
Cellular
Automata
Machines

Norman Margo/us

A New Environment

for Modeling

Cellular Automata Machines
A New Environment for Modeling

by Tommaso Toffoli and
Norman Margo/us

Recently cellular automata machines, with
size, speed, and flexibility for general experi
mentation at a moderate cost, have become
available to the scientific community. These
machines provide a laboratory in which the
ideas presented in this book can be tested
and applied to the synthesis of a great vari
ety of systems. Computer scientists and re
searchers interested in modeling and
simulation as well as other scientists who do
mathematical modeling will find this intro
duction to cellular automata and cellular au
tomata machines (CAM) both useful and
timely.

Cellular automata are the computer scien
tist's counterpart to the physicist's concept of
"field." They provide natural models for
many investigations in physics, combinatorial
mathematics, and ctl~ ~d~ fhd.,

with~

Probabilistic Rules, A Sampler of Techniques,
Identity and Motion, Pseudo-Neighbors,
The Margo/us Neighborhood, Symptoms vs.
Causes, Reversibility, Diffusion and
Equilibrium, Fluid Dynamics, Collective
Phenomena, Ballistic Computation,
A Minimal Forth Tutorial, Basic CAM
Architecture.

Tommaso Toffoli and Norman Margo/us
are researchers at the Laboratory for Com
puter Science at MIT. Cellular Automata
Mach ines is included in the Scientific Com

putation Series, edited by Dennis Gannon .

Cover image :
Phase wave s in an excitable medium with
latency. This system provides a model for the
Zhabotinsky reaction.

2

3 4

Plates 1, 2: Several hundred steps into the evolution of the HGLASS rule

(Section 4.1), started respectively from a random configuration and a small

area of zeros.

Plate 3: Surface tension (Section 5.4). The green areas are bays that have

been filled over a few hundred steps; the blue, capes that have been eroded.

Plate 4: Differential evolution (Section 9.2). We compare in real time the

evolution of two copies of the same system, started from initial states that

differ by just one bit. The area where the two evolutions no longer agree,

displayed in color, rapidly expands but can't penetrate the circular barrier.

5 6

7

8 9

11

Plates 5, 6, 7 (facing page): Phase waves in excitable media with latency,
using different excitation parameters (Section 9;3); the system of Plate 7
(where a small detail is shown magnified) provides a model for the Zhabotin
sky reaction.

Plate 8: Random spread of four competing populations (Section 9.4) provides
a model of genetic drift.

Plate 9: Another drift model, where the competition is regulated by a cyclic
ranking (Section 9.6). Similar mechanisms can be used to provide timing
signals that allow an asynchronous system to perform deterministic compu
tation.

Plates 10, 11: Fractals (Section 12.8.1) and self-organization (Section 12.8.2)
in reversible systems.

12

14

Plate 12: Dendritic crystal produced by diffusion-limited aggregation (Sec

tion 15. 7) started from a one-cell seed.

Plate 13: Sound wave in a lattice gas (section 16.1). Notice that the propa

gation pattern is circular even though the individual gas particles can only

move horizontally or vertically.

Plate 14: Ising spin model, using bond energy (rather than spin orientation)

as the state variable (Section 17.7).

Plate 15: A reversible second-order rule (TIME-TUNNEL, Section 6.3), started

from the configuration of Plate 2. Note how certain features are conserved.

Cellular Automata Machines

MIT Press Series in Scientific Computation
Dennis Gannon, editor

The Massivel y Parallel Processor, edited by J . L. Potter , 1985

Parallel MIMD Computation : HEP Supercomputer and Its Applications
by Janusz Kowalik, 1985

Synchronization of Parallel Programs , by F. Andre , D. Herman and J.-P. Verjus,
1985

Algorithms for Mutual Exclusion, by M. Raynal, 1986

Cellular Automata Machines: A New Environment for Modeling,
by Tommaso Toffoli and Norman Margolus, 1987

Cellular
Automata
Machines

A new environment
for modeling

Tommaso Toff oli
Norman Margolus

The MIT Press
Cambridge, Massachusetts
London, England

© 1987 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher .

This book was printed and bound in the United States of America .

Library of Congress Cataloging-in-Publication Data

Toffoli , Tommaso.
Cellular automata machines.

(MIT Press series in scientific computation)
Bibliography: p.
Includes index .
I . Cellular automata . I. Margolus, Norman.

II. Title. III . Series.
QA267.5.C45T64 1987 511.3 86-33804
ISBN 0-262-20060-0

10 9 8 7 6

Contents

Acknowledgements

Introduction

I Overview

1 Cellular automata
1.1 Basic concepts
1.2 Animate-by-numbers
1.3 Cellular automata machines
1.4 Historical notes and references

2 The CAM environment
2.1 The CAM-6 machine
2.2 Basic hardware resources .. .

2.2.1 Storage: the bit-planes .
2.2.2 Display: the color map.
2.2.3 Dynamics: the rule tables
2.2.4 Geometry in the small: the neighborhood
2.2.5 Geometry in the large: wrap-around

2.3 Software: CAM Forth

3 A live demo
3.1 The game of "life"
3.2 Echoing
3.3 Tracing
3.4 How to breed gliders

4 The rules of the game
4.1 The choices of creation .
4.2 Rules in words

xi

1

3

5
5
6
7
8

13
14
14
14
15
15
16
16
16

19
20
22
23
24

27
27
30

VI

II Resources

5 Our first rules
5.1 Unconstrained growth
5.2 Constrained growth
5.3 Competitive growth
5.4 Voting rules ...
5.5 Bank's computer
5.6 "Random" rules.

6 Second-order dynamics
6.1 Firing of neurons: a three-state rule
6.2 Going into reverse gear.
6.3 An impenetrable shield.
6.4 Other examples

1 Neighbors and neighborhoods
7.1 A weakly coupled pair ...
7.2 The magic number twelve
7.3 Neighborhood declarations.

7.3.1 Major assignments .
7.3.2 Minor assignments .

7.4 Summary of neighborhoods
7.5 Custom neighborhoods . . .
7.6 Making tables
7. 7 The color map and the event counter .

8 Randomness and probabilistic rules
8.1 Exponential decay
8.2 A simple noise generator .
8.3 Voting rules, revisited
8.4 Remarks on noise .
8.5 Caveat emptor!
8.6 A noise-box

9 A sampler of techniques
9.1 Particle conservation .
9.2 Differential effects ..
9.3 Coupling the two halves
9. 4 Genetic drift
9.5 Poisson updating
9.6 Asynchronous deterministic computation .
9. 7 One-dimensional cellular automata
9.8 Neighborhood expansion tricks

Contents

35

37
37
39
40
41
42
45

41
47
50
52
53

55
56
57
59
60
61
63
63
64
65

61
68
69
70
72
73
74

11
77
80
82
84
86
90
94
98

Contents

10 Identity and motion
10.1 A random walk .
10.2 A random shuffle

11 Pseudo-neighbors
11.1 Spatial phases
11.2 Temporal phases, and phase control
11.3 A two-phase rule
11.4 Incremental phase control .
11.5 The run cycle
11.6 Alternating spatial textures

12 The Margolus neighborhood
12.1 Block rules
12.2 Particles in motion
12.3 Collisions
12.4 How to turn a block rule into a cell rule
12.5 The Margolus neighbors
12.6 Even/odd grid selection
12. 7 A phase-sensitive gas .
12.8 Examples . . .

12.8.1 Fractals
12.8.2 Critters
12.8.3 Asynchronous computation
12.8.4 Digital logic

III Physical modeling

13 Symptoms vs causes
13.1 Fine-grained models of physics

14 Reversibility
14.1 Invertible cellular automata
14.2 Second-order technique . . .
14.3 Alternating sublattices . . .
14.4 Guarded-context technique
14.5 Partitioning technique ...
14.6 Reversibility and randomness

15 Diffusion and equilibrium
15.1 Noise-driven diffusion .
15.2 Expansion and thermalization .
15. 3 Self-diffusion

Vll

101
102
103

109
110
111
112
114
115
117

119
119
120
122
124
126
128
129
132
132
132
134
136

139

141
141

145
146
147
149
149
150
153

155
155
159
161

viii

15.4 Mean free path
15.5 A tour de force
15.6 A tuneable noise source
15. 7 Diffusion-limited aggregation

16 Fluid dynamics
16.1 Sound waves
16.2 Hydrodynamics .
16.3 Tracing the flow
16.4 Flow past an obstacle
16.5 Other lattice gases
16.6 Autocorrelations
16. 7 Wave optics

17 Collective phenomena
17.1 Critical parameters and phase transitions
17. 2 Ising systems
17.3 Spins only . .
17.4 Energy banks
17.5 Heat bath ..
17 .6 Displaying the energy
17. 7 Bonds only
17.8 Spin glasses

18 Ballistic computation
18.1 The billiard-ball model of computation .
18.2 A reversible cellular-automaton computer
18.3 Some billiard-ball experiments

18.3.1 A magic gas
18.3.2 The end of the world . .

Conclusions

A A minimal Forth tutorial
A.1 The command interpreter
A.2 The compiler .
A.3 The dictionary
A.4 Numbers ..
A.5 The stack . . .
A.6 Expressions . .
A. 7 Editing and loading
A.8 "Constant s" and ''variables" .
A.9 Iteration
A .10 Stack comments

Contents

162
163
165
167

171
171
173
174
176
177
179
182

185
186
186
190
193
197
200
203
205

209
210
213
217
217
219

221

223
223
224
225
226
227
228
229
231
233
234

Contents

A.11 DUP, DROP, etc.
A.12 Case selection
A.13 Conditional statements .
A.14 Logical expressions
A.15 Further readings .. .

B Basic CAM architecture
B.l The plane-module
B.2 Larger arrays: edge gluing
B.3 More states per cell: sheet ganging
B.4 More dimensions: layer stacking .
B.5 Display and analysis
B.6 Modularity and expandability .

Bibliography

Index

IX

236
236
237
238
240

243
243
244
245
245
245
246

249

255

Acknowledgements

The writing of this book, like the worlds that it describes, could have gone
on forever. We hope that the rest of the story will be written by our readers.

We are grateful for the help we received in our editorial task from Ed
Barton, Charles Bennett, Tom Cloney, Ray Hirschfeld, Hrvoje Hrgovcic, Mark
Smith, Pablo Tamayo, Thao Nguyen, Gerard Vichniac, and David Zaig.

We should like to thank Harold Abelson, Richard Brower, Arthur Burks,
Nicola Cabibbo, Michael Creutz, Dominique d'Humiere, Uriel Frisch, Pe
ter Gacs, Bill Gosper, David Griffeath, Hyman Hartman, Brosl Hasslacher,
Daniel Hillis, Giuseppe Iacopini, Leo Kadanoff, Rolf Landauer, Leonid Levin,
Mike Levitt, Stewart Nelson, Giorgio Parisi, Yves Pomeau, Claudio Rebbi,
Brian Silverman, Gerald Sussman, and Stephen Wolfram for useful discus
sions and suggestions. Charles Bennett made direct contributions to the
book's contents.

The development of a family of cellular automata machines is an offshoot
of more theoretical endeavors of the Information Mechanics Group at the MIT
Laboratory for Computer Science. Encouragement and practical support
were given by the director of the laboratory Michael Dertouzos, by Edward
Fredkin-who led the group until recently and is behind many of the ideas
presented in this book-and by the Provost, John Deutsch.

This research was supported in part by the following government agencies:
Defense Advanced Research Projects Agency (Grant No. N00014-83-10-0125),
National Science Foundation (Grant No. 8214312-IST), and U.S. Department
of Energy (Grant No. DE-AC02-83-ER13082).

Tommaso Toffoli
Norman Margolus

November 5, 1986

Cellular Automata Machines

Introduction

In Greek mythology, the machinery of the universe was the gods themselves.
They personally tugged the sun across the sky, delivered rain and thunder,
and fed appropriate thoughts into human minds. In more recent conceptions,
the universe is created complete with its operating mechanism: once set in
motion, it runs by itself. God sits outside of it and can take delight in
watching it.

Cellular automata are stylized, synthetic universes defined by simple rules
much like those of a board game. They have their own kind of matter which
whirls around in a space and a time of their own. One can think of an as
tounding variety of them. One can actually construct them, and watch them
evolve. As inexperienced creators, we are not likely to get a very interesting
universe on our first try; as individuals, we may have different ideas of what
makes a universe interesting, or of what we might want to do with it. In
any case, once we've been shown a cellular-automaton universe we'll want to
make one ourselves; once we've made one, we will want to try another one.
After having made a few, we'll be able to custom-tailor one for a particular
purpose with a certain confidence.

A cellular automata machine is a universe synthesizer. Like an organ, it
has keys and stops by which the resources of the instrument can be called
into action, combined, and reconfigured. Its color screen is a window through
which one can watch the universe that is being "played."

This book, then, is an introductory harmony and orchestration manual
for "composers" of cellular-automaton universes.

Part I

Overvievv

Chapter 1

Cellular automata

What has been done once can be done again.

[Traditional clause to justify use of mathe
matical induction]

To synthesize a system means to "put it together" using a given repertoire of
concepts, tools, and materials. The system may be an abstract mathematical
structure, such as a differential equation, or a concrete piece of machinery,
such as a telephone; we may be interested in the system for its own sake, or
as a device for performing a certain function, or as a model of some other
structure.

In this book, we shall explore the expressive power, for the purpose of
system synthesis, of a particular repertoire of resources, namely the laws,
structures, and phenomena supported by cellular automata-especially to
the extent that these systems become effectively accessible to experimentation
through the use of a cellular automata machine of adequate performance.

The present chapter is an introduction to cellular automata-it concludes
with brief historical notes and references.

1.1 Basic concepts

Cellular automata are discrete dynamical systems whose behavior is com
pletely specified in terms of a local relation, much as is the case for a large class
of continuous dynamical systems defined by partial differential equations. In
this sense, cellular automata are the computer scientist's counterpart to the
physicist's concept of ".field."

6 Chapter 1. Cellular automata

As noted in the Introduction, a cellular automaton can be thought of as
a stylized universe. Space is represented by a uniform grid, with each site or
cell containing a few bits of data; time advances in discrete steps; and the
laws of the universe are expressed by a single recip~say, a small look-up
tabl~through which at each step each cell computes its new state from that
of its close neighbors. Thus, the system's laws are local and uniform. 1

Given a suitable recipe, such a simple operating mechanism is sufficient to
support a whole hierarchy of structures and phenomena. Cellular automata
supply useful models for many investigations in natural science, combinatorial
mathematics, and computer science; in particular, they represent a natural
way of studying the evolution of large physical systems. They also constitute
a general paradigm for parallel computation, much as Turing machines do for
serial computation.

1.2 Animate-by-numbers

Before asking a machine to run a cellular-automaton universe one should have
a fair idea of how the same task could be performed by hand.

Take a pad of good-quality graph paper, in which the grid is printed
exactly in the same position on each sheet. Starting with the last sheet and
proceeding backwards through the pad you will draw a series of frames, one
per sheet, which will make up a brief animation sequence.

Open the pad at the last sheet and draw a simple picture by filling in with
black ink a few cells of the grid near the center of the sheet; this will be frame
1 of your "animation.__movie". Now turn a page, pulling the next-to-the-last
sheet down on top of the last one: the figure of frame 1 will still be visible
through one thickness of paper. Draw the next frame of the movie on the
new sheet by the following INKSPOT recipe:

• Pick a cell, and look at the 3x3 area centered on it-its "neighborhood."
If in this area you see (on the sheet just below) exactly three black cells,
lightly mark your cell in pencil; also mark your cell if it is sitting directly
on top of a black cell. ·

• Do the same for every cell of the grid. When you are finished, fill in
with ink all the marked cells.

Construct frame 3 from frame 2 by turning to a new sheet and applying
the same recipe; then construct frame 4 from frame 3, and so forth, until all
the sheets have been used.

1 "Local" means that to know what will happen here in a moment I only have to look at
the state of things near me: no action-at-a-distance is permitted. "Uniform" means that
the laws are the same everywhere: I can only tell one place from another by the shape of
the surrounding landscape-not by any difference in the laws.

1.3. Cellular automata machines 7

Now you can look at your flip-book. Close the pad, hold its edge between
your thumb and forefinger, and let the sheets fall one by one in rapid sequence.
What you will see is an inkspot that spreads in an irregular way-as through
dirty fabric-producing capes and bays, leaving a few small areas untouched ,
and now and then shooting out a straight filament (Figure 1.1) .

•
Figure 1.1: A few frames from a typical INKSPOT sequence. The scale is such that
the individual cells are barely discernible.

This is, in essence, all there is to a cellular automaton. Change the initial
conditions, and you'll get a somewhat different history . Change the recipe,
and you get a new set of dynamical laws-a new universe. You can use a grid
of different shape (say, hexagonal), or perhaps a three-dimensional one. The
recipe may refer to a neighborhood of size and shape other than 3 x 3, and
may involve more than one ink color; however, both the number of neighbors
and the number of colors (i.e., the number of possible cell states) must be
finite, because we want the updating of a cell to be a finite business.

Suppose our sheet contained 100,000 cells (this is somewhat coarser than
the detail of a TV frame). H the recipe is not too involved, it will take a
human animator a day to paint a new frame; the task is trivially simple, as in
"paint-by-numbers," but long, tedious , and error-prone, A personal computer
will do the job in a few seconds-generating new frames at the rate of a slide
show. If we want to see real movement we need to go perhaps a thousand
times faster: a super-mainframe computer might do, but at great cost and
with a clear waste of resources. A more efficient approach is desirable.

1.3 Cellular automata machines

Let us frankly admit that the generality and flexibility of the cellular
automaton approach to system synthesis are achieved at a cost . Instead
of few variables that may be made to interact in an arbitrarily assigned way,
a cellular automaton uses many variables (one per cell) but demands that

8 Chapter 1. Cellular automata

these interact only locally and uniformly. In order to synthesize structures
of significant complexity it is necessary to use a large number of cells, and in
order for these structures to interact with one another and evolve to a sig
nificant extent it is necessary to let the automaton run for a large number of
steps .. For elementary scientific applications, a satisfactory experimental run
may require the computation of billions of events (an event is the updating of
a single cell); for more substantial applications, a thousand or a million times
this value may be desirable (i.e., 1012-10 15 events): the limits are really set
by how much we can do rather than by how much we wish to do.

In this context, ordinary computers are of little use. The simulation of
a cellular-automaton event may require some thirty machine operations each
involving a few machine cycles-say, 10 µsec on a fast machine. To compute
1013 events with such an approach would take several years!

On the other hand, the structure of a cellular automaton is ideally suited
for realization on a machine having a high degree of parallelism and local and
uniform interconnections;2 with an appropriate architecture one can achieve
in the simulation of cellular automata a performance at least several orders
of magnitude greater than with a conventional computer, for a comparable
cost.

Indeed, cellular automata machines having size, speed, and flexibility ade
quate for general experimentation, and moderate cost, have recently become
available to the scientific community at large (see Chapter 2). These ma
chines provide a laboratory in which the ideas presented in this book can be
handled in a concrete form and applied to the synthesis of a great variety of
systems.

