 Discussion

It can be seen from the results that the simulated tissue increases in thickness
because of proliferation at the base of the tissue. It can also be seen that while
a cell is attached to the base of the tissue it can accumulate calcium from the
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continually refreshed boxes. This is analogous to the real HSE sitting in a reser-
voir of nutrient. It can also be seen that when the cell detaches from the base of
the tissue it no longer has access to this reservoir of calcium and that the only
calcium that it can accumulate must come from freely diffusing calcium within
the tissue mass. This calcium can only be derived from calcium expelled from
dying cells.

The movement of the cells away from the base through the tissue and their
subsequent death creates a transport mechanism for the accumulation of free cal-
cium within the tissue mass. This in turn sets up a feedback mechanism whereby
the more free calcium there is in the tissue mass, the higher the likelihood that
further cell death and resultant calcium liberation will occur.

Another aspect of this mechanism is that the longer a cell is in the tissue the
more likely the cell will take up calcium. Because of the flow of cells through
the tissue, the older cells will be found towards the top of the tissue. It will thus
be these cells that will saturate first and in turn dump their calcium to their
neighbors, in turn causing them to saturate and die. At this point a wave of cell
death and calcium liberation occurs. The cells lower in the tissue mass become
exposed to the wave of released calcium and they in turn die.

The system is stabilized when the wave front reaches cells within the tissue
that will not immediately saturate. This explains why the tissue is thicker when
the refresh level of calcium, which is supplied to the base cells, is low. The
newly detached cells from the basement will carry with them less calcium and so
will need to accumulate more calcium to reach the saturated state. The reason
the tissue depth stabilizes is that there is calcium loss from the dying cells at
the top of the tissue. This prevents the tissue from filling up with calcium and
thus preventing total collapse of the tissue. The structure of the tissue is thus
dependent on the calcium profile, but the calcium profile is in turn produced by
the differentiating tissue.

This entwined loop is one of the characteristics found in autopoiesis mecha-
nisms [4]. The simulation provides three hypotheses that can be tested with an
HSE:

1. That during initial tissue growth there will be very low levels of calcium in
the tissue.

2. Calcium will be continuously lost from the HSE at equilibrium.
3. That thicker HSE will be produced with lower calcium.
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Abstracts of invited talks presented at

AUTOMATA-2008, Bristol, United Kingdom

1 Nino Boccara (Chicago, USA): Maintenance and
disappearance of minority languages – A cellular
automaton model

We describe and study a cellular automaton model of immigrants living in a
country where the dominant language is different from their own. The cellular
automaton represents a neighborhood with a fraction of immigrants who, under
the influence of their native neighbors, learn to speak the dominant language.
Moreover, these immigrants may also improve their knowledge of the dominant
language under the influence of the media (TV, radio, newspapers, etc.), but some
immigrants who want to maintain their culture spend some time going to cultural
centers promoting their own language. Playing with the different parameters of
the model, we study the conditions under which the immigrants’ proficiencies in
both the dominant and minority languages either increase or decrease.

2 Leon Chua (Berkeley, USA): CA ∈ CNN

The CNN (Cellular Neural Network) universal chip is a complete programmable
supercomputer on a chip. It computes via nonlinear dynamics as flows to attrac-
tors in R

n. Applications from gray-scale image processing to brain-like computing
will be presented. In the special case where the input image is binary and subject
to local dynamics iterating on a do loop, the CNN reduces to a cellular automata.

3 Masami Hagiya (Tokyo, Japan): Classification
of continuous/discrete state transition systems on
space-time

From the viewpoint of cellular automata and dynamical systems, I first classify
state transition systems according to three axes: whether states are continuous or
discrete, whether space is continuous or discrete, and whether time is continuous or
discrete. Among the kinds of state transition systems in the classification, I focus
on systems with discrete states, whose space and time are continuous. Those
systems are of interest because they are obtained as cells in cellular automata
become infinitely small and densely distributed. Transformations from one kind
to another in the classification are discussed in some other cases



612 Boccara, Chua, Hagiya, Margenstern, Toffoli

4 Maurice Margenstern (Metz, France): Cellular
automata in hyperbolic spaces: new results

In this talk, we recall the basic tools to implement cellular automata in hyperbolic
spaces. We will discuss new results on the localization of cells and novel discoveries
on cellular automata in the hyperbolic plane, in particular a variant of Hedlund’s
theorem for cellular automata in the hyperbolic plane.

5 Tommaso Toffoli (Boston, USA): Lattice-gas vs
cellular automata: the whole story at last

“I do not know of any single instance where something useful for the work on
lattice gases has been borrowed from the cellular automata field. Lattice gases
differ in essence from cellular automata. A confusion of the two fields distorts
our thinking, hides the special properties of lattice gases, and makes it harder to
develop a good intuition." [Michel Henon(1989)].
The political arena of fine-grained parallel computation seems to incite us to
take sides for one of two candidates—Cellular Automata (CA) and Lattice-Gas
Automata (LG). What is the poor researcher supposed to do? My presentation is
intended to be a “Guide to the Perplexed."
Cellular automata provide a quick modeling route to phenomenological aspects of
nature—especially the emergence of complex behavior in dissipative systems. But
lattice-gas automata are unmatched as a source of fine-grained models of funda-
mental aspects of physics, especially for expressing the dynamics of conservative
systems.
In the above quote, one may well sympathize with Henon’s annoyance: it turns
out that dynamical behavior that is synthesized with the utmost naturalness
when using lattice gases as a “programming language" become perversely hard
to express in the cellular automata language. Yet, Henon’s are visceral feelings,
not argued conclusions. With as much irritation one could retort, “How can lattice
gases differ ‘in essence’ from cellular automata if they are merely a subset of them?
What are these CA legacies that may ‘distort our thinking’ and ‘hide the special
properties of lattice gases’? And aren’t there dynamical systems that are much
more naturally and easily modeled as cellular automata?"
Today, with the benefit of twenty years’ hindsight—and especially after the results
of very recent research—we are in a position to defuse the argument. Henon’s
appeal could less belligerently be reworded as follows: “Even though CA and LG
describe essentially the same class of objects, for sound technical and pedagogical
reasons it is expedient to deal with them in separate chapters—even separate
books for different audiences and applications. What is ox in the stable may well
be beef on the table."
The bottom-line message is that these two modeling approaches do not reflect
mutually exclusive strategies, but just opposite tradeoffs between the structural
complexity of a piece of computing machinery and its thermodynamic efficiency.
By casting essential aspects of dynamics in a precise formal context, it becomes
possible to explicitly show why
– total recycling of information waste can in principle be achieved even in nonin-
vertible dynamics;
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– at the same time, while waste is so easy to produce if one insists on using
simple machinery operating on a local scale, effective recycling of information
waste may not be possible without very complex machinery insuring coordination
on a wide-range scale. Do we have a case for “Logic for capitalists?" (cf. “Logic for
conservatives: The heath-death of a computer," The Economist, 11 Feb 1989.)
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