1.4 Historical notes and references

Cellular automata have been invented many times under different names, and
somewhat different concepts have been circulated under the same name. In
pure mathematics they can be recognized as a branch of topological dynamics,
in electrical engineering they are sometimes called iterative arrays, and high
school kids may know them as a sort of home-computer game. They have been
used and abused by interdisciplinary scientists as well as interdisciplinary
bumblers. They have been the topic or the excuse for countless doctoral
theses. They have been much talked and written about, but until recently no
one had actually seen much of them.

2The term "non-von Neumann architecture" is often used to distinguish parallel comput
ers of this kind from more conventional sequential computers. However, it should be noted
that the theory of cellular automata was introduced by von Neumann himself at about the
same time as he was working on the design of general-purpose electronic computers.

1.4. Historical notes and references 9

Since the present historical notes are for the benefit-not the confusion
of the reader, we shall touch only on those topics that we deem directly
relevant to the purposes of this book.

Conventional models of computation, such as the Turing machine, make
a distinction between the structural part of a computer-which is fixed, and
the data on which the computer operates-which are variable. The computer
cannot operate on its own "matter," so to speak; it cannot extend or modify
itself, or build other computers.

Cellular automata were introduced in the late forties by John von Neu
mann, following a suggestion of Stan Ulam[64), to provide a more realistic
model for the behavior of complex, extended systems[68]; in a cellular au
tomaton, objects that may be interpreted as passive data and objects that
may be interpreted as computing devices are both assembled out of the same
kind of structural elements and subject to the same fine-grained laws; compu
tation and construction are just two possible modes of activity. Though von
Neumann was a leading physicist as well as a mathematician, explicit physical
considerations are lacking in his work on cellular automata; his interest was
directed more at a reductionistic explanation of certain aspects of biology.
In fact the mechanisms he proposed for achieving self-reproducing structures
within a cellular automaton bear a strong resemblance to those-discovered
in the following decade-that are actually employed by biological life.

Near the end of the war, while von Neumann was building one of the
first electronic computers, the german engineer Konrad Zuse was hiding from
the Nazis in Austria; there, in the isolation of a mountain peak, he had the
germs of many parallel ideas, including high-level programming languages
and "computing spaces" [76)-i.e., cellular automata. Zuse was especially
interested in digital models of mechanics, and physical motivation plays a
primary role in his work. It is unfortunate that historical circumstances
prevented his work from being more widely known at the time.

Von Neumann's work on self-reproducing automata was completed and
described by Arthur Burks[68], who maintained an active interest in the field
for several years afterwards. His Essays on Cellular Automata[lO] are a good
introduction to the questions that were asked about cellular automata in the
formative years of computer science. In the same environment-Le., the Logic
of Computers Group of the University of Michigan-John Holland started
applying cellular automata to problems of adaptation and optimization[27],
and a general-purpose cellular automata simulator program was developed[7].
It was months of work with this simulator (cf. [55]) that convinced one of
the authors (Toffoli) of the need for a more direct and efficient hardware
realization-a cellular automata machine.

In the meantime, professional mathematicians had turned their atten
tion to iterated transformations acting on spatially-extended, discrete-state

10 Chapter 1. Cellular automata

structures(25]-cellular automata again! Lack of communication and of uni
form terminology led to much duplication of work. An important characteri
zation of cellular automata in terms of continuity in the Cantor-set topology,
proved in twelve pages by Richardson[48], could actually have been written as
a two-line corollary to previous work by Hedlund[25]. Similarly, a brute-force
search for surjective cellular automata reported by Patt in 1971 (cf. [2]) had
been conducted on a wider scale by Hedlund et al.[24J already in 1963!

Important theoretical questions on computability and reversibility, al
ready touched on by Moore and by Myhill (cf. [10)), were studied by Alvy
Smith[52], Serafino Amoroso[2], and Viktor Aladyev[ll, among others, and
this approach was continued by a still-flourishing Japanese school (cf. [40]
and references therein).

John Conway's game of "life," introduced to the public by Martin Gard
ner's widely read Scientific American column[20], for a while enjoyed a pop
ularity close to a cult-and turned 'cellular automata' into a household word
for a generation of young scientists.

We are mostly interested in cellular automata as autonomous systems, i.e.,
as worlds in their own, rather than as transducers (systems that produce a
steady output stream of information as a response to a steady input stream).
For this reason, we shall not deal at all with the large literature concerned
with iterative-circuit arrays in the context of arithmetic processing, image
processing, and pattern recognition. Preston and Duff's book on Modern
Cellular Automata[46] can be used as an introduction to these areas and as
a reference to machines developed for these more specialized applications.

The question of whether cellular automata could model not only general
phenomenological aspects of our world3 but also directly the laws of physics
itself was raised again by Edward Fredkin, who had also been active in more
conventional areas of cellular automata research (cf. [3]), and by Tommaso
Toffoli[55]. A primary theme of this research is the formulation of computer
like models of physics that are information-preserving, and thus retain one
of the most fundamental features of microscopic physics-namely reversibil
ity[l 7,58,35].

Models that explicitly reduce macroscopic phenomena to precisely defined
microscopic processes are of prime methodological interest[13] because they
can speak with great sincerity and authority (cf. Chapter 13). But, to let
them speak at all, in general one has no choice but to implement in an ex
plicit way the prescriptions of these models, actually bridging the scale gap
between the microscopic level and the macroscopic one: cellular automata
simulators capable of updating millions of cells in an extremely short time be
come indispensable tools. This is one of the issues that was addressed by our

3 Such as communication, computation, and construction; growth, reproduction, com
petition, evolution, etc.

1.4. Historical notes and references 11

Information Mechanics Group, at the MIT Laboratory for Computer Science,
with the design of high-performance cellular automata machines[59,60,36].

This approach has been used to provide extremely simple models of com
mon differential equations of physics-such as the heat and wave equations[61]
and the Navier-Stokes equation[23,18]-which can be thought of as limiting
cases of a variety of extremely simple processes of combinatorial dynamics .
In particular, cellular automata have been found to provide accurate mod..:
els of fluid dynamics that are not only conceptually stimulating but also
viable-at least in certain circumstances-from the viewpoint of computa
tional efficiency[18,36,42].

A burgeoning branch of dynamical systems theory studies the emergence
of well-characterized collective phenomena-ordering, turbulence, chaos,
symmetry-breaking, fractality, etc .-in systems consisting of a large num
ber of individuals connected by nonlinear couplings; here the motivations
and the mathematical apparatus are more akin to those of macroscopic
physics and materials science. Cellular automata provide a rich and con
tinually growing collection of representative models where these phenomena
can be isolated and studied with relative ease[66,15,5]. The systematic use
of cellular automata in this context was vigorously pioneered by Stephen
Wolfram[71, 70, 72, 73,43]; his collection of papers on the Theory and Applica
tions of Cellular Automata[74] is accompanied by an extensive bibliography.

In conclusion cellular automata seem to have found a permanent (and
increasingly important) role as conceptual and practical models of spatially
distributed dynamical systems-of which physical systems are the first and
foremost prototypes.

Chapter 2

The CAM environment

And so, rolling up his sleeves and summoning
up all his mastery, Trurl built the king an en
tirely new kingdom

"Have I understood you correctly?" said
Klapaucius. "You gave that brutal despot ...
a whole civilization to rule and have dominion
over forever? Trurl, how could you have done
such a thing?!"

"You must be joking!" Trurl exclaimed.
"Really the whole kingdom fits into a box
three feet by two and a half .. . it's only a
model. .. "

"A model of what?"

[Stanislaw Lem]

A usual prerequisite for a harmony course is "familiarity with the piano." Of
course, one can make harmony in a multitude of other ways-for instance
with an organ, a guitar, or a choir. However, a standard environment makes
it easier to keep the attention focused on issues of a more fundamental char
acter: it will be up to the individual student to transfer to other contexts the
expertise gained in mastering the resources of this environment.

In this book, the standard modeling environment, which will be gradually
introduced starting with the present chapter , is represented by a specific,
commercially-available cellular automata machine, namely CAM-6. The main
reason for this choice is that the hardware and software of this machine are
effectively accessible to a wide range of users.

14 Chapter 2. The CAM environment

2.1 The CAM-6 machine

CAM-6 is a cellular automata machine intended to serve as a laboratory for
experimentation, a vehicle for communication of results, and a medium for
real-time, interactive demonstration.

This machine was originally developed at the MIT Laboratory for Com
puter Science.1 It is currently produced by SYSTEMS CONCEPTS (San Fran
cisco, CA) , from which it was commissioned with the explicit intention that ,
after fulfilling MIT's internal needs, further output of the production line
would be made available to the scientific community at large, as inexpen
sively as possible .

Physically, CAM-6 consists of a module that plugs into a single slot of the
IBM-PC, -XT, or -AT (or compatible models), and of driving software oper
ating under PC-DOS 2. While this readily-available host computer provides
housing, shielding, power, disk storage, a monitor, and a standard operating
environment , the real work of simulating cellular automata at a very high
speed is all done by the module itself, with a performance comparable-for
this specific application-to that of a CRAY-1.

The control software for CAM-6 is written in Forth, and runs on the
IBM-PC with 256-K of memory. This software is complemented by a num
ber of ready-made applications and demos, and includes complete annotated
sources.

The Forth system itself-derived from Laxen and Perry's F83 model2-is
in the public domain, and complete annotated sources accompany it.

In the rest of this book, we shall refer to CAM-6 simply as CAM.

2.2 Basic hardware resources

Here we briefly pass in review those basic hardware resources of CAM that are
visible to the user and constitute the ''programmer's model" of the machine.
A fuller discussion of these and other resources is deferred to later chapters.

2.2.1 Storage: the bit-planes

In the animate-by-numbers example of Section 1.2, let us fix our attention on
a particular cell and follow its history from frame to frame. At any moment,
the given cell will be either white or black. Thus, each cell can be thought

1 Machines of the CAM family have been in use for several years. An earlier version,
CAM-5, was described in Physica D(59), and popular articles related to it have appeared
in Scientific American[22), High Technology(63), and Discover[47). CAM-6 is on permanent
exhibit at the Boston Computer Museum .

2 Credit actually extends to a much longer list of people .

2.2. Basic hardware resources 15

of as a two-state variable, or bit, and the whole grid as a two-dimensional
array of bits, or bit-plane. It will be convenient to call [Q] and [D-rather than
''white" and "black" -the two possible values of a bit.

In many applications, cells with a wider range of states are required.
Suppose we need four states. Instead of just [QI and [I] we can use the symbols
[Q], [I], 12], and ~ as possible cell states. Alternatively, we can subdivide the
cell into two sub-cells each containing a single bit, and write the four states
as [QQJ, [QI], [IQ), [Il); in this case, it is useful to visualize these two bits as piled
on top of one another, rather than placed side by side. Then the whole array
can be visualized as a set of two bit-planes, one overlaying the other.

In CAM, up to four bit-planes are available for encoding the state of a
cell, and thus a cell can have up to 16 states. (However, there are certain
restrictions on the collective use of the four bit-planes.)

2.2.2 Display: the color map

Treating the state of a cell as a pile of four bits is convenient for programming
purposes. For display purposes, it is better to represent each cell by a colored
dot, or pixel, on the monitor's screen. The color, of course, will correspond
to the cell's state according to a definite assignment: the table that decides
which color has been assigned to each of the 16 possible cell states is called
the color map. In CAM the contents of the color map can be specified by the
user to suit the requirements of each experiment.

2.2.3 Dynamics: the rule tables

During an update cycle of the cellular automata machine, the current frame-
represented by the contents of all the bit-planes-is replaced by a new frame
according to a specified recipe. The result is one step in the evolution of a
particular cellular automaton, and that recipe is called the rule of this cellular
automaton.

In CAM, the user is allowed to specify the rule in a rather discursive fash
ion, using constructs from a high-level programming language. Internally,
however, this description is eventually converted into a rule table, which ex
plicitly lists what the new state of a cell will be for any possible combination
of states of its neighbors. Since each cell consists of four bits, it will be conve
nient to think of the rule table as consisting of four sub-tables or components,
one for each of the bit-planes. In this context, we shall loosely speak of "the
rule for plane 0" meaning "that component (of the overall rule) that specifies
the new state of bit-plane 0."

16 Chapter 2. The CAM environment

2.2.4 Geometry in the small: the neighborhood

In writing a cellular automaton rule, we specify how each cell is going to be
influenced by some nearby cells. More precisely, we specify how each of the
four bits that make up a cell is going to be influenced by certain nearby bits;
some of these may reside on the same bit-plane, and some may reside on the
other three bit-planes. How far can this influence reach?

A bit is called a neighbor of another one if it has a chance to directly affect
it, via the rule, in one step. In principle, a cellular-automaton rule could make
use of an arbitrarily large number of neighbors. However, efficiency dictates a
practical limit to the number and the span of direct neighbor connections; the
hardware of CAM provides specific combinations of neighbor connections-or
neighborhoods-that have been selected according to criteria of general utility
and flexibility. Neighborhood selection is discussed in Chapter 7.

2.2.5 Geometry in the large: wrap-around

Returning to the animate-by-numbers example, how are we going to apply
the INKSPOT rule when a cell lies at the edge of the sheet, and so some of
its neighbors are missing from the frame? Of course we could make explicit
provisions for this special case, but it would be better to avoid the need for
"special cases'' altogether.

In CAM, this problem is solved by the obvious wrap-around device; that
is, the right edge of the sheet acts as if it were "glued" to the left edge (and
likewise for the top and bottom edges). As in many video games, any object
that tries to move off one edge of the screen will reenter the screen at the
same position at the opposite edge. 3 One can visualize a frame as painted
on the surface of a doughnut: no amount of walking will allow one to find
the "edge of the world. 4" Additional wrap-around options are mentioned in
Section B.2.

2.3 Software: CAM Forth

The user of CAM is provided with access to its software at various levels, as
explained in the documentation that accompanies the machine. For most
ordinary applications, however, the software is transparent to the user, and
one can view CAM much like an appliance-in which a few rows of buttons
directly control, in an interactive manner, a number of functions and options.

However, if we wish to be able to add new items to our repertoire of uni
verses, we will need a language-convenient for the user and understandable

3Several CAM modules can be combined so as to obtain a larger cellular automaton. In
this case, edge "gluing" is appropriately modified so that the wrap-around applies correctly
to the larger sheet.

4 1n more mathematical terms, the topology is that of a torus.

2.3. Software: CAM Forth 17

to the machine-for describing cellular automata rules. This rule-making
process is formally introduced in Chapter 4, and is fully developed in the
succeeding chapters.

The language we shall be using in this book is CAM Forth. Forth is an
extensible programming language particularly suited for interactive tasks.
This language has been extended so as to contain a variety of words and
constructs useful for conversing with CAM; in particular, for defining cellular
automata rules and for constructing, documenting, and running experiments.

Forth was adopted as a standard by the International Astronomical Union
to facilitate the exchange of procedures for aiming telescopes and controlling
their ancillary equipment. Here, we shall be using it to adjust the settings
of a new kind of "scope," one that gives a view into a variety of synthetic
worlds.

For the purpose of defining cellular automata rules, very little Forth is
actually needed. On the other hand, the texture of Forth is unusual, and
even people who are already familiar with more conventional programming
languages (such as PASCAL or BASIC) may appreciate a minimum of introduc
tion. Appendix A provides a brief tutorial covering the most basic concepts;
one should glance at it before proceeding. Sections A.12 and A.14 in par
ticular contain information which is specific to this version of Forth. Some
of the tutorial material will be recalled and expanded in the course of the
book; constructs that are more intimately tied to the operation of CAM will
be introduced as the occasion arises.

To achieve a more comprehensive command of the language, the reader
may turn to Leo Brodie's "Starting Forth" [8], which is an excellent introduc
tion to the subject.

Chapter 3

A live demo

I now saw very plainly that these were very
little eels, or worms, lying all huddled up to
gether and wriggling; just as if you saw, with
the naked eye, a whole tubful of very little eels
and water, with the eels a-squirming among
one another: and the whole water seemed to
be alive with these multifarious animalcules.

[Leeuwenhoek]

Read this brief chapter once through without worrying too much about de
tails. Imagine that a friend is sitting at the console of a CAM machine, showing
you a brief cycle of experiments and explaining along the way what he is do
ing and why. You may put off a question to avoid interrupting him, and in
many cases the question will be answered by what you see on the screen.
Eventually you may want to go over a few points in more detail.

At the end of the session you don't expect to ''know everything.' ' How
ever, you want to feel that there was a definite connection between stated
goals, actions performed, and results seen; and that, with a better knowl
edge of available commands and resources, you might be able to run some
experiments yourself.

As the subject for this demo we have chosen the game of "life." This is by
no means the only, or even the most interesting, rule for cellular automata
just the most widely known-and appears here more for historical reasons
than for any direct relevance to the themes of this book.

20 Chapter 3. A live demo

3.1 The game of "life"

In 1970, the mathematician John Conway introduced a delightful cellular
automaton which caught the attention of science amateurs and professionals
all over the world[20]. LIFE may be thought of as describing a population
of stylized organisms, developing in time under the effect of counteracting
propagation and extinction tendencies.

An individual of this population is represented by a cell in the [I] state,
while a ~ represents empty space; for brevity, one can speak respectively of
"live" and "dead" cells. At every step, each cell responds to the state of its
immediate environment-consisting of its eight nearest neighbors-according
to the following directions:

Death: A live cell will remain alive only when surrounded by 2 or 3 live
neighbors; otherwise, it will feel either "overcrowded" or "too lonely"
and it will die.

Birth: A dead cell will come to life when surrounded by exactly 3 live neigh-
bors. Thus, birth is induced by the meeting of three "parents."

In CAM, the machinery "knows" that the same rule must be applied to all
cells (there are 256x256=65,536 of them), and therefore it will be sufficient
to express the rule for a "generic" cell, called CENTER (the center of atten
tion). The eight neighbors of this cell are called, with self-explanatory names,
NORTH , SOUTH , WEST, EAST , N. WEST , N . EAST , S. WEST , and S . EAST .

To write the rule for LIFE in CAM Forth, we'll first define a word 8SUM
which counts the number of live neighbors, and then use this count as an
address to locate in a table the entry that corresponds to that particular
count; the entry itself specifies the cell's new state. There are two tables in
our program, one for the case of a "dead" center cell and the other for a "live''
one.

8SUM (-- count)
NORTH SOUTH WEST EAST \ count ranges

N.WEST N.EAST S.WEST S.EAST \ from O tbru 8
+ + + + + + +

CENTER O• IF
8SUM { 0 0 0 1 0 0 0 0 0} ELSE
8SUM { 0 0 1 1 0 0 0 0 0} THEN

>PLNO

LIFE

\ dead-cell table
\ live-cell table
\ rule for bit-plane 0

At this point, you don't have to understand the exact meaning of the above
piece of Forth program (though it might be helpful to take a look now at
the tutorial of Appendix A). At any rate, an inspection of the definition of
8SUM should make it plausible that this Forth word adds up eight quantities

3.1. The game of "life" 21

(there are eight terms and seven + 's). The expression in parentheses, (-
count) , is just a comment, and reminds us that the result of 8SUM is the
desired neighbor count. Similarly, it should appear plausible to you that the
Forth word LIFE may somehow use the value of 8SUM to select a particular
entry in a list of nine objects, and that the value of CENTER may determine
which of the two given lists is actually used. Finally, the word >PLNO tells
the software that the object specified by this recipe is the new state of the
bit in bit-plane O of CAM.

Let's start the screen with a ''primeval soup" in which [Q]'s and [1J's are
distributed at random in equal proportions (Figure 3.la). After a few dozen
steps of wild activity the population will have thinned down (Figure 3.lb) ;
a little later, most of the screen will be quiet except for a few places where
things keep smoldering and occasionally flare up in sudden bursts of activity,
in a way reminiscent of brush fire (Figure 3.2a). Eventually, all activity may
subside except for a few isolated "blinkers" or other cyclic patterns of short
period {Figure 3.2b).

To allow a static picture to give some feeling of dynamic behavior , the
frames of Figure 3.2 are actually time exposures.

-~; • • • ' .. fl ~ - I' ' • .;---~··,• •• IP~ "" • "' c~. -I, , ... ~-o,,..tr •• 1t' . ~ "•4._,,.r:'i, --, ., ,=··~ -
~ .,; • •, • "£ • • '"!, I ~ 0 " ,_,. .. ~~

- .~:.,. f) ·'(; ,,. ~ •• •••• ,~ . _.,,,.,

.... ~-· ,. •f-.i)p~·. ; •. 0 · - .. ,,.,.
~- 0 • <">' "" c-,. , R. ~-- -Q,• - • t. . . • ~ ~~·:t - ·•':'"j • c-. ~ ~,.,) ,!• t":-. -• ., • .,,,,.

.. .. ' - •. ~ - ,. "'· .,,, -~ • ,'e
• C' ... J.1'"'~ t •• 9~.-. .• ,,. ,.:. , . • .;Jt;>,, - ~ _._, • <-•.. .., ,.,. , •. • , .• ,. ,.., c, _t,· ,
-~ 'l) "i• , (-~. ti ~ ~ ,:r ~

,- ~ t,O ~ '-"J • # > () I a• • 9°
,"D • ta V• ~ • O ~ • ~~ t. • \,i • \"' •

,_ ~ .- t!> •• · -~' 0 fl: .. • • ~ :,.. • • •

• • •• ..,a"'~ - /~ ·~- ... ~ ':,•• c,.·\' -
, 0 .-.~-;;s , • o;i,.,~·-·· • 4iv···t~ -.~ • ; :0.. ·~·• t. . •, 0 •" :~~" • •" ~-~i-:. '1 .,. I

•. ~. • .. ·,-, -~ -;.,, ; : . ~~ -,t' . f ;.~ • • , ,, c, - • ~ -0 # • ~ .f ""'Ji, .,_.
• <I t'O •_ • ' ~·it." ,. ~",t •, ~ .., . ·~ i; I • • V • • :·1. ,. l> i ' \ • . ~~ • .. :A' ,,!=.

,t - 1!'. ~ ,, 'if u •• • - :r- . • ~~, it. ,';;//, __ .., .i.• • ,.,--.c ., l> 1 ,)

• ,:: ~ <:i,, ;: {,"' •• •J,t• . ., f"• , , ~ • ..,.-• . ,o . .,. ·~ ~.:!} -~~ • •. "" , :t)~··r
<;l..O j- ; _. • ~ Sh· . -• . , , 1 ·; '<..w

•)1'. 0 •• • ~ tr· ·c:-~ .. ,. _O- >. 4,, v .~.
~ • 0 .. ,# ... _. -·.~ .. ,;;, • ., ~- ··
•(fl:., ..,. ~ • .,, '<· •• ,..• • ~- .- ~ ,,., l"> ~ •

:,e".;,,1 I O - J. -'4 y~ • 00 ~ ~ laf .ft \,.,,,.
~. ~ - •" 0 l ·-' •' .~,~ • d;; 1' .,'!-'_ ..,--u •• ·..:_.

Figure 3.1: A LIFE gallery: (a) Initial random configuration. (b) A few dozen steps
later the "primeval soup" has grown thinner.

The above transcript is typical of LIFE "in the wild," in the sense that be
havior having similar chaotic features will occur starting from almost any ini
tial configuration; on the other hand, closer observation will reveal a number
of well-defined effects which can be brought under our control by a suitable
choice of initial conditions (cf. Section 3.4). This phenomenology is abun
dantly documented elsewhere(6]; here, we use LIFE only to provide a definite
context in illustrating a number of methodological points.

22 Chapter 3. A live demo

Figure 3.2: (a) Hundreds of steps later activity is concentrated in a few smoldering
areas , with occasional flares. (b) A few thousand steps later , most action has died
out.

3.2 Echoing

When we watch LIFE on CAM's screen, a lot of things happen at the same
time all over the place, and we may want to slow down the simulation or
even stop it for a while in order to observe some details. However, just when
the pace is slow enough to allow us to view at leisure an individual frame,
all feeling of movement is lost; things that at full speed looked quite different
from one another because of their state of motion now look disappointingly
the same, and it's hard to remember which cells carried the action and which
belonged to a static background . To paraphrase Zeno, by the light of an
electronic fl.a.sh it's hard to tell a flying bullet from a piece of chewed gum.
What we need is a way of coloring with the hues of "velocity" the black-and
white postcard representing current "position."

The cells of LIFE consist of one bit each. Thus, LIFE uses a single bit
plane of CAM and could be displayed as black-on-white. But CAM has several
bit-planes available, and can drive a color monitor. When we construct in
plane O the new state of a cell, instead of discarding the old state we can
temporarily save it on a second bit-plane, say, plane 1 (here, one may think
of plane 1 as an echo of the past). In this way, we can put together a two-bit
value from a new state and an old state , and we can instruct CAM's color
map to display a different color for each of the four combinations [Q][Q], [Q][Il,
[Il[Q], and [Il[I].

The rule that makes plane 1 echo plane O with a delay of one step is simply

: ECHO

3.3. TI-acing 23

CENTER >PLN1;

Note that, even though this is a rule for the new state of plane 1, CENTER still
denotes the center neighbor from plane O; the center neighbor from plane 1-
called CENTER' -is not "sensed" at all by this rule, since the echo is discarded
after one step.

If we rerun the experiment of Section 3.1 with ECHO on, using the color
assignment of table (3.1), LIFE becomes much more colorful. Static objects
will look red, moving objects will look whitish with a green leading edge and
a blue trailing edge-and the colors will stay even when the simulation is
stopped.

The colors used for representing on the color monitor the four possible
states of a four-bit cell are red, green, blue, and black, as in the table below;
this color scheme also applies to the color plates, which were taken directly
from the monitor's screen. A different scheme is necessary, of course, for
the black-and white figures; this scheme is indicated in the same table. 1 To
avoid confusion, actual colors will be mentioned in the rest of this book only
when referring to the color plates; for the other illustrations, we shall imagine
having a custom "paper monitor" capable of displaying black, white, and two
intermediate shades of gray. Figures involving a single bit-plane, such as
Figure 3.1, will of course use black for [I] and white for [Q].

CELL STATUS PLANE PRINTED COLOR

(LIFE with ECHO) 0 1 PAGE MONITOR

cell stayed alive rnrn Black Red
cell was just born ill [Q] Dark gray Green

(3.1)

cell just died [Q] ill Light gray Blue
cell stayed dead [QJ [QJ White Black

3.3 'Tracing

The ECHO feature enriches the display with a small amount of short-term
memory. In principle, one could prolong the echo by using more auxiliary
bit-planes to hold, in a pipelined fashion, an after-image of the last few
steps. However, bit-planes are expensive, and at any rate there are limits
to the amount of historical information that can be effectively displayed on
the screen by color- or intensity-coding.

A simpler tracing technique will be effective in many situations, in par
ticular when there are a limited number of objects evolving on a uniform
background - as in LIFE . We shall let each live cell in plane O leave a trace
of its presence on plane 1, as with ECHO, but this time the trace will be a

1On the paper, large background areas are better left white (no ink), rather than shown
in black as on the monitor.

24 Chapter 3. A live demo

permanent one (in a way, we are adding to the monitor's cathode-ray tube
an "infinite-permanence" phosphor layer). The TRACE mode is turned on by
specifying for plane 1 the rule

: TRACE
CENTER CENTER' OR >PLN1

Using the same color coding as with ECHO (the interpretation is, of course,
slightly different), moving objects will leave a light-gray trace behind, and a
retreating tide will leave the shore painted light-gray up to the high-water
mark. When the tracing sheet is too messed up, we start a fresh one by doing
at least one step in the ECHO mode (this wipes out the long-term history)
and resuming the TRACE whenever desired.

Let's proceed with our monitoring of LIFE in the wild. We will notice
that active areas occasionally eject a a small fluttering object, called a glider,
which steadily scuttles away on a diagonal path until it crashes into something
else. The spontaneous production of a glider is not a rare event; however,
under ordinary conditions the mean free path of a glider (from production to
disintegration) is quite short, and most of them will escape our notice. Now
we turn on the TRACE; in a few moments the screen will have recorded a
number of rectilinear gray traces left by gliders, as in Figure 3.3a.

ECHO and TRACE are perhaps the simplest examples of image-enhancing
aids useful in cellular-automaton experiments. Some experience, a good fa
miliarity with the available resources, and most of all a good knowledge of
the phenomenology of a particular cellular-automaton universe will suggest
a whole array of observation aids of suitable sensitivity and selectivity, anal
ogous to the staining techniques used in microscopy to differentiate specific
tissues, or to the the cloud chambers used in particle physics to ''materialize''
the tracks of specific events.

3.4 How to breed gliders

TRACE'ing will stain a glider's path, but a short path will remain short and
hard to see. Can we prepare a "culture" in which gliders will be longer
lived? Can we "isolate" a glider? Using CAM's plane editor, let's construct
on the screen a mask consisting of all ~'s except for a circular island of [l]'s
in the middle, and store this mask in a buffer in the host computer. Now,
we run LIFE from the usual primeval soup for, say, a hundred steps-when
conditions for the birth of gliders are quite favorable. At this point we AND
the saved mask with the configuration on the screen, 2 to retain only the

2The logical operator AND acts on two binary inputs and returns one binary output; to
AND two configurations, one applies the operator to each cell site, AND'ing the corresponding
two bits. CAM has provisions for such logical operations between host buffers and CAM
configurations.

3.4. How to breed gliders 25

central portion of the picture . Gliders produced on the shore of this island
and moving into the surrounding ocean will be able to swim a long distance
unhindered (Figure 3.3b).

~-\~ -· .:)
0 . .. -~ V . ' • . . __ ,,_ .. . -·~ .. • ---0

-=·
~

• . . .

•

. -. . r~

Figure 3.3: Glider breeding: (a) Wild gliders have a short life. (b) Gliders swimming
away from shore into open ocean ; by blotting out the island, we will be left with a
pure glider culture.

On a lucky run we may find many gliders in the ocean at the same time!
When this happens, we'll be ready with a new mask (all [I]'s except for a
large round hole of [Q]'s) to blot out what is left of the island; now the gliders
will be able to pursue their paths without risk of crashing into other objects.
They may still collide with one another, of course-but what else would one
collect gliders for?

This breeding experiment illustrates how, by setting up initial conditions
that are far from equilibrium, one can increase the chances of observing situ
ations that otherwise would be quite improbable . (Note that the exact shape
and size of the island do not matter much.)

A further stage in the understanding of a world is reached when we can
identify, at some level of aggregation, a number of primitive materials and
mechanisms that we can use in the construction of structures having a well
identified, repeatable behavior. At this stage, science turns into technology.
To build arbitrarily complex machinery we may have to control in great detail
the initial conditions of an extended portion of the world.

Figure 3.4a shows the complete plans for a "glider gun," a machine which
at regular intervals shoots a new glider along a well-defined path ; the discovery
of this device-as well as of many other interesting phenomena of LIFE , is
attributed to Bill Gosper. Finally, in Figure 3.4b we use this "technology" to

26 Chapter 3. A live demo

set up a colliding-beam experiment, where two streams of gliders are made
to cross and interact.

..

::

.
.

.
.

.
. . :•

.
~. ;

•;;,. ..

Figure 3.4: (a) Glider gun (shown enlarged). (b) Colliding-beam experiment using
two glider guns.

Chapter 4

The rules of the game

I shall omit the discussion of republics. . . . I
shall turn only to the principate, and go on
weaving according to the order written above,
disputing how one is able to govern and main
tain these principates.

[Niccolo Machiavelli]

In this chapter we shall look at cellular-automaton rules from the viewpoint
of their format, or "grammar," rather than of their specific contents.

A cellular-automaton rule happens to be a function on a finite set, and thus
can be explicitly given by a look-up table, i.e, by writing next to each possible
input value the corresponding output value. Indeed, this is the internal format
used by CAM's hardware, mainly for reasons of speed.

On the other hand, people usually prefer to develop more structured
(though not necessarily more compact) descriptions of the functions they
are required to handle. The choice of a suitable description language makes
it easier to specify, identify, or remember functions of a particular class, and
to a certain extent ''comprehend" their behavior.

4.1 The choices of creation

A cellular automata machine is sitting on our desk, waiting for us to give a
rule-the law that will govern a world. Where do we start?

Well, how much choice do we have? In other words, what does a rule look
like?

28 Chapter 4. The rules of the game

Take an arbitrary configuration on the screen, pick a cell, and look at
the bit pattern formed by its neighbors. (In this chapter, for simplicity we
shall consider cellular automata utilizing only two states per cell and five
neigh~ors.) We may find, for instance,

Does our rule specify a [QI or a [I] for the new state of the cell, as a "conse
quence" of this particular pattern? If we are making up the rule now, we are
free to choose. Let's choose [I], and make a record of it:

It is clear that the rule must specify the new state of the center cell for
any neighborhood pattern. To proceed in an organized way, let's print a
form listing all possible neighbor patterns (for graphic convenience, we have
written the five neighbors in a row and labeled them with abbreviations of
CENTER, NORTH, SOUTH, WEST, EAST):

Rule: ...
EWSNC Cnew EWSNC Cnew EWSNC Cnew EWSNC Cnew
00000 01000 10000 11000
00001 01001 10001 11001
00010 01010 10010 11010
00011 01011 10011 11011 (4.1)

00100 01100 10100 11100
00101 01101 10101 11101
00110 01110 10110 11110
00111 01111 10111 11111

To make up a rule, one just fills out the form by writing a O or a 1 in each
of the 32 boxes.

At first, you might just want to toss a coin for each choice. 1 For every
rule that you get in this way run a few experiments 2 starting from different
kinds of initial conditions (randomness, a little blob on a uniform background,
a face, etc.) . Much of the time the results will be quite disappointing; the
initial pattern will grow in a chaotic way until the whole screen is filled with
''static," or will shrivel and settle into a frozen arrangement . However, even
at this casual level of experimentation some rules will show interesting traits,

1 This process can be automated, of course.
2Section 5.6 explains how an arbitrary table can be coded in CAM Forth.

4.1. The choices of creation 29

and once in a while you'll get a real nugget. The authors once obtained the
following table

Rule Name: HGLASS
EWSNC Cnew EWSNC Cnew EWSNC Cnew EWSNC Cnew
00000 0 01000 0 10000 0 11000 0
00001 1 01001 0 10001 0 11001 1
00010 1 01010 0 10010 0 11010 0
00011 1 01011 1 10011 0 11011 0

(4.2)

00100 0 01100 0 10100 0 11100 0
00101 0 01101 0 10101 1 11101 1
00110 0 01110 0 10110 0 11110 1
00111 0 01111 0 10111 0 11111 1

Run this rule for different initial conditions (in particular, starting from a
blob of O's in a sea of i's), and see how much variety of behavior is packed in
a mere 32-bit table. Figure 4.1 and Plates 1, 2 provide a few examples.

Figure 4.1: Behavior of HGLASS (a) from random conditions and (b) from a simple
seed.

After generating a few hundred rules at random (it's hard to avoid falling
into the gambler's syndrome, "Just one more!"), you may conclude that this
is not a particularly effective way of constructing interesting worlds (or at
least obviously interesting worlds).

A fundamental aspect of good computer programming is a well-matched
interplay between algorithms and data structures. In a similar way, with
cellular automata the synthesis of useful systems usually arises from a good
match between choices made in the ''rule" space (the set of look-up tables)
and choices made in the ''state" space (the set of configurations).

30 Chapter 4. The rules of the game

What is the size of the rule space? In other words, in how many different
ways can one fill out the above form? Since there are 25 = 32 boxes and 2
choices per box, the total number of rules is 232 , or approximately 4 billion!
For cellular automata with 2 states and 9 neighbors (the "format" of LIFE),
this number climbs to 229 = 2512 -the square of the estimated number of
elementary particles in the universe!3

4.2 Rules in words

Having acquainted ourselves with what a cellular-automaton rule looks like
from a cell's viewpoint, we shall now discuss how to express it in a way that is
convenient for us. Specifying the individual entries of a large table is a tedious
and error-prone job; what's more, we don't want to stagger through the
enormous space of rules without a sense of direction, a structured approach
to rule-writing, and meaningful constraints arising from the nature of the
problem at hand.

What we need is a language for expressing a rule in whatever terms we find
most suitable, and a mechanism for interpreting our requests and translating
them into a look-up table. In practice, any extensible programming language
that is reasonably easy to use will serve these needs. The lowest-level tasks
of this translation process may be supplied by the machine designer as ad
ditional, specialized primitives of the language; higher-level tasks may take
the form of general-purpose utilities; finally, problem-specific needs may be
addressed by the user by suitably combining these utilities or adding to the
language new terms or constructs.

Note that, with the CAM approach, a table entry that may be used billions
of times in the course of an experiment need only be constructed once, before
the experiment starts; the efficiency of the process that translates the specifi
cations for a rule into a look-up table in no way affects the speed at which the
cellular automaton will run on the machine. Therefore, in expressing a rule
in the chosen language one can take a relaxed attitude, and concentrate on
convenience and clarity of description rather than worry about programming
tricks that would improve execution efficiency.

A simple example will illustrate the route that leads from describing a
cellular automaton in words to running it on CAM. A rule suggested by
Edward Fredkin of MIT in the early years of cellular automata{3] specifies
that a cell will "follow the parity of its neighborhood," i.e., that it will become
live or dead depending on whether its neighborhood currently contains an odd

3CAM can handle a number of different cellular-automaton neighborhoods, and for each
neighborhood the internal look-up tabl es provide up to 8192 entries; thus the number of
rules one can explore with CAM is on the order of 28192 r-:::; 102467 ! Moreover, by rule
composition one can greatly extend this range.

4.2. Rules in words 31

or even number of live cells. More formally,

CENTERnew = CENTER EB NORTH EB SOUTH EB WEST EB EAST (4.3)

(where EB denotes "sum mod 2"). Evaluating this expression for all possible
values of the arguments would yield the following look-up table

Rule: PARITY
EWSNC Cnew EWSNC Cnew EWSNC Cnew EWSNC Cnew
00000 0 01000 1 10000 1 11000 0
00001 1 01001 0 10001 0 11001 1
00010 1 01010 0 10010 0 11010 1
00011 0 01011 1 10011 1 11011 0

(4.4)

00100 1 01100 0 10100 0 11100 1
00101 0 01101 1 10101 1 11101 0
00110 0 01110 1 10110 1 11110 0
00111 1 01111 0 10111 0 11111 1

but this is exactly what we wish done automatically, without even wanting
to bother to see the result. In CAM Forth, we might code expression (4.3) as
follows

N/MOORE

CENTER NORTH SOl.Tl'H WEST EAST
XOR XOR XOR XOR

>PLNO

PARITY

The declaration N/MOORE states that for this experiment we plan to use the
Moore neighborhood, in which the neighbor words CENTER , .. . , EAST are
available. 4 The colon ' : ' tells Forth that we are going to add a new word
to its dictionary, namely PARITY. The body of the definition, terminated by
' ; ', is a simple expression in reverse Polish notation; XOR is the Forth word
for the EB operation. The word PARITY will never be called by us directly;
rather, it will be passed as an argument to another word, MAKE-TABLE, which
will know what to do with it. The following activity will then ensue

• MAKE-TABLE will run through the list of all possible neighbor config
urations; for each configuration, it will assign to the predefined words
CENTER , ... , EAST the values that the corresponding neighbors have in
the configuration, and will call PARITY.

• Every time it is called with a fresh set of neighbor values, PARITY will
calculate the corresponding new value for the center cell and store it in
the appropriate entry of a table associated with plane O (>PLNO knows
where this table is located, and acts as a middleman).

4 Ea.ch CAM neighborhood is accompanied by its own set of appropriate neighbor words,
as explained in Chapter 7. The corresponding "wiring" of the machine allows c1. cell to
receive information from those neighbors.

32 Chapter 4. The rules of the game

• Finally, MAKE-TABLE will ship the complete table to the CAM machine
proper, where it is stored in a fast-access memory, ready to be used as
many times as necessary in the course of an experiment.

At this point, all we have to do is ''run" CAM. Let's initialize the screen
with, say, a little square in the middle and hit the RUN key. With the PARITY
rule, the square will rapidly evolve in a pulsating fashion, producing "Persian
rug" patterns as in Figure 4.2.

Figure 4.2: Patterns produced by the PARITY rule, starting from a 32x32 square
pattern, after approximately {a) fifty and (b) a hundred steps.

One feature of PARITY which is not at all obvious from the look-up table
(4.4), and instead is brought out quite clearly by the structured description
(4.3), is its linearity.5 From this property one can formally draw important
conclusions; for instance, waves emerge unaffected after going through one
another. Another property that can be proved from (4.3) by means of formal
arguments is that, for any initial figure on a uniform background, this figure
will be found exactly reproduced in five copies after a suitable lapse of time
(and later on in twenty-five copies, etc.).

Though one should not be tempted to ascribe miraculous powers to it,
the choice of an appropriate notation in expressing the laws of a system often
provides insights into significant aspects of its behavior.

Algorithms are often used as compressed representations of large data
tables having a certain amount of regularity. In our situation-where the

5Ta.ke any two initial configurations and follow them in two separate experiments for,
say, a hundred steps, and then add the two final configurations together (add corresponding
sites mod 2). The result will be the same as if the two configurations had been added at
the beginning and then followed for a hundred steps in a single experiment.

4.2. Rules in words 33

tables are of at most a few thousand bits-the advantage of using algorithms
rather than tables in describing rules is not so much one of conciseness as of
structural clarity. For example, the string of 32 bits that make up the Cnew

column in form (4.4) can be written, in hexadecimal digits, as 6D06D66D,
and this string could even be used as a canonical name of the rule; however,
who would recognize in

088E8EE38EE3E3308EE3E330E3303000
8EE3E330E3303000E330300030000000
8EE3E330E3303000E330300030000000
E3303000300000003000000000000000

the rule LIFE of Chapter 3?
Systematic naming schemes-where a rule of a certain class can be recon

structed from its name--have some use, but only in specialized contexts (cf.
[55,66,71,38]).

Part II

Resources

Chapter 5

Our first rules

See Spot.
See Spot run.
Run, Spot, run!
Run , run, run ...
Spot can run fast.

[My Little Red Reader]

In this chapter we shall discuss cellular-automaton rules that use CAM's most
basic resources in a straightforward way.

Even this simple class of rules is already capable of yielding a rich phe
nomenology, applicable to a variety of models. Moreover, a good familiar
ity with the basic building blocks will make it easier to deal with the more
complex constructs that will be introduced in the following chapters. (As
in ordinary programming, CAM's primitive resources can be organized and
structured by means of a number of conceptual techniques, and turned into
a hierarchy of tools suited to specific tasks .)

All of the rules discussed in this chapter will use a single bit-plane and
the Moore neighborhood (cf. 7.3.1), consisting of the center cell and its eight
nearest neighbors.

5.1 Unconstrained growth

Let us clear the CAM screen (all !Ol's) and run the following rule

: SQUARES
N.WEST NORTH N.EAST
WEST CENTER EAST

38 Chapter 5. Our first rules

S.WEST SOUTH S.EAST
OR OR DR OR OR OR OR OR >PLNO

The screen will remain white. But as soon as we place a single [I] on it, there
will arise out of this "seed" a a black square growing at a uniform rate; in
a few seconds the black area will have filled the screen. If we sprinkle more
seeds, an equal number of squares will arise, and in their growth they will
overlap one another (Figure 5.la).

This is a simple example of monotonic, 1 unconstrained growth.

Figure 5.1: Monotonic growth from a few seeds: (a) SQUARES, {b) DIAMONDS, and
(c) TRIANGLES.

In the SQUARES rule above, the OR expression utilizes nine neighbors
arranged in a 3 x 3 square pattern having the center cell in the middle; the
result is "square" growth. In a similar way, the DIAMONDS rule

: DIAMONDS
NORTH

WEST CENTER EAST
SOUTH
OR OR OR OR >PLNO ;

utilizes a diamond-shaped pattern of five neighbors, 2 and the result is "dia
mond" growth (Figure 5.lb) . Before attempting to make generalizations on
this trend, let's try a pattern where the four-fold symmetry is broken; for
instance, a triangle pointing north, as in

: TRIANGLES
NORTH

WEST CENTER EAST
OR OR OR >PLNO;

1 I.e., once turned on a cell will remain on.
2The typographical arrangement of this piece of Forth code is, of course, irrelevant, and

has been chosen only for clarity.

5.2. Constrained growth 39

The resulting growth (Figure 5.lc) is one of triangles pointing south! In
general, any term in the OR expression whose position in the neighborhood
is away from the center in a certain direction will produce growth in the
opposite direction. This is not surprising, since neighbors act as sources of
information for the center cell.

To further clarify this point, observe that the rule that is used by CAM

when you press the DOWN-ARROW key in order to shift the whole screen
southwards is

: SHIFT-SOUTH
NORTH >PLNO;

That is, information that moves to the south must come from the north, and
that's where we should be looking for it .

The light-cone of an event (an updating of a cell) consists of all events in
the past which can affect the outcome, and all events in the future which will
be influenced by the outcome. In a cellular automaton, the speed of light (the
maximum speed of propagation of information) may be different in different
directions, and thus the shape of the light-cone of the cellular automaton
spacetime may in reality be a skewed pyramid. In any case, the cells which
can be influenced in one step (a cross section of the future light-cone) are
arranged in a point-reflected image (rather than an identical copy) of the
neighborhood (a cross section of the past light-cone).

5.2 Constrained growth

In the SQUARES rule of the previous section, a black area grows "as fast as it
can'' (i.e., at the speed of light) because a cell comes to life soon as it sees a
live cell in its neighborhood. One can make the growth process more selective
by limiting the number of cases in which a cell is allowed to turn on. For
example, in the following rule a cell turns on only if it sees exactly one live
cell among its eight neighbors, and will remain unchanged otherwise. {The
word 8SUM was used in the LIFE example of Section 3.1.)

: 1-OUT-OF-8
8SUM 1 = IF

1 ELSE
CENTER THEN

>PLNO

The resulting growth, shown in Figure 5.2a, is much sparser that with
SQUARES. Note the regular fractal pattern.

A whole set of constrained-growth rules can be obtained by playing vari
ations on the "counting'' theme, using the following scheme (for brevity, we
define the word U-for "unchanged"-as an abbreviation of CENTER):

40 Chapter 5. Our first rules

Figure 5.2: Constrained growth: (a) 1-0UT-OF-8, (b) LICHENS, (c)
LICHENS-WITH-DEATH.

CENTER

SSUM { U U U 1 U U U 1 1}
>PLNO

u

LICHENS

The construct within braces is a case statement, containing one entry for each
possible value of its argument (8SUM = 0, . .. , 8). Here, this construct is used as a
straightforward decision table: a 1 in position n means that the cell will turn on
if n neighbors are on, and a U means that it will remain unchanged. In the above
example, growth is allowed only when the number of live neighbors is 3, 7, or 8; a
seed of at least three cells is necessary to initiate growth, and, depending on the
shape of the seed, growth may continue or stop after a while (Figure 5.2b). The
INKSPOT rule of Section 1.2 works in a similar way.

5.3 Competitive growth

If in the above decision table one replaces some of the entries by O 's there will
be situations where white grows back at the expense of black. In this case, the
long-term results are in general very hard to predict; in fact, it is well known
in computation theory that extremely simple competitive-growth mechanisms
are capable of supporting processes that are computation-universal.

The following rule is obtained from LICHENS above by changing a single
entry into a 0:

8SUM { U U U 1 0 U U 1 1}
>PLNO

LICHENS-WITH-DEATH

The resulting growth pattern (Figure 5.2c) is radically different.
The game of LIFE , discussed in Chapter 3, belongs to this class of rules,

and actually could have been defined more concisely as follows

5.4. Voting rules

8SUM { 0 0 U 1 0 0 0 0 0}
>PLNO

5.4 Voting rules

41

LIFE

The rules discussed in the previous two sections are counting rules, in which
the behavior of a cell depends on just how many neighbors are in a given
state-irrespective of their detailed spatial arrangement. A further special
ization arises when each neighbor's contribution is interpreted as a "vote" in
favor of a certain outcome; any number of votes above a certain threshold
will yield that outcome.

In the following rule, a cell will follow the state of the majority of its
neighbors. The cell's own vote is counted by 9SUM, analogous to BSUM ; this
leads to a range of 10 distinct possibilities, 0, 1, ... , 9, which can be evenly
split by setting the threshold between 4 and 5 ("simple majority").

MAJORITY
9SUM { 0 0 0 0 0 1 1 1 1 1}

>PLNO

It's quite obvious that areas in which black initially has even a slight majority
will tend to consolidate this majority, and similarly for white. What is not
obvious is what will happen where the two colors meet: will the boundary
be sharp or fuzzy? will it be stable? will it tend to become straighter or
more wiggly? We'll see that the behavior of the boundary can be profoundly
affected by small variations in the rule.

With MAJORITY , if one starts the screen with a random distribution of
IQ]'s and [I]'s in a few steps the whole screen will have rearranged itself into
interpenetrating black and white domains, maintained by stable ''alliances.' '
If one starts with a low percentage of [I]'s, the white area will end up being
mostly connected, leaving black islands surrounded by a white ocean; the
situation gradually reverses as the initial fraction of [I]'s is increased (cf. Figure
5.3a). Models of this kind are useful in the study of nucleation and percolation
phenomena.

An interesting variation of this rule was constructed by Gerard
Vichniac[67]. By swapping the two table entries that are adjacent to the
threshold, as follows

9SUM { 0 0 0 0 1 0 1 1 1 1}
>PLNO

ANNEAL

one encourages reshuffling at the boundary between black and white domains,
where the majority is marginal. The net effect is one of gradual annealing of

42 Chapter 5. Our first rules

Figure 5.3: Voting rules, starting with 50% of 1 'sat random: (a) With simple ma
jority one gets stable, quite fragmented domains. {b) Annealed majority (ANNEAL)
leads to continual consolidation of domains; here ECHO is on.

domains: in the long term, each cell behaves as if the vote reflected not only
the state of the immediate neighbors, but also, with decreasing weights, that
of cells that are further and further away from it. Domains form as before,
but now the boundaries are in continual ferment; each cell can "feel," so to
speak, the curvature in its general vicinity, and will dynamically adjust its
state so as to make the boundary straighter (Figure 5.3b): "bays" are filled
and "capes" are eroded-as shown in Figure 5.4a. On a macroscopic scale,
the detailed mechanics of the rule is blurred away, and what is left is a good
model of surface tension, where boundaries behave as stretched membranes
that exert a pull proportional to their curvature (Figure 5.4b) and Plate 3. In
Part III we shall discuss other cases in which discrete microscopic mechanisms
provide good models for familiar continuum phenomena.

5.5 Bank's computer

At the end of Section 3.4 we remarked that in the world defined by a given
cellular-automaton rule one may find ''materials" and "mechanisms 11 capa
ble of being assembled into complex machinery with a definite plan and
purpose. Can one build a computer inside a cellular automaton? This is
actually one of the first questions that was asked by von Neumann in his
search for a mathematical "universe" capable of supporting the most essen
tial features of life. Von Neumann eventually managed to design a universal
computing/constructing ''robot" living inside a cellular automaton; his design

5.5. Bank's computer 43

Figure 5.4: Surface tension in the ANNEAL rule : (a) Two superposed snapshots
taken at an interval of 400 steps; bays are filled and capes eroded. (b) Time-exposure
recording the wandering of the boundaries.

uses 29-state cells and five neighbors, and occupies several hundred thousand
cells[68]. Later on, Codd[ll] achieved similar results with an 8-state cellular
automaton.

Banks[3) discusses even simpler solutions, using different trade-offs be
tween number of states, number of neighbors, compactness of construction ,
and texture of the environment in which the robot performs its tasks. Here we
shall present the simplest of Bank's approaches, which is suitable for building
computing circuitry of arbitrary complexity .

Bank's rule is completely specified by the following three entries

(with the understanding that the four rotat.:id versions of each entry lead
to the same result); for all other entries of the table the rule specifies ''no
change" for the center cell. With reference to a pattern of [I]'s on a field of
[Ql's, the rule essentially says "fill pockets, erase corners." In CAM Forth, using
U for "unchanged" as before ,

NORTH SOUTH= IF U ELSE O THEN

NORTH SOUTH WEST EAST+++
{ U U CORNER? 1 1} >PLNO

CORNER?

BANKS

44 Chapter 5. Our .first rules

If the number of !Ilneighbors (without counting the center cell) is 2, we have to
decide whether they are on a straight line or at 90°; in the latter case we force the
corner to be~- This is the only case where "death" can arise.

If we run this rule starting from random initial conditions, after a few
steps we obtain the pleasant but undistinguished texture of Figure5.5a; in a
few places we can make out little pockets of activity, with signals shuttling
back and forth. Can we "tame'' this activity, and turn it to more purposeful
tasks?

:.. ·········-···-·--···-.: ... ---······ .. ······--··---=----··-···-··-··---··"--: . .
!::.:5::!5!5!5-!55:::!!iiii::! -.......... ·-······ ·······---········--· .. •·•··· . .
. . =::::· .:::u::::=:::--:·-===:= : :z:.:; I . .
...... ····· · ···-·· -· .. !!! ::.::::.:::::::::::::::m:1::a. ____.. •••••••• ! _ p::::-..:::::::::,m::=:::::::;
. . ::=:::-.:::::m::11:::-.:::::: :······ ····-···--··--···:

Figure 5.5: BANKS rule. (a) Pattern evolved out of random initial conditions. (b)
Deliberate artifacts: signal propagating on a wire (left, enlarged), and interference
between two streams of signals generated by clocks of different periods.

It turns out that signals can easily be made to run on "wires." In fact,
if you cut a slanted notch on the edge of a solid black area, the notch will
move one position at every step; with the opposite slant, the notch will move
in the opposite direction. To support a signal, the black area need only be
three cells deep-this will be our wire. The left half of Figure 5.5b shows the
propagation of a signal; a signal reaching the end of the wire will die out. 3

With a lot of patience (the details are in [3]) one can show that signals
can be made to turn corners, to cross, and to fan out. Finally, it is possible
to build a ''clock" that generates a stream of pulses at regular intervals, much
like the "glider gun" of Section 3.4, and a two-input, one-output gate that
performs the logical function a AND NOT b. This is all that is needed to build
a general-purpose computer. The right half of Figure 5.5b shows a clock

3The corners at the free end of a wire must be protected by a little "serif" as shown in
the figure, or they will be eroded .

5.6. "Random" rules 45

of period 16 shooting signals down a line, and another clock of period 32
intercepting and killing every second pulse.

5.6 "Random" rules

Occasionally one may want to use rules for which there is no simple logical or
arithmetical recipe, or have the freedom to arbitrarily redefine the response
of a given rule to specific neighborhood patterns. In such cases, the only
practical solution may be to deal with a full-blown table. For example, the
rule for HGLASS given in table (4.2) can be coded as follows

EAST 2* WEST+ 2* SOUTH+ 2*
NORTH+ 2* CENTER+

VONN-INDEX { 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 1 1 1 }

>PLNO

VONN-INDEX (-- 0, .. ,31)

HGLASS

where VONN-INDEX numbers from Oto 31 the thirty-two neighborhood pat
terns of the von Neumann neighborhood, in the same order as they appear
in form (4.1).

Chapter 6

Second-order dynamics

"I am the Ghost of Christmas Past!" . ..
"I am the Ghost of Christmas Present! " .. .
"I am in the Presence of Christmas Yet to

Come?" said Scrooge.

[Dickens]

In this chapter, we allow the rule to look at a second bit-plane--set up as
an ECHO of the first, as in Section 3.2-in order to put a little short-term
memory into the dynamics. Unlike the earlier situation, where ECHO was
used only to enhance the display of LIFE , here the ECHO component is an
essential part of the rule. This approach leads to the construction of a variety
of second-order dynamical systems, including ones that display remarkable
analogies with Newtonian mechanics .

6.1 Firing of neurons: a three-state rule

In introducing LIFE , we touched upon the analogy with population dynamics;
this provided some suggestive terminology-but there was no pretense of
modeling a real system. In a similar vein, the following rule can be interpreted
as describing the dynamics of information patterns in a "brain" consisting of
all neurons and no axons: neurons are tightly packed and communicate by
immediate contact with their neighbors. 1

The rule involves cells having three states, !QI (''ready"} [I] ("firing") and
~ ("refractory"). A ready cell will fire when exactly two of its eight neighbors

1This rule was suggeated by Brian Silverman; the ''neuron " interpretation is ours.

48 Chapter 6. Second-order dynamics

are firing; after firing it will go into a refractory state, where it is insensitive
to stimuli, and finally it will go back to the ready state. In tabular form,

[QI t-+ [1] (only when two neighbors are in state [1])
[I] t-+ 12] (6.1)
[2] r-4 [Q]

Using two bit-planes as in Section 3.2 (Echoing), we shall encode the neuron
states as follows

CELL STATUS STATE PLANE

(BRAIN) 0 1
ready [Q] [Ql[Q]
firing [I] [I]~ (6.2)

refractory ~ ~rn
not used raJ [II [I]

Since with this coding scheme plane O records which cells are firing and plane
1 which ones are refractory, it's easy to express the overall rule (6.1) by means
of two separate rule components, one for plane O and one for plane 1.

Observe that a cell will be refractory right after firing; therefore, the rule
for plane 1 is simply ECHO (discussed in Section 3.2 and repeated below for
convenience), which puts in plane 1 a copy of plane O with a one-step delay.

: ECHO
CENTER >PLN1 ;

As for plane 0, we define first a word that returns a 1 only if the appropriate
STIMULUS is present, and one that tells us if cell is READY. The cell's new
state is then determined by AND'ing these two conditions:

CENTERS { 1 0 0 0}

SSUM { 0 0 1 0 0 0 0 0 0}

STIMULUS READY AND >PLNO

READY (011)

STIMULUS (011)

BRIAN'S-BRAIN

In the code for READY, we have used a new ''neighbor word," namely CENTERS.
This word expresses the joint status of CENTER and CENTER' as a single variable
having values O, 1, 2, and 3-as in table {6.2).2

Even if by carelessness of the experimenter the initial configuration should con
tain any cells in state [31 ("not used"), with the rule as given the anomaly will vanish
after one step. 3

2 All the neighbor words available in CAM Forth are discussed in Chapter 7. To all
purposes, CENTERS = CENTER + 2 x CENTER' . Of course, we could have defined READY in
terms of the OR of CENTER and CENTER•; however, here we wanted to spare the reader the
subtleties of arithmetic/logic conversion (cf. Section A.14).

3During that step, these cells will behave as firing cells.

6.1. Firing of neurons: a three-state rule 49

An interesting aspect of BRIAN'S-BRAIN is that there are no static struc
tures. All activity is fast-paced, and is continually refreshed by the mutual
stimulation of firing patterns. Figure 6. la-a brief time-exposure-can hardly
do justice to what one sees on the screen.

Figure 6.1: (a) Short time-exposure of BRIAN'S-BRAIN. (b) GREENBERG rule: isolated
dots grow into rings, which merge into larger rings.

Once a trick has been learned it takes little effort to apply it to a variety
of different situations. In conjunction with ECHO , the word READY can be
used as an "inhibiting" component for any rule running on plane 0. For
example, we can take DIAMONDS (Section 5.1), which by itself leads to trivial,
unconstrained growth, and write

CENTER NORTH SOUTH WEST EAST
OR OR OR OR

READY AND >PLNO

GREENBERG
\ this part is
\ DIAMONDS

This rule, some aspects of which have been studied by Greenberg and
Hastings[21], has several ''modes" of activity depending on the initial con
ditions. A single dot will grow into a diamond-shaped wave front (with a
hollow interior) traveling at the speed of light; when two of these ''rings' ' meet
their common boundary is annihilated, resulting in a larger hollow structure
with a continuous boundary (Figure 6.lb). If plane 1 is initially empty, the
inhibition wave in this plane closely trails the firing wave in plane 0, creating
a "guard ring' ' that prevents any activity from penetrating inside: when the
excitement is all over, nothing is left on the screen. However, sustained ac
tivity is possible if the ring is broken at one point: this gap becomes a stable,

50 Chapter 6. Second-order dynamics

localized source of periodic waves of a certain frequency. There also exists a
pattern that produces waves of twice that frequency.

A good way to experiment with this rule is to use as an initial configuration
one containing of a small fraction of [l]'s placed at random in planes O and 1.
By slowly varying this fraction from run to run, different modes of behavior
are encouraged. Figure 6.2 is a sequence obtained from 3% of !J]'s.

Figure 6.2: GREENBERG: Initial, intermediate, and steady-state behavior, starting
with 3% of 1 's at random in one plane and a different 3% random pattern in the
other.

6.2 Going into reverse gear

An essential feature of the rules of the previous section is that the new con
figuration of plane O (the "future") is constructed by looking at both the
current configuration of this plane (the ''present") and its previous configu
ration (the "past"); the latter was saved in plane 1 by ECHO. In other words,
if we consider the sequence of configurations

Ct-2 ct-1 ct ct+1 ct+2 ... ' , , , (6.3)

traversed by the system in the course of time, each configuration is completely
determined by the previous two. This characterizes a second-order system.

As mentioned above, a simple way to construct a second-order rule is to
start with an ordinary (or first-order) rule and add to it a term containing
a reference to the past. Here we shall consider the case in which the past
enters in the rule in a very simple way, namely, it is XOR'ed with the value
produced by the original first-order rule. For example, starting from PARITY
of Section 4.2, we can construct the new rule

: PARITY-FLIP
CENTER NORTH SOUTH WEST EAST

XOR XOR XOR XOR

6.2. Going into reverse gear

CENTER' XOR
>PLNO

51

in which the value formerly returned by PARITY is further XOR'ed with
CENTER• (the current value in plane 1 is the previous value of plane 0, since
ECHO is on) before being used as the next value for plane 0.

With the new rule, the past is simply copied into the future, either ''as is"
(when the value returned by the original rule is O) or after complementing
it (when that value is 1). The first-order piece of the rule may be visualized
as a "force field" which the state of the system must traverse in going from
the past to the future; depending on the value of this force, this state may
re-emerge unchanged or "flipped."

As a first experiment with this rule, start for simplicity with a small
square of DJ's in plane O and an all-blank configuration in plane 1, and run
a thousand steps (Figure 6.3a). The dynamic behavior has a quite different
character from that of the original PARITY: on all scales, growth alternates
with steady retreat rather than sudden collapse. Now swap the contents of
the two bit-planes 4 and run a thousand more steps: the movie will run in
reverse, and you will come back to the original starting point. Continue for a
few more steps-you are now traveling into the (as yet unexplored) system's
past! Swap past and present again, and the system will resume traveling
forward in time. PARITY-FLIP is a time-reversible system-and we have
access to its "reverse gear."

Though the visual appearances are similar, this experiment in reversibil
ity is quite different from conventional "trick cinematography." In ordinary
life, one can make a movie showing scattered debris "unexplode" and come
together to form, say, a house; but this only at the cost of storing on film all
the individual frames of the direct process, and then showing them in reverse
order. When the movie is projected, there is no causal connection between
the individual frames (they were put in that particular order by the trickster,
who could have chosen a different order with even more miraculous results).
In our experiment, instead, we store just the last pair of frames, and then
let the rule re-generate in real time the system's past history according to
principles of strict causality.

A fuller treatment of reversibility in cellular automata will be given in
Chapter 14; in particular, theoretical background for the above example is
given in Section 14.2.

"Commands for swapping planes are, of course, directly available in CAM.

52

• @ f; •

•+++
+++
• 0 • •

Chapter 6. Second-order dynamics

Figure 6.3: (a) Eight stages in the evolution of PARITY-FLIP, followed by the same
evolution backwards in time. (b) TIME-TUNNEL from a square, after thousands of
steps.

6.3 An impenetrable shield

We shall run an experiment with another reversible rule of the second-order
kind, namely

TIME-TUNNEL
CENTER NORTH SOUTH WEST EAST

+ + + + { 0 1 1 1 1 0 }
CENTER' XOR >PLNO

\ return 1 if not all the same
\ XOR with the past

(ECHO is again the rule for plane 1). A small square of ~'s 5 in the middle
will act as a steady source of waves. Since our cellular-automaton space is
wrapped around (cf. Section 2.2.5), these waves will travel full circle-or,
better, full torus-and come back to interfere with themselves in a nonlinear
way, giving rise to a whole sequence of increasingly more complex shuffles.
Eventually the whole screen will be filled with a "turbulent" pattern, as in
Figure 6.3b (the four-fold symmetry of the initial configuration is, of course,
indefinitely preserved by this rule, which is rotation-invariant).

Observe that throughout all this the outline of the square is not destroyed
(in fact, it keeps originating waves going inwards as well as outwards). The
same experiment starting with a big circle-(a) in Figure 6.4-yields pattern
(b) after 4000 steps. Since the dynamics is reversible, if we go back in time
for the same number of steps we come back to (a): the turbulence has been
"undone." Let's do all this again, but this time, when we are at (b), before

5 I.e., i's in both planes, as in table (6.2).

6.4. Other examples 53

reversing gears let's change just one bit of plane 0, outside of the circle.

When we run backwards, this "error" will rapidly grow, destroying all the

subtle correlations hidden in (b), and the resulting "t = O" pattern will be

(c) instead of (a): total chaos-outside the circle. However, inside the circle

we have come back to the initial orderly pattern: the disturbance has not
propagated to the circle's interior.

It is clear that the boundary of the circle acts as an impenetrable shield,

completely isolating what's inside from what's outside and vice versa. With

these initial conditions, the system is effectively partitioned into two decou

pled subsystems.
The fact that the edges of the circle are conserved is an expression of a

simple conservation law. Conservation laws in cellular automata are discussed
in [35] and f45J.

Figure 6.4: TIME-TUNNEL: From (a) to (b) forward in time, and from (b) to (c)

backwards after having changed a single bit in (b).

6.4 Other examples

There are many reversible rules closely related to the TIME-TUNNEL example

of the previous section. For instance, take the case statement which appears as

part of TIME-TUNNEL 's definition, and replace it with any other table in which

all cases return the same value except for the maximum or minimum neigh

borhood counts (or both). All of these rules exhibit two causally disconnected

regions when started from the configuration of Figure 6.4a. Generalizations

to any other symmetric neighborhood in which neighborhood counts which

aren't the maximum or minimum are all treated alike also have this property.

This property arises because cells adjacent to the black/white boundary in

Figure 6.4a don't see maximum or minimum counts--complementary pairs

along the boundary will always remain complementary.
The PARITY-FLIP rule of Section 6.2 can also give rise to a family of

related reversible rules. This family includes any rule that depends on the

54 Chapter 6. Second-order dynamics

XOR of any set of neighbors in the present, XOR 'ed with the center cell in the
past. All of these rules share the property with PARITY-FLIP of being linear
(see footnote 5 of Section 4.2).

You can take any first-order rule and find a closely related second-order
reversible rule by XOR'ing the result of this rule with the center cell in the
present, and also with the center cell in the past. The latter operation makes
the rule reversible (see Section 14.2) while the former insures that patterns
which don't change in the first-order rule are also unchanging in the second
order version.

Space does not permit us to give an extensive phenomenological discussion
of reversible second-order rules. Further examples appear in Chapter 9 and
in Part III of this book.

Chapter 7

Neighbors and neighborhoods

In this chapter we present in a systematic fashion the sources of information
to which a cell of CAM has access for the purpose of computing its new state.

Recall that CAM does computation by table look-up. Functionally, CAM
behaves as if each cell owned its own copy of the rule table and all cells were
updated at the same time. In reality the table exists in a single copy which is
time-shared by the cells in a sequential fashion; however, all the multiplexing,
buffering, and pipelining machinery necessary to turn this sequential process
into an effectively parallel one is hidden from view, and the user will never
have to be concerned with it. 1 In particular, one knows that while the cellular
automaton is constructing the values for time t + 1 (this is cellular-automaton
time, and increments by 1 at every step) only values from time t appear at the
inputs of the table: the new value constructed by a cell during the sequential
updating of the array is hidden from view, while its current value remains
visible until the whole array has been updated.

The rule table produces a new value for each of the bits that make up
a cell. The potentially useable sources of information are too numerous to
all be presented simultaneously to a look-up table of practical size. 2 An

1 The only parameter worth remembering when attaching external hardware to CAM is
the period of the internal clock-about 180 nsec. At every pulse of the clock a set of
neighbor values appears at the inputs of the table; at the next clock pulse the new value
for the cell to be updated is read from the table output and a fresh set of input data is
supplied to the table. The table could (and in fact can) be replaced by any combinational
logic circuit which, given a set of arguments, settles down to a definite result within a clock
period.

2The number of inputs to a look-up table can never be large, since the table's size
grows exponentially with the number of inputs {it doubles for each additional input); on
the other hand, the number of signals that exist on the CAM board and for which one
might conceivably find a use at one time or another as arguments to a table approaches
one-hundred.

56 Chapter 7. Neighbors and neighborhoods

important aspect in the design of CAM was the selection of functional groups
of variables that, used jointly or alternatively within the constraints set by
table size, would yield the richest range of possibilities in the exploration of
cellular automata dynamics.

In many contexts the rule will be able to use, besides the ordinary spatial
neighbors, additional pseudo-neighbors. These variables may carry space
or time-dependent information, parameters communicated by the host com
puter, and signals supplied by external hardware (such as a random-number
source or even a video camera).

7.1 A weakly coupled pair

The CAM machine is functionally organized as two identical "halves," called
CAM-A and CAM-B. Each half consists of two bit-planes (planes O and 1 for
CAM-A, 2 and 3 for CAM-B} and a look-up table, and is capable of running
a cellular-automaton rule quite independently of the other. However, each of
the two halves can see some of what is going on in the other; thus, the two
halves can also be run as a single cellular automaton consisting of two coupled
subsystems. This coupling is normally relatively weak: only the CENTER and
CENTER' neighbors of each half can be sensed by the other half.

For special applications the coupling between the two subsystems can be
strengthened by custom-configuring the machine. In CAM, all relevant input
and output lines are brought out to a user connector, so that various portions
of the internal cell-updating circuitry can be complemented or replaced by
external circuitry, which in many cases of practical interest may consist of
just a few jumpers.

Another way to couple the two halves is to join them edge-to-edge, so as
to have a single cellular automaton of larger size. This mode of operation is
briefly discussed in Section B.2.

Some of the resources on the CAM board are shared by CAM-A and CAM
B; namely the color map, which encodes the overall contents of the two halves
into a single color picture, and the cell-event counter, which is fed by a dis
tinguished output of the color map. The symmetry between the two halves
extends to the way they use the common resources.

For the above reasons, in programming CAM it is convenient to direct one's
attention to just one of the two halves of the machine at a time. Because of
the symmetry between the two halves, one and the same set of terms will
serve for either context; for example, in CAM-A the word NORTH refers to a
cell's north-neighbor bit of plane O; in CAM-B, to that of plane 2.

7.2. The magic number twelve

CENTER
NORTH
SOUTH
WEST -EAST

(a)

PLN

CENTER
CENTER'
NORTH
NORTH'
SOUTH
SOUTH'
WEST
WEST'
EAST
EAST'

57

(b)

PLNO PLN1

Figure 7.1: The rule of a cellular automaton as a black box. Each bit of neigh
borhood state contributes one input, each bit of the cell's new state requires one
output.

7.2 The magic number twelve

In Chapter 4 we considered, for sake of illustration, a simple class of cellular
automata, namely those consisting of one bit-plane (i.e., one bit per cell) and
utilizing five neighbors. For any automaton of that class the rule could be
encoded in a table of 25 (=32) entries. Such a table can be visualized as a
"black box" (Figure 7.la) having five input lines and one output line. The
inputs represent the five neighborhood bits seen by a cell, and the output
represents the bit that is to make up the cell's new state. On the other
hand, if the cellular automaton consisted of two bit-planes, 0 and 1, and
thus had two bits per cell, each of the five neighboring cells would contribute
two bits-one for plane O and one for plane 1-and the new state of a cell
would also consist of two bits; the corresponding black box would have 10
inputs and 2 outputs, as in Figure 7.lb. The table itself would consist of 210

(=1024) entries, with each entry consisting of two bits; it will be convenient
to visualize such a table as consisting of two columns, each one-bit wide and
1024-bits long, producing outputs labeled PLNO and PLN1.

The look-up table actually used in each half of CAM is four columns wide,
as shown in Figure 7.2. (The other two columns are used for auxiliary
functions to be discussed later.) The length of the table is 4096 entries
corresponding to 12 input (or address) lines; this number 12 will be the key
constraint in the following considerations, since it sets an upper bound to the
amount of information that can directly be used by the table in computing
the new state of a cell.

Let us visualize the meaning of this constraint. Inside each of CAM-A's
cells we have an identical copy of a black box similar to that of Figure 7.2,

58

addr 0
addr 1
addr 2
addr 3
addr 4
addr 5
addr 6
addr 7
addr 8
addr 9

(addrlO)
(addrll)

Chapter 7. Neighbors and neighborhoods

PLNO PLN1 AUXO AUX1

Figure 7.2: The look-up table of CAM-A. (For that of CAM-B, replace O and 1 in the
output labels by 2 and 3. The twelve input "probes" can be connected to a variety
of signals.

with four output ports and twelve cables dangling from its input connectors.
Imagine the input cables to be terminated by a test clip or "probe" which can
be hooked to any variable we want to sense. Say, we want to run a demo of
LIFE as in Chapter 3. We connect the first nine probes to the nine neighbors
of that cell, sensing only the bits of plane 0, namely CENTER , NORTH , ... ,
S . EAST. (Since either in CAM-A or in CAM-B there is only one black box
which is time-shared between all the cells-in our scenario we have to imagine
that whatever we do with the probes of one cell is imitated by all the cells of
the array.) Assuming that the PLNO column of the table inside the box has
been appropriately filled, this is enough to run LIFE with no frills; whatever
comes out of the first output port is going to be the cell's new stat e- again,
only as far as plane O is concerned.

If we want to run the ECHO feature, we suitably fill also the PLN1 column
of the table, and whatever comes out of the second output port is going to be
the new state of the bit in plane 1; we don't have to use more probes, because
all we need for ECHO is knowledge of the CENTER bit, which we have already
tapped with the very first probe. Three probes are still unused.

Now we want to run the TRACE feature. Since we want to sense not only
the center cell's bit in plane O but also that in plane 1 (namely CENTER'), we
have to connect one more probe. Only two probes left!- and think that of
plane 1 we are seeing just one of the nine bits contained in the 3x3 window
centered on the given cell. With only 12 probes, we'll never be able to see at
the same time the nine bits of plane O and the nine of plane 1.

And there are more things we may want to look at: a few bits from the

7.3. Neighborhood declarations 59

other two planes { those of the other half of the machine) , some spatial in
formation {can we make a "checkerboard" cellular automaton in which white
and black squares follow somewhat different rules?), some time-dependent
information supplied by the host computer , external inputs, random sources,
etc. In certain cases it will be possible to combine in a meaningful way infor
mation coming from different sources and route it to a single probe.

Computation by table look-up is fast, but demands careful allocation of
the most vital resource, namely the table's address lines. In early prototypes
of CAM the "probes" were literally implemented as wires that one could move
at will, by hand. Extra pieces of circuitry could be inserted here and there.
Coming back to the machine after other people had been using it was always
a surprise! In the official version of CAM this do-it-yourself approach is still
possible, though in a slightly more disciplined form, through access to the user
connector. However, it is important to be able to configure the machine in a
number of standard "modes" suitable for a wide range of applications. They
must be software-selectable, well-documented, and always available-we want
our experiments to be communicable and repeatable.

These are the issues addressed by CAM's ''neighborhoods."

7.3 Neighborhood declarations
The following considerations apply independently to each half of CAM, i.e.,
either CAM-A or CAM-B.

In CAM, a neighbor is defined as any one-bit source of information to which
one of the 12 '1>robes"-or address lines of the look-up table-is connected.
A neighborhood is an assignment of some or all of these lines to definite
neighbors. In general, we will make a major assignment, which explicitly
attaches ten of the lines to a specific set of signal sources, by means of a
declaration of the form

N/ (major assignment)

(where N/ is a mnemonic for ''neighborhood"); the sources for the remaining
two lines are specified by an optional minor assignment, of the form

Ir./ (minor assignment}

A new major assignment overrides the previous one, and nullifies the previous
minor assignment.

We can make distinct neighborhood choices for the two halves of CAM.
The words CAM-A and CAM-B are used to indicate that subsequent neighbor
hood assignments should be transmitted only to the corresponding half of the
machine. CAM-AB directs assignments to both halves-this is the choice that
is in effect at the beginning of a new experiment.

60 Chapter 7. Neighbors and neighborhoods

The user will have no need to keep track of the identity of the 12 ad
dress lines, since each neighborhood declaration assigns to them convenient
symbolic names. 3

7.3.1 Major assignments

The Moore neighborhood declaration, N/MOORE, makes the following ten
neighbor words available for use in defining a rule in CAM Forth

CENTER

CENTER'

NORTH SOUTH WEST EAST
N.WEST N.EAST S .WEST S.EAST

At the same time, it connects the corresponding physical signals to the first
ten inputs of the look-up table. 4 This is the neighborhood we have been using
in the previous chapters.

Unless explicitly noted, all "neighbor words" in CAM Forth represent bi
nary variables, with values O and 1 .

Also the von Neumann neighborhood, N/VONN, provides ten signal
sources, but the selection in this case is the following

CENTER NORTH SOUTH WEST EAST
CENTER• NORTH• SOUTH, WEST, EAST,

Thus, the entire contents of five cells becomes accessible, and within the scope
of that reach one can program with full generality a cellular automaton having
four states per cell.

Especially in this context, it may be more convenient to deal with five
4-state variables, called

CENTERS NORTHS SOUTHS WESTS EASTS ,

rather than with ten 2-state variables. In CAM Forth, whenever both the
primed and the unprimed version of a neighbor word are available in a given
neighborhood, the "plural" version (ending in 'S') is also available. For ex
ample, CENTERS is defined as CENTER+ 2 x CENTER•, and takes on the values
O , 1 , 2 , and 3 .

The specific pair CENTER , CENTER ' (and consequently CENTERS) is in
cluded in every major assignment.

The third major assignment, called the Margolus neighborhood, will be
presented in Chapter 12. It comes in three flavors, called N/MARG, N/MARG
PH, and N/MARG-HV.

3For reference , these assignments are listed in tables (7.2) and (7.3).
4Signals and table are those of CAM-A or CAM-B, depending on the context .

7.3. Neighborhood declarations 61

As we have already remarked, the above declarations are mutually ex
clusive: any one of them will supersede the previous one. But where are
these ten probes parked before we assign a neighborhood? Actually, there
is ~ fourth, default option, called user neighborhood, which is automatically
selected at the beginning of a new experiment and to which one can revert
by explicitly saying N/USER. Its sources are

CENTER
CENTER'
(user 2)
(user 6)

(user 3)
(user 7)

(user 4)
(user 8)

(user 5)
(user 9)

The last eight neighbors correspond to pins on the user connector and may
be fed with arbitrary signals from the external world. Note that we haven't
assigned a name to these sources, since it will be more convenient for the
user to provide the desired mnemonics according to what is actually con
nected to them. To associate, say, the neighbor name 'CAMERA' to address
line (addr 7) (cf. Figure 7.2)-which in the present neighbor assignment is
directly connected to the external input signal (user 7)-one simply writes

7 == CAMERA . (7.1)

Of course, existing neighbor words can be renamed at any time to suit one's
taste. For example, it is always legitimate to write

UNDERLAY
CENTER' ;

and then refer to UNDERLAY rather than CENTER• in the body of a rule.

7.3.2 Minor assignments

Having made our major purchases, we have some change left-namely two
address lines-which we may want to invest in some little extras. Eventually,
it will become clear that these extras carry a lot of power.

The minor assignment &/CENTERS connects our last two probes to the
other half of the machine, giving us a 1 x 1 window on the other two planes;
these extra neighbors are called

or, collectively, &CENTERS .

&CENTER
&CENTER'

A general and quite powerful method of extending the range of behavior
that can be explored with a cellular automata machine is by rule composition.

62 Chapter 7. Neighbors and neighborhoods

That is, by doing one step with a given rule a, one with rule b, and so on
through an assigned sequence, we can effectively construct a "super-rule,,
with properties that are beyond the reach of the individual components.

Downloading a new rule from the host computer to CAM before every
step takes some time. 5 In many cases we will be able to preload the look-up
table with several rules at once (they will occupy different portions of the
table) and then run them in a cyclic sequence without interruptions . We
can visualize the whole table as a single super-rule which switches from a
to b etc. on successive steps. The time-dependent information necessary to
do this switching is provided by pseudo-neighbors which can be manipulated
between steps by the host computer (pseudo-neighbors are sensed by the rule
just as if they were ordinary spatial neighbors).

The declaration re/PHASES connects the two extra probes to two of these
pseudo-neighbors, namely

&PHASE
&PHASE'

also known to CAM Forth by the collective name &PHASES. (Note that
.tPHASE and .tPHASE' follow the usual primed/unprimed naming scheme
for a pair of related variables; however, they are not intrinsically associated
with specific planes. Also note that CAM's built-in pseudo-neighbors, such as
&PHASE and &PHASE' as well as .tHORZ and &VERT introduced below, exist
in a single copy shared by CAM-A and CAM-B.)

Finally, the minor assignment .t/HV selects two pseudo-neighbors called

.tHORZ

.tVERT

(horizontal phase and vertical phase), which provide some space-dependent
information; in particular, they allow one to make up rules that follow a
"striped" or a "checkerboard" pattern, and they support the partitioning
technique discussed in Chapter 12. They will be explained in more detail in
Section 11.1 below. The collective name for this pair of pseudo-neighbors is
.tHV (=.tHORZ+2x.tVERT).

Minor assignments too are mutually exclusive. The default assignment is
.t/USER , by which we may complement the major selection with a couple of
external lines; that is, this selection introduces two (unnamed) neighbors

{user 10)
{user 11)

associated with two more pins on the user connector.

5Typically, one step-time for a precompiled rule that has been stored as a table in the
host's memory; much longer if the rule must first be compiled.

7.4. Summary of neighborhoods 63

7.4 Summary of neighborhoods

We stress again that the number of neighbors available at any moment equals
the number of address lines of a look-up table, as shown in Figure 7.2.

The construct '(address line) •: (neighbor name)' used in (7.1) above is in
fact' used by the CAM software for generating the neighbor names associated
with the various neighborhoods. With this notation, the overall picture for
the major neighborhoods can be summarized as follows

laddr]IN/MOOREj N/VONN IN/MARG jN/MARG-PHjN/MARG-HVj N/USER I
0 == CENTER CENTER CENTER CENTER CENTER CENTER
1 == CENTER' CENTER' CENTER' CENTER' CENTER' CENTER'
2 == S.EAST EAST' cw CW cw (user 2)
3 :z S.WEST WEST' ccw ccw ccw (user 3)
4 ... N.EAST SOUTH' OPP OPP OPP (user 4) (7.2)

5 == N.WEST NORTH' CW' CW' CW' (user 5)
6 == EAST EAST CCW' CCW' CCW' (user 6)
7 == WEST WEST OPP' OPP' OPP' (user 7)
8 == SOUTH SOUTH (user 8) PHASE HORZ (user 8)
9 == NORTH NORTH (user 9) PHASE' VERT (user 9)

(the Margolus neighbors will be explained in detail in Chapter 12). In ad
dition, each neighborhood makes available as an added conven ience the ap
propriate joint version of every unprimed/primed pair (such as CENTERS for
' CENTER and CENTER' ')-as well as HV for the pair HORZ - VERT .

In a similar way, the minor neighborhoods provide the following options

I addr II &/CENTERS j &/PHASES I &/HV I &/USER I
10 == &CENTER I &:PHASE I &:HORZ (user 10) (7.3)

11 == &:CENTER' I &:PHASE' I &:VERT (user 11)

with analogous provisions for joint neighbor pairs.

7.5 Custom neighborhoods

You may have a need for a neighborhood that uses a different mix of signals
than those provided by any of the standard neighborhoods listed above, or
you may want to use some signals that are available on the user connector
but are not routed at all to one of the standard neighborhoods. In such cases
it is easy to turn a user neighborhood (major, minor, or both) into a custom
neighborhood, by connecting a few jumpers across the user connector. This
procedure is explained in Section 9. 7.

64 Chapter 7. Neighbors and neighborhoods

7.6 Making tables

As we bave seen, CAM contains several tables-namely the color map and the
two look-up tables associated with CAM-A and CAM-B. All of these tables
may be in use in a complex experiment, and their contents may change in
the course of the experiment. It is important to have a general procedure for
specifying the desired make-up of the relevant columns of these tables.

The command MAKE-TABLE (table descriptor) fills one or more look-up
table columns as specified by (table descriptor), a user-defined Forth word
containing the desired specifications.

The "rules" that we have used in the previous chapters, such as

ECHO
CENTER >PLN1

are typical examples of such descriptors; in fact, the command

MAKE-TABLE ECHO

overwrites column PLN1 with the ECHO table, leaving all other columns un
changed (cf. Section 4.2).

More than one column can be filled at once. For example, the sequence

CAM-A N/VONN

CENTER NORTH SOUTH WEST EAST
XOR XOR XOR XOR >PLNO

CENTER >PLN1
MAKE-TABLE PARITY-WITH-ECHO

PARITY-WITH-ECHO

would write in in columns PLNO and PLN1 the information required to run
the rule PARITY (cf. Section 4.2) with the ECHO feature on.

This two-stage procedure-where one defines a descriptor and then passes
it as an argument to a command-provides the flexibility required in complex
situations.

To have more control one could have defined PARITY as in Section 4.2,
and then prepared the following descriptors

CENTER >PLN1

CENTER CENTER' OR >PLN1

0 >PLN1

ECHO

TRACE

BARE
\ keep plane 1 clear

so that, after starting an experiment with

7. 7. The color map and the event counter

MAKE-TABLE PARITY
MAKE-TABLE BARE

65

the ECHO or TRACE modes could be turned on and off at will by issuing the
appropriate MAKE-TABLE commands.

Note that in ordinary circumstances one won't have to type these com
mands during the course of a simulation; CAM Forth provides the means for
''attaching" an arbitrary command or sequence of commands to an individual
key, thus turning the keyboard into a dedicated control-panel for running an
experiment in real time.

In the above examples it was natural to separately specify the contents of
columns PLNO and PLN1 of the table, since there the two bit-planes play quite
independent roles. In other situations it is more convenient to return the new
state of a cell as a single four-state variable. The word >PLNA accepts a four
state argument and writes it as a two-bit table entry, i.e., across columns
PLNO and PLN1. For example, to make a cell cycle through the states [QI
through ~ one would write

CENTERS 1+ 4 MOD >PLNA
MAKE-TABLE 4CYCLE

4CYCLE

The sequence 4 MOD divides the argument on the stack by 4 and returns the re
mainder, thus insuring that after reaching state [3J a cell will go back to [Q].6

The corresponding ''column dispatcher'' words for CAM-B are, of course,
>PLN2, >PLN3, and >PLNB. Analogous words, such as >AUXO, >AUXA, etc.
are used for filling the auxiliary columns of a look-up table (cf. Section 7.2).

7.7 The color map and the event counter

The color map, briefly introduced in Section 2.2.2, has a structure analogous
to that of the look-up tables, namely

CAM-A: ALPHA
ALPHA'

CAM-B: BETA
(7.4)

BETA'

INTEN RED GREEN BLUE

6Since Forth encodes integers as 16-bit binary numbers and >PLNA only ships to the
table the least significant two bits of its argument (cf. Section A.14), the construct 4 MOD
is redundant in this case.

66 Chapter 7. Neighbors and neighborhoods

and its contents is specified in a similar way, i.e., by giving a table descriptor
as an argument to the command MAKE-CMAP. The columns labeled INTEN,
RED , GREEN , and BLUE are filled by the "dispatcher" words > INTEN , >RED ,
etc .

The two pairs of inputs, ALPHA, ALPHA' and BETA, BETA', come respec
tively from CAM-A and CAM-B. Normally they are connected to planes 0
through 3, and thus directly see the four bits that make up the current state
of a cell. A second option is to connect them to the auxiliary outputs AUXO
through AUX3 of the look-up tables (cf. Figure 7.2); in this way, it is possible
to send to the color map an arbitrary function of a cell's entire neighbor
hood . We shall assume that these two options are selected by the commands
SHOW-STATE (default selection) and SHOW-FUNCTION.

For example, the color map of table (3.1) is defined as follows

ECHO-MAP
0 >INTEN

ALPHA ALPHA' AND >RED \ 1 in both planes
ALPHA ALPHA' NOT AND >GREEN \ 1 in plane O only
ALPHA NOT ALPHA' AND >BLUE \ 1 in plane 1 only

MAKE-CMAP ECHO-MAP

Other examples are found in Sections 9.2 and 12.8.2.

By itself or in conjunction with the auxiliary tables the color map may
be made to perform-in parallel with the simulation proper-a substantial
amount of preprocessing of the array's contents before sending it to the mon
itor for real-time visual analysis. But often one needs "hard" data, to be
subjected to concurrent or subsequent computer analysis. For this purpose,
the "intensity" output is also fed to an event counter, which at each step
records the number of intensified pixels; the value of this counter is directly
accessible to the host computer.

By suitably programming the input to the counter one can detect and
count specific events of a local nature, compare the contents of the planes,
compute correlations "on the fly," accumulate statistics, and have the sim
ulation automatically pause when certain conditions occur. By performing
multiple passes with the counter, 7 different kinds of events can be classified.
Even though the counter's discriminating power is limited by the usual con
straints of locality and uniformity, it can be used to substantially cut down
the number of situations in which the host is required to suspend the simu
lation, read all or part of the bit-planes' contents, and extract the relevant
information.

7This entails, of course , "marking time " for one or more steps.

Chapter 8

Randomness and probabilistic
rules

The rules described in the previous chapters are all deterministic, i.e, the new
state of a cell is uniquely determined by the current state of its neighbors:
from the same initial conditions one invariably obtains the same evolution.

In a probabilistic rule, the same current situation may lead to several
different outcomes, each with a given probability. Say, we look at a certain
entry of the look-up table in order to determine the new state of a cell, and
instead of finding a single value we find two values, a and b, and a message,
"Toss a coin to make your final choice!" If the coin is fair, a will be chosen with
probability one-half. A loaded coin will give a different probability, and thus a
different rule: by turning a knob, as it were, on the source of randomness, one
can obtain from the same look-up table a whole set of probabilistic rules
spanning in a continuous way the range bounded by the two deterministic
entries 'always a' and 'always b'.

Probabilistic rules are useful in many modeling contexts.

In CAM, each entry of the look-up table contains a single, well-defined
value. However, one can easily synthesize nondeterministic outcomes. For
example, one may connect one of the table inputs (cf. Chapter 7) to a binary
random variable: for a given assignment of values to all other inputs, the
output will come from one or the other of two distinct table entries, depending
on the current value of the random variable. Thus, the look-up table will
return probabilistic results with a probability distribution directly related to
that of the random variable.

This approach can be generalized. We shall use the term noisy neighbor
for any quantity that can play the role of a random variable in the definition
of a rule. Noisy neighbors may be supplied by external hardware, or may be

68 Chapter 8. Randomness and probabilistic rules

generated within CAM using a variety of techniques .

8.1 Exponential decay

Consider a large number of lighted candles put out in the rain. Whenever a
candle is hit by a raindrop it fizzles out. The fewer candles there are left, the
fewer extinctions will be observed in the next second: the total illumination
will decay exponentially.

We shall use plane O to represent the array of candles ([I]= "lit,"
[Q] = "blown out"). At each step we want certain candles to be hit by raindrops:
how many, and which ones? In other words

• How do we create a random raindrop pattern?

• How do we make it influence the array of candles?

• How do we produce a fresh random pattern step after step?

We shall describe first an impractical but conceptually very simple solution.
Plane 1 will be used to represent the raindrops, ([Il="drop," [Qi="no drop").
Before each step we fill plane 1 by hand with a fresh random pattern, and
then we run a step: each raindrop blows out the corresponding candle (if still
lit). Candles are affected by raindrops according to the following DECAY rule
(we have renamed CENTER' for convenience):

RAND
CENTER'

DECAY
RAND { CENTER O} >PLNO

That is, if there is no raindrop (RAND = [OJ) a candle will remain in its current
state; however, a raindrop (RAND = IIJ) will put the candle out.

We'll run the experiment with a color map that makes the contents of
plane 1 (the random source) invisible, and displays only the contents of plane
0 (the candles). The experiment will start with all candles lit. Let's fill plane
1 with a random pattern having a certain density. For instance, we may toss
a coin five times, and if we get heads all five times we put a raindrop in the
first cell of the array; this will happen with probability p = 1/2 5 • We repeat
this for the second cell, and so on, until every one of the N (=256x256) cells
has had a chance to be filled: about pN (=2048) cells will contain a raindrop.
When the pattern is complete, we take one step of the DECAY rule. A good
number of candles will be blown out . We repeat the whole procedure, and
some more candles will go out. In this way the whole array of candles will be
gradually extinguished, with the desired exponential-decay law, as shown in
Figure 8.1

8.2. A simple noise generator

... . :·
,,

' ' . .

• !

., .

Figure 8.1: Exponential decay driven by a random source.

8.2 A simple noise generator

69

Producing a random pattern by hand is extremely slow. To speed things up,
we may ask the host computer to generate random bits with probability p

and insert them in the array, but even this is slow-it takes several seconds
to generate a screenful of random bits. What we really need is something
capable of producing random bits as fast as CAM can use them, i.e., about
six million per second.

It is easy to build an external circuit that will produce a new random bit
for every CAM clock pulse. 1 We may inject the output of this source into,
say, pin (user 11) of CAM. As explained in Chapter 7, the definition

11 == RAND

will create the name RAND for this pseudo-neighbor, and the assignment

&/USER

will connect the physical signal (user 11) to address line 11 of the look-up
table.

By making recourse to external hardware, one can obviously avail oneself
of a random source approximating any desired statistical properties. But, if
CAM is good at modeling a great variety of systems, why not try to use CAM

itself also for this purpose, thus making experiments easy to set up and to
reproduce on a standard installation? Indeed, although for certain critical
applications an external random number generator may be mandatory, the
internal-generation approach is more than adequate for most of the proba
bilistic models described in this book.

1 A linear-feedback shift register of moderate length (say, 31 bits) will provide a ''syn
thetic coin" that for most practical purposes is indistinguishable from a theoretical fair
coin[44]. A more substantial amount of circuitry is needed if we want 1 's to be produced
with a probability that is adjustable in small increments all the way from zero to one-
rather than with a fixed probability of 1/2.

70 Chapter 8. Randomness and probabilistic rules

The exponential-decay experiment of Section 8.1 used plane 1 as a passive
receptacle for a hand-generated random pattern. Here we shall turn this plane
into a continually stirred "bit soup" containing a new random pattern at each
step. A suitable rule is (using N/VONN)

STIR
CENTER' NORTH' WEST' SOUTH' EAST'

AND XOR XOR XOR >PLN1

With the neighbors in the order given, the XOR 's guarantee that in the long
run the soup will yield an even mix of IDl's and [I]'s (cf. footnote 3 on page
72); by putting some nonlinearity in the rule, the AND insures that the system
won't get stuck in a short cycle.

This soup will be immediately usable if we start it with a random pattern
containing 50% of OO's; however, one obtains a usable soup from virtually
any initial pattern by pre-stirring for a few hundred steps. 2 The statistical
properties of this noise generator are good enough for our purpose. We could
use the raw bits of plane 1 directly as raindrops, but that would give a very
strong rain (p = 1/2). To get a lower value for p we shall introduce a noise
''sampler" that returns a 1 (a raindrop) only when several adjacent bits of
the soup are in the 00 state:

RAND (-- 011)
CENTER' NORTH' SOUTH' WEST' EAST'

AND AND AND AND

With this version of RAND , which will replace that of the previous section,
the probability of a raindrop at any place is p = 1/2 5-just as if we were
tossing a coin five times.

As far as plane O is concerned, the word RAND acts as a pseudo-neighbor
whose value varies at random from cell to cell and from step to step with a
well-defined probability distribution. The possible values of this noisy neigh
bor are 1 and O; p can be coarsely adjusted (in powers of two) by varying
the number of terms that are AND'ed by RAND. We shall discuss later how
to obtain a wider range of values, a wider range of probabilities, and a finer
resolution in the probability settings, and how to avoid correlations.

8.3 Voting rules, revisited

A random number generator may be used to inject some "thermal noise" in
an otherwise deterministic rule.

In Section 5.4 we had considered a voting rule, 9MAJ, that in a few steps
turns a random initial configuration into domains of all ~'s and domains of

2This is the time that it takes for a signal to go ''all the way around the world" a few
times (CAM's screen is 256x256).

8.3. Voting rules, revisited 71

all [I]'s separated by extremely irregular boundaries-a frozen pattern of local
alliances. To encourage the growth of more compact domains we had slightly
altered the rule: the new rule, ANNEAL, shakes up those areas where the
majority is marginal-namely the boundaries between domains-and forces
the system to explore the viability of longer-range alliances.

Here we proceed in an analogous way, this time using noise rather than
frustration as a means of maintaining fluidity on the boundaries. The random
number generator will be that of the previous section; i.e., noise is generated
in plane 1 by STIR and is sampled by RAND .

We shall start with a majority rule that uses only five neighbors, that is,

5SUM (-- n)
CENTER NORTH SOtITH WEST EAST

+ + + +

5MAJ
6SUM { 0 0 0 1 1 1} >PLNO

this produces domain boundaries similar to those given by 9MAJ, though a
little more jagged (Figure 8.2a).

In 5MAJ , the two middle entries (... O 1 ...)-located just below and just
above the 50% threshold-correspond to "marginal" situations, where neither
party has an overwhelming advantage; we are going to replace them with
probabilistic outcomes: the O below the threshold will be replaced by RAND

of the previous section, which returns a O most of the time but occasionally
returns a 1 (with probability p = 1/32); similarly, the 1 above the threshold
will be replaced by RAND 's complement, -RAND, which returns a 1 most of
the time but occasionally returns a O :

: -RAND (-- 011)
RAND 1 XOR;

The resulting rule, illustrated in Figure 8.2b, is

RAND-ANNEAL
6SUM { 0 0 RAND -RAND 1 1}

>PLNO

The fact that the two random variables RAND and -RAND are strongly corre
lated (one is the complement of the other!) need not worry us, since for any
particular cell we are going to use either one or the other-never both.

If we increase the value of p, the annealing is driven faster until finally,
when preaches 1, the rule becomes a 5-neighbor version of ANNEAL.

In Figure 5.3b, note that the ANNEAL rule had missed smoothing out a few
rare spots: it's hard for a deterministic rule to guarantee "smoothness" on
the scale of only a few cells; on the other hand, with a nondeterministic rule
such as RAND-ANNEAL (with p not O or 1) such stuck patterns are eventually
melted away.

72 Chapter 8. Randomness and probabilistic rules

Figure 8.2: The frozen boundaries (a) produced by 6MAJ are thawed in {b) by the
thermal noise provided by a probabilistic variant of this rule, namely RAND-ANNEAL.

8.4 Remarks on noise

We shall approach noise generation in a more systematic way in later chap
ters. For the moment, let us make a few observations based on the previous
example; these observations are immediately extendible to rules that use more
neighbors and more states per cell.

More outcomes. The five neighbors CENTER' , ... , EAST' that appear
in RAND can be used to produce more than just two distinct values. For
example, the quantity

CENTER' + 2 x NORTH'

takes on the values O , 1 , 2 , and 3 , and thus can be used to simulate
the outcome of throwing a 4-sided die. It is clear that by looking at all
five neighbors one can resolve up to 32 distinct outcomes. (By using nine
neighbors, 512 outcomes become available).

A probability dial. Those thirty-two outcomes all have equal
probabilities. 3 The version of RAND given in Section 8.2 utilizes just one of
them, and thus produces a probability p = 1/32. One can construct a more
sophisticated outcome sampler: by making up a Forth word that returns 1
for n of the outcomes (chosen once and for all) and O for the remaining 32- n,

3The proof of this is rather technical. Briefly, if one considers an indefinitely extended
cellular automaton, the presence of the two XOR's as the last two operations of STIR insures
that the cellular automaton's global map is surjective, and therefore that all its iterates
are balanced (cf. [24,391}. As a consequence, almost all initial configurations (i.e., all
configurations except perhaps a subset of measure zero) yield a steady-state distribution
where all patterns of finite size are present with the same weight.

8.5. Caveat emptor! 73

one obtains a probability p = n/32. Thus, by varying n, the probability p
can be adjusted from zero to one in thirty-two equal steps (512 steps, when
using nine neighbors).

Interchangeability. In the previous sections we considered three different
random sources, namely (a) data directly written in plane 1, (b) external
random source, and (c) internal shuffling and AND'ing of bits in plane P' .
We have used the same word RAND in all three cases to stress that from a
programming viewpoint it doesn't matter which method is used: the different
versions of RAND are functionally interchangeable. Typically, one would write
a probabilistic rule in terms of a "generic" noisy neighbor RAND , explore the
rule's behavior using any quick-and-dirty version of RAND, and turn to a more
refined version only when the accuracy of the experiment demanded it.

Modularity. So far, we have run both the desired probabilistic cellular
automaton-such as DECAY or RAND-ANNEAL-and the associated random
source on only half of the machine, say CAM-A. STIR and RAND use up about
half of the resources of CAM-A;4 that doesn't leave much to run the main rule
on. To retain all of CAM-A's resources for the main rule the recommended
practice is to implement the random source in CAM-B; this also encourages a
more structured approach to experiment design. If even more sophisticated
sources of randomness are needed a second CAM machine can be used as a
dedicated noise generator.

Avoiding correlations. Since a cellular automaton's rule is local, infor
mation can only slowly propagate away from a site. The correlations entailed
by the "finite speed of light" constraint can be virtually eliminated by a tech
nique that uses two CAM modules and randomly offsets their updating origins,
as explained in Section 15.6.

Fine resolution. So far we have considered scrambling rules that even
tually yield an even proportion of ~'s and [l]'s in the bit-plane used as a
random-number generator even when the initial seed contains a different pro
portion. In Chapter 12 we'll introduce rules that conserve the number of [I)'s
in a bit-plane (they are treated as indestructible particles) while still pro
ducing efficient randomization. In this way one can finely adjust the p-in
increments of 1/65,536-by just changing the number of "particles" in the
bit-plane.

8.5 Caveat emptor!

A neighbor word such as CENTER is really a shorthand for a whole collection of
state variables-one for each cell of the array and for each time-step; similarly,
RAND represents a whole collection of random variables, one for each cell and

4Namely, one of the two planes and five of the ten N/VONN neighbors.

74 Chapter 8. Randomness and probabilistic rules

for each step. However, most practical implementations of RAND use and
reuse a single mechanism (a coin, a program within the host computer, a
cellular-automaton system within CAM, or an external circuit) to produce
values for all of these variables.

Won't this sharing of one mechanism result in some correlations between
the random variables? This is indeed the case for any pseud~random number
generator. 5 Well, then-if we are willing to pay enough can't we have a
random number generator having an ''amount of correlation" guaranteed to
be less than a given bound?

Unfortunately, correlation is too complex a concept to be satisfactorily
quantified by a single numerical parameter : correlations that are negligible
in one context may in another context alter the very nature of an experiment.
Fortunately, we can often make an educated guess as to whether the corre
lations characteristic of a certain noise-generating mechanism may adversely
affect an experiment.

Intuitively, a mechanism R disturbs a system S in a random way if its
dynamics is so alien from that of S that the latter has no effective way of
predicting what R will do next. Thus, to be usable as a noise source for S, R
need not be more cunning than everyone else in the world (that would be an
ideal random source); it only has to surprise S-and S may be quite slow
witted, or just too busy with other things to have resources to spare for a
guessing game. By using our knowledge of S's limitations in this respect, we
can often synthesize an adequate noise source R by amazingly simple means.

8.6 A noise-box

For the experiments of the next chapter we shall use CAM-Bas a simple noise
generator producing the four values [QI, [I], ~, and ~ with equal probabilities.
Planes 2 and 3 will be driven by a stirrer similar to that of Section 8.2, and
will be initialized with a random seed. From CAM-A, this noise will be visible
through the lxl window on CAM-B provided by the minor neighborhood
assignment &/CENTERS (see Section 7.3.2).

For reference, this noise generator is defined as follows

CAM-B N/VONN

CENTER NORTH WEST SOUTH EAST
AND XOR XOR XOR CENTER' XOR

>PLN2
CENTER' NORTH' EAST' SOUTH' WEST'

NOISE-BOX

5The qualifier "pseudo" shouldn't make one think of somewhat fraudulent practices.
No one in the world knows how to make an "ideal" random number generator, and it isn't
even clear whether this mathematical abstraction is a well-defined one .

8.6. A noise-box 75

AND XOR XOR XOR CENTER XOR
>PLN3

Note the cross-coupling terms (e.g., the center of plane 2 is XOR'ed onto plane
3), and the different positioning of the neighbors with respect to AND and
XOR.6

6Refer to Knuth[31] for comments on such superstitious practices.

Chapter 9

A sampler of techniques

When you first start out, you'll undoubtedly try a lot of rules, perhaps even
using randomly-generated tables, just to see what they do. You'll want to get
familiar with the idea that a cellular automata machine can indeed translate
a rule on the paper into a world full of activity.

We shall now start to proceed in a more deliberate way, setting ourselves
goals-modest at first-and trying to see if and how they can be achieved with
the available resources. The objective is to gain some expertise-to arrive at
a point where, confronted with a new problem, we can try to "divide and
conquer" it by reducing it to previously solved ones.

In this chapter we shall explore some of the possibilities offered by the CAM

neighborhoods, using only ordinary ''compass" neighbors (NORTH , SOUTH ,
etc.). The use of pseud~neighbors will be treated later on.

9.1 Particle conservation

Suppose we want a rule that will make a histogram of the contents of a bit
plane; the height of each column of the histogram will represent the number of
1 's contained in the corresponding column of the plane. The idea is to draw
a horizontal line--the base of the histogram-at the bottom of the screen,
and let the "tokens" (i.e., the 11]'s) fall down gently and pile up above this
line, column by column.

The tokens to be counted will be in plane 0, and the baseline for the
histogram will be drawn in plane 1. The rule for plane 1 will be ''no change:"
we want the baseline to remain where it is. The rule for plane O will be an
elaboration of SHIFT-SOUTH (cf. end of Section 5.1). Let us start with plane

78 Chapter 9. A sampler of techniques

1 all clear except for a row of [I]'s at the bottom-our base line. Plane O can
be filled at random, or with whatever pattern you prefer.

The most important point of this exercise is that we don't want to lose or
gain any tokens as we move them around. As long as everything is supposed
to be shifting down at a constant speed, each cell can just copy the contents of
the cell above it, confident that its own contents will be picked up by the cell
below. However, the moment we interpose obstacles this blind trust won't
work any longer; the cell below us may already be full, and we won't know
if the cell below that one will be capable of accepting its contents. To avoid
dropping bits, a cell will have to make a move only when (a) it knows that
the move is possible and (b) it knows that its neighbors know it too. That
is, we'll have to establish a handshake protocol.

Before worrying about obstacles--e.g., the growing histogram to which to-
kens will stick-let us solve on a local basis the problem of particle-conserving
motion in this context. The relevant question is, "What area of the array is
visible at the same time by me and, say, my north neighbor?" That area,
and only that, can be the object of negotiation between the two of us . Since
we are dealing with a one-dimensional system (each column of the array is
treated independently of the others), the overlapping area is just two cells, i.e.,
CENTER and NORTH for me, and CENTER and SOUTH for my north neighbor.
A safe token-passing rule will be:

• If I'm empty and my north neighbor is full, I'll make a copy of its
contents (I know he will erase his).

• Conversely, if I'm full and my south neighbor is empty, I'll erase my
own contents (I know he will make a copy of it).

Note that these two conditions can't be true at the same time, and thus can
be examined and processed independently.

• Otherwise I'll do nothing.

Translated into CAM Forth:

CENTER O= NORTH O> AND

SOUTH O= CENTER 0> AND

CENTER
TAKE? IF DROP NORTH THEN
GIVE? IF DROP SOUTH THEN

>PLNO
CENTER' >PLN1

MAKE-TABLE SAFE-PASS

TAKE? (FIT)

GIVE? (FIT)

SAFE-PASS

\ no change on plane 1

9.1. Particle conservation 79

The current state of the cell is put on the stack by CENTER , and is passed on "as
is" to >PLNO, unless one of the two conditions is true, in which case it is modified
first. For example, if TAKE? is true the phrase DROP NORTH will drop the item on
the stack and replace it with NORTH .

Run this rule now (plane 1 isn't used yet). Isolated particles will fall
downwards at the speed of light; in crowded areas different parts will move at
different speeds, shrinking and stretching like an earthworm; any solid area
will get its bottom eroded and its top piled up with new stuff; "bubbles' '
will move upwards at the speed of light. But everything will eventually shift
downwards-and tokens will be conserved. Note that the same kind of rule
would work even if there were tokens of different "colors;" each color would
be conserved.

Figure 9.1: The tokens in (a) gradually condense on the baseline (b), eventually
giving rise to histogram (c).

At this point, we only have to add a new constraint; that is, inhibit the
execution of SAFE-PASS across the histogram baseline drawn in plane 1. For
sake of generality, we'll make the inhibition work with any kind of obstacle,
treating the north edge of an obstacle (i.e., any place in plane 1 where there
is a ID] immediately to the north of a [IJ) as an impassable boundary. Again,
what really matters is that both cells involved in a transaction use equivalent
criteria to recognize the existe11ce of the constraint. For the lower cell, the
boundary is indicated by the condition

CENTER' 0> NORTH' O= AND

and for the upper one by

SOUTH' O> CENTER' O= AND

If we inhibit with these extra constraints the "green lights'' given respectively
by TAKE? and GIVE?, that is, if we replace TAKE? in the above rule by

80

CENTER' O> NORTH' O= AND NOT
CENTER O• NORTH O> AND AND

Chapter 9. A sampler of techniques

TAKE? (-- FIT)

(and similarly for GIVE?), the rule will have the desired behavior. Figure 9.1
shows three stages in the production of the histogram .

The issue of particle conservation-and reversible dynamics in general
will be taken up again after the introduction of partitioning neighborhoods
(such as the Margolus neighborhood), which provide the means to automat
ically guarantee inter-cell coordination for this purpose .

9.2 Differential effects

In the experiment of Section 6.3 we compared two runs of the same rule,
starting from initial conditions that differed by just one bit. If the pertur
bation is introduced where there is already active and complex behavior, it
becomes hard to tell to what extent the new history differs from the original
one. Of course, one can record in full the two histories and subsequently
compare them, but this requires a large amount of storage and, eventually, a
lot of data movement for the "collating" work.

The ideal situation would be to concurrently run two copies of the
system-identically prepared except for a small, deliberate perturbation. 1

On a cellular automata machine this kind of experiment is performed quite
easily; not only can one use the two halves of CAM (or two machines, for
more ambitious undertakings) for the two copies of the system, but one can
compare the two histories, cell by cell, even as they unfold themselves, and
display any differences on the screen; the event counter can be used for a
more quantitative analysis.

We shall repeat the experiment of Section 6.3 with a duplicate system set
up as follows in CAM-A and CAM-B:

C.AM-A N/VONN
: TIME-nJNNEL/A

CENTER NORTH SOUTH WEST EAST
+ + + + { 0 1 1 1 1 0 }

CENTER' XOR >PLNO
CENTER >PLN1

MAKE-TABLE TIME-TUNNEL/A

C.AM-B N/VONN
: TIME-TIJNNEL/B

1 In physical experiments this is usually bard to do, since extraneous perturbations
differently affect the two copies and may in the long run swamp the effects one desires to
observe.

9.2. Differential effects

CENTER NORTH SOlITH WEST EAST
+ + + + { 0 1 1 1 1 0 }

CENTER' XOR >PLN2
CENTER >PLN3

MAKE-TABLE TIME-TIJNNEL/B

81

Note that the neighbor names are the same in the two halves of the machine:
whether a rule is sent to CAM-A or CAM-B is decided by the "dispatcher" words
(>PLNO and >PLN1 refer to table columns in CAM-A, >PLN2 and >PLN3, in CAM

B). The physical neighbors are wired in place by the assignments CAM-A N/VONN
and CAM-B N/VONN.

The second half of this program could have been replaced simply by the word
B=A , which duplicates both the tables and the neighborhood selections.

In order to show on the screen the differences between corresponding
planes rather than the planes themselves, we shall replace the color map
we've been using so far (ECHO-MAP, Section 7.7) with a suitably modified
one. In DIFF-MAP, instead of telling us that a bit in plane O is on, green will
tell us that this bit differs from that in plane 2 (i.e., the homologous bit in
CAM-B); similarly, blue will flag differences between plane 1 and plane 3, and
red will flag those cells where a difference appears in both planes. With this
color coding nothing will appear on the screen as long as the two histories are
identical; to see at least a ghost of what is happening, we'll route the contents
of plane O to the intensity signal.

DIFF
ALPHA BETA XOR \ plane O vs plane 2

DIFF'
ALPHA' BETA' XOR \ plane 1 vs plane 3

ALPHA >INTEN
DIFF DIFF I AND >RED
DIFF DIFF' NOT AND >GREEN
DIFF NOT DIFF' AND >BLUE

MAKE-CMAP DIFF-MAP

DIFF-MAP
\ ghost of plane 0
\ diff. on both planes
\ diff. on O only
\ diff. on 1 only

If we had wanted to count the differences, we would have routed DIFF to
> INTEN and read off the counter's value after each step, as explained in Sec
tion 7.7.2

At this point we are ready to run. As we did in Figure 6.4, we start with
a big circle (this time in both pairs of planes), we run for 4000 steps, and we
stop. So far the two copies have kept in lockstep, as we can tell by the absence
of any colors from the screen (the faint gray image on the screen produced

2Since with this rule plane 1 lags behind plane O by one step, and similarly for planes
3 and 2, there is no point in counting both differences.

82 Chapter 9. A sampler of techniques

by the intensity bit allows us to monitor what is going on). Now we change
a single bit in plane O (the spot will turn bright green, as only one of the two
copies is perturbed) and run backwards in time. The cancer will spread its
tendrils and start enveloping the circle (Plate 4); as remarked in Section 6.3,
the interior of the circle is protected by an impenetrable shield and will not
be affected by the perturbation.

9.3 Coupling the two halves

Having used CAM-A and CAM-B as two independent systems, we are now
ready for an experiment in which the two halves of CAM are coupled into a
single dynamical system.

We shall model a reef of tube-worms; these animals have plumes that look
like delicate flowers, but at the slightest disturbance the "flower" retracts into
a tube and waits a good fraction of a minute before coming out again. Our
tube-worms will be so sensitive that the disturbance created by n active
neighbors will be enough to make them go into hiding (we reserve the right
to play with the parameter n).

The ''clock" by which a worm times its retreat will be represented by the
state of the CAM-B half of a cell. In CAM-A, plane O will encode the status
of the worm (II]=''active," [QJ="hiding"); plane 1 will sense the stimuli, and
ring the alarm when a sufficient number of active neighbors is present. The
sequence is the following:

1. A worm is out; its timer is stopped at !OI; the stimulus detector contin-
ually tracks the number of active neighbors.

2. If this number exceeds the threshold, an alarm is posted on plane 1.

3. On seeing the alarm, the timer sets itself to ~-

4. The worm gets pulled into the tube, while the timer ticks down to ~-

5. The count-down continues: ... [I], ~-

6. When it sees [QJ, the worm emerges. The timer remains at~. and we
are back at point 1.

Of course, this recipe admits of various shades of interpretation; here is ours:

CAM-AN/MOORE ~/CENTERS

NORTH SOUTH WEST EAST
N.WEST N.EAST S.WEST S.EAST

+++++++

8SUM
\ add up stimuli

ALARM

9.3. Coupling the two halves

8SUM { 0 0 1 1 1 1 1 1 1}

&CENTERS { 1 0 0 0} >PLNO
ALARM> PLN1

CAM-B N/MOORE &/CENTERS

&CENTER &CENTER' AND IF
3 ELSE

CENTERS { 0 0 1 2} THEN
>PLNB

MAKE-TABLE TUBE-WORMS
MAKE-TABLE TIMER

\ ring if two or more
TUBE-WORMS

\ emerge if time over
\ post alarm where
\ CAM-B can see it

TIMER
\ if "worm out" and "alarm"
\ set timer to 3,
\ otherwise count down

83

&CENTER means "the CENTER bit of the other half CAM;" to CAM-A, that means the
bit of plane 2, but to CAM-B it means the bit of plane 0.

The stimuli in CAM-A cannot be seen directly by the timer in CAM-B, since
the minor neighborhood assignment &/CENTERS only allows the latter to access the
center bits of CAM-A. We have to go through a two-stage process: (a) in CAM-A,

where we have access to all nine of the neighbors, we count the stimuli, compare
the count with a threshold, and store the result in the center cell of plane 1; (b) at
the next step, CAM-B picks up the result from there.

Start this experiment with random configurations in all four planes, so
that the relative phasing of the worms' cycles is random. In a short time
coherent phase ripples will be visible; these will grow and coalesce, yielding
a pattern reminiscent of shifting sand-dunes (Figure 9.2a).

Rules of this kind are very sensitive to the details of the feedback loop.
With n = 2, as above, the pattern develops very rapidly and the ripples are
rather minute. With n = 3, waves are broad and progress is slow (Figure
9.2b); soon self-sustained centers of activity develop, usually taking the form
of paired spirals ("ram's-horns"). With n = 4, large areas eventually lock
their phases, and little interesting activity is left. Perhaps the most interesting
behavior is obtained with the following "alarm" condition

8SUM { 0 O 1 0 1 1 1 1 1}

which is a sort of ''annealing'' version of n = 3 (cf. ANNEAL in Section 5.4);
this is shown in Figure 9.2c. The same three rules are illustrated in Plates 5,
6, 7.

Systems of this kind provide good models for certain kinds of
competitive/cooperative phenomena such as the well-known Zhabotinsky
reaction[75].

There is a strong analogy between this model and that of "firing neurons' '
described in Section 6.1. In both cases the stimulus is provided by the pres
ence of a certain number of neighbors, and the individuals are characterized

84 Chapter 9. A sampler of techniques

Figure 9.2: Spatial reactions: (a) and (b) use different values of a feedback param
eter, while (c) is a non-monotonic threshold version of (b).

by a certain recovery time. However, there is a substantial difference in the
nature of the feedback loop. In the neuron model feedback is positive: only
the firing of neurons may trigger new firings. Such a system has, broadly
speaking, two stable modes: (a) "activity that breeds activity," and (b) "in
action that breeds inaction." In the worm model feedback is negative at a
short distance: the presence of worms tends to inhibit rather than favor the
presence of more worms in the immediate neighborhood. However, the "delay
line" represented by the timer makes it such that for certain frequencies and
wavelengths the feedback is positive ("If there are worms present here now,
there will be few in the neighborhood in a moment, and that means that
on the ring just outside that neighborhood there will be better chances for
worms to be present again."). In this model, the characteristic periods and
wavelengths that are observed correspond to spacetime patterns for which
the feedback factor is approximately one.

9.4 Genetic drift

Using a random-number generator, we can take a first shot at modeling a
kind of behavior that is quite interesting on its own account-and is also
an important ingredient in more complex recipes. What we have in mind is
diffusion. We wish to think of a [I] as a '"particle" in an "empty space" of ~'s;
at every step, we want this particle to take a step at random in one of the
four possible directions.

The idea is quite simple. We can put the particles in plane 0, and noise in
planes 2 and 3 (with the noise-box of Section 8.6). A particle will look at the
two random bits on which it is sitting, and use them as coin tosses to decide
whether to go up or down, left or right. Naively, we might write down the
following rule

: NAIVE-DIFFUSION

9.4. Genetic drift 85

&CENTERS { NORTH SOUTH WEST EAST}
>PLNO

The random value of &CENTERS (this is the two-pack version of &CENTER and
&CENTER') ranges from O through 3, and we use it to select one of the four di
rections.

Let's try this rule starting from a solid disk. Indeed, black and white
diffuse into each other: the disk breaks up into tongues of fire (the split
screen of Figure 9. 3a shows "before" and ''after") . However, even after a long
wait we still get flakes on the screen rather than a uniform mixture. If we
compare this pattern with that of Figure 9.3b (which was produced by a less
naive diffusion algorithm, discussed in Section 15.1) we see that something is
wrong. Moreover, if we count the particles step after step, we see that their
number fluctuates: particles are not conserved.

Figure 9.3: (a) Pseudo-diffusion, obtained with a ''copy from a random neighbor"
rule, vs genuine diffusion (b). Both figures are split-screen, starting from a disk,
showing half "before" and half "after."

All this shouldn't come as a surprise. In a cellular automaton, a cell has
no jurisdiction over, say, its south neighbor's cell: it cannot just "deposit" a
particle there. As explained in Section 5.1, all a cell can do to make something
move to the south is throw away its own contents and "copy" that of its north
neighbor. Without a handshake (cf. Section 9.1), losses and duplications are
bound to occur. All we can hope for is that particles will be conserved on
average.

Even though we may have failed in our original goal, the rule we are
left with actually constitutes a plausible model of genetic drift[29,12]. Genes
do diffuse by having copies of them made, and in a situation of selective

86 Chapter 9. A sampler of techniques

equilibrium each occurrence of a gene leaves on average one copy of itself
at each generation. The above experiment can be repeated using four gene
"species" rather than two, using both bits of CAM-A to encode which of the
four species is represented by a given cell (CAM-B is still used as a noise
generator). The rule is, of course,

GENETIC-DRIFT
tcENTERS { NORTHS SOUTHS WESTS EASTS}

>PLNA

If we start with a uniform (random) spatial distribution for the four species,
the steady state achieved after a while will show a mottled distribution (Figure
9.4a and Plate 8): the same species may be over- or under-represented in
different areas.

Finally, we shall study genetic drift in small, isolated populations. To this
end, we shall divide the screen into a large number of squares; this is achieved
by drawing a grid in plane 1 and making the rule of plane O interpret this
grid as a barrier to gene transfer (since only plane O remains available for the
genes, we shall have only two species). The above NAIVE-DIFFUSION rule is
modified as follows to take the grid into account:

: GENE-CIDE
&CENTERS

{ NORTHS SOUTHS WESTS EASTS}
DUP 1 > IF DROP CENTER THEN \ use CENTER if neighbor is grid

>PLNO
CENTER' >PLN1 \ keep grid in place

Together with the randomly-chosen neighbor, say, NORTH, we also pick up the corre
sponding bit in the grid plane, i.e., NORTH' {the two bits come together in NORTHS).
The phrase DUP 1 > makes a copy of what we have picked up and checks whether
it's actually a piece of the grid (states 2 or 3 mean "grid"), in which case we drop
it and replace it with the current value of the cell. In other words, the grid acts as
a mirror in which each gene sees an image of itself in that particular direction.

Even if we start with an even distribution of IQ) and [I] genes, fluctuations
will be violent in such small populations, and after a while some of the pop
ulations will be left with only one species, as shown in Figure 9.4b; this loss
is irreversible.

9.5 Poisson updating

An ordinary cellular automaton is by definition a time-discrete system: cells
are updated at integral values of time. It is often useful to consider models
in which the updating of a cell (which is still a discrete business in the state
domain) can take place at an arbitrary moment along a continuous time axis.

9.5. Poisson updating 87

Figure 9.4: Genetic drift: (a) A large population shows mild fluctuations in its
genetic make-up. (b) Permanent impoverishment of the gene pool may occur in
isolated populations.

A chief example is given by Poisson processes, where events occur at random
with a uniform distribution in time, and thus the probability that the next
event will occur between times t and t + dt equals >..e->-.tdt. In a Poisson
cellular automaton the updating of each cell is governed by an independent
Poisson process. With this continuous-time updating the probability that
two cells will be updated at exactly the same moment is zero; therefore, in
writing the updating rule for a cell one may safely assume that that cell is
the only one that may change state; with this assumption, the handshake
protocols that may be necessary to insure respect of certain constraints (cf.
Section 9.1) can be greatly simplified.

In this section we'll first give a simple example of a system for which the
two updating methods yield radically different behaviors; then we'll show how
Poisson updating can be emulated to an arbitrary degree of approximation
by an ordinary cellular automaton.

Consider the following "soil erosion" problem. A piece of soil, represented
by a II], will stay in place if there is some soil somewhere on the north side
of it (i.e., in one of the three north neighbors N. WEST , NORTH, N . EAST) , as
well as somewhere on the south, somewhere on the west, and somewhere on
the east. In the first three cases shown below the soil in the center of the 3x3
neighborhood is ''stable,'' while in the fourth it is "loose'' (since none of its
three east neighbor sites is occupied):

101
010
010

010
110
001

010
111
010

010
110
110

88 Chapter 9. A sampler of techniques

Loose soil will be blown away by the following rule

: STABLE (-- 011)
N.WEST NORTH N.EAST OR OR
$.WEST SOUTHS.EAST OR OR
N.WEST WESTS.WEST OR OR
N.EAST EASTS.EAST OR DR

AND AND AND
SOIL

CENTER ST.ABLE AND >PLNO;

STABLE is a bit-mask that is AND'ed with the current state of the cell. If the value
of this mask is 1 the soil remains in place; if O, it is wiped out.

If you run this rule starting with solid soil, nothing will happen. If you
remove an isolated piece of soil here and there no further erosion will occur.
If you keep removing pieces at random eventually you'll get places where two
or three adjacent pieces have been removed; depending on the shape of such
a "hole," the walls may ''cave in" enlarging the hole itself. As long as the
amount of soil that is removed remains below a certain critical level (about
17%), such cave-ins are generally self-healing and the soil remains stable over
all (Figure 9.5a). However, when the fraction of soil removed goes above that
level some of the holes exhibit unbounded growth-they become nucleation
centers[66]- and eventually all the soil is blown away (Figure 9.5b). 3

Stop the random poking just before reaching the critical threshold-when
the soil is still stable- and survey the situation. Now, if instead of proceeding
at random you are careful not to take away pieces that are essential to their
neighbors' stability, you can manage to remove up to half of the soil without
triggering a chain reaction (for instance, a checkerboard pattern is stable).
A safe rule of thumb for a lone "land developer" just parachuted in the
area would be to remove a piece of soil only if it has soil directly to the
NORTH, SOUTH, WEST, and EAST; you can verify that this will not create any
instabilities. The rule can be encoded as follows

NORTH SOUTH WEST EAST
AND AND AND

CENTER STABLE AND
SAFE NOT AND >PLNO

SAFE (-- 011)

NAIVE-DEVELOP

Again, SAFE NOT is used as a mask. A piece of soil will remain if it is ''stable," as
before, and if it is not deemed "safe" to remove it.

3The transition is very sharp; i.e., the probability of a chain reaction remains close to
zero even when one comes very close to the threshold, and then rapidly swings to values
close to one as soon as one passes the threshold .

9.5. Poisson updating 89

Figure 9.5: Nucleation: (a) As long as soil removal does not exceed a critical level
the pattern generally remains stable. (b) Above this level nucleation centers appear
and grow without bounds.

However, if you run this rule on an ordinary cellular automaton, starting
from the stable configuration of Figure 9.5a, you may have a surprise. The
rule is applied to all cells at the same time. If, unaware of one another's
intentions, two developers concentrate at the same moment on adjacent plots,
they may ''undercut" one another and eventually find themselves surrounded
by desert (Figure 9.6a): this NAIVE-DEVELOP game is safe only when played
by one person at a time. To prevent mishaps, more sophisticated forms of
inhibition would have to be introduced if more than one developer is operating
in the area.

With Poisson updating, instead, the chances of a mishap like the above
are zero, and the long-term result is a prairie covered with an irregular tiling
of cottages (Figure 9.6b).

That was, of course, an extreme example. In general, though, updating at
random times is useful for systems in which a synchronously updated model
would introduce spurious, undesired symmetries.

To emulate a Poisson process having a characteristic rate,\, one can pro
vide each cell with a random-number generator as explained in Chapter 8,
and update the cell only on steps when the generator returns a 1. For this to
work satisfactorily, the probability p that a cell will be updated at any time
step must be kept low, and one must imagine the time axis magnified by a
correspondingly large factor k = >./p (so that k steps of the cellular automa
ton correspond to one unit of time in the simulated system). In the limit as
p -+ 0, the probability that during one unit of system time two adjacent cells
will be updated at the same instant goes to zero.

90 Chapter 9. A sampler of techniques

Figure 9.6: Prairie development: (a) With ordinary updating, destructive chain
reactions are likely to be started; the large white areas are spreading dust-bowls.
(b) Completed development, achieved with Poisson updating.

For the present example, the Poisson-updated rule is, of course,

: SOUND-DEVELOP
CENTER STABLE AND

RAND IF
SAFE NOT AND THEN

>PLNO

where RAND is the output from the random-number generator, which could
be installed in CAM-B.

The noise-box of Section 8.6 is not suitable for this purpose, since each of
the two planes provides a probability of 1/2, and even AND'ing them would
give 1/4. With the approach of Section 8.2, and using nine rather than five
neighbors in the sampler, one can obtain probabilities as low as 1/512, which
is adequate in many cases. In Section 15.6 we shall discuss a method for
achieving a wider dynamic range for the random-number generator.

An alternative way to rule out ''misunderstandings" between developers is
to permit the updating of only every other cell-in a checkerboard pattern
at one step, and of the remaining cells at the next step. This approach is
discussed in Section 11.6 and used in Chapter 17.

9.6 Asynchronous deterministic computation

In the genetic drift experiments of Section 9.4, each cell was forced to un
conditionally "hatch a copy" of one of its neighbors selected at random. One

9.6. Asynchronous deterministic computation 91

may imagine a more selective outcome for this encounter; for instance, the
cell may be allowed to retain its identity unless it faces an opponent that is
in some sense "stronger." Rules of this kind were brought to our attention
by David Griffeath.

In this context, a. monotonic ranking of cell states obviously leads to sat
uration: in the long term all activity dies out (much as in the experiment of
''candles in the rain" of Section 8.1). Let us consider instead a cyclic rank
order, where ~ can be displaced only by [I], [I) by ~' [21 by [ID, and [ID by !ID-no
one state is absolutely strongest. 4

Then the state of a cell can be interpreted as a phase variable which is
irregularly but inexorably driven through a four-state cycle. Our rule will use
both planes of CAM-A for encoding a cell's phase , and will rely on CAM-B as
the source of noise-as in the previous examples.

CENTERS { 1 2 3 0} =

&CENTERS
{ NORTHS SOUTHS WESTS EASTS}

DUP BEATS-ME NOT IF
DROP CENTERS THEN

>PLN.A

BEATS-ME (rank -- flag)

CYCLIC-RANK

The word BE.ATS- ME compares the rank of the selected neighbor with that of the
cell itself.

Started from random initial conditions , this system shows self-organizing
behavior similar to that discussed in Section 9.3, as shown in Figure 9.7 and
Plate 9. Bands of a given phase lose ground on one edge and gain on the
other; instabilities lead straight bands to fold over, and self-sustaining spirals
develop.

Similar mechanisms can be used for enforcing causal coherence in
asynchronously-updated parallel computers .

Consider, for example, a cellular automaton whose cells are updated by
a number of independent-minded "workers." There may be available fewer
workers than cells, workers may take their breaks at random times , they may
get tired of working always in one place or at <;me task, they may be delayed
or interrupted by external factors; etc. There is no hope that the cells will
all be updated at the same time-say, at the signal of a foreman's whistle.

In spite of all that, we want the asynchronous system to evolve isomor
phically to one that is updated in a strictly synchronous manner . If a cell is
temporarily ahead of th e oth ers , it must have the stat e that it would have

4This is similar to the well-known two-person game of ''paper, scissors, stone,' ' where

the paper wraps the stone, the stone dulls the scissors, and the scissors cut the paper .

92 Chapter 9. A sampler of techniques

Figure 9.7: Phase waves in cyclic-rank systems: (a) from uniform randomness, and
(b) from a small patch of randomness.

had if all other cells had kept step with it. Though timing will not be de
terministic, at each place we want the right events to happen in the right
sequence; this entails also that the correct causal relationship between events
occurring at different places must be preserved.

Not only can this be achieved, but it can be achieved by relatively straight
forward means. The solution (which is applicable to computers having ar
bitrary structure-not just cellular automata), hinges on the following three
provisions:5

a. The cell state is buffered; i.e., the new state for a cell is computed and
stored in a separate register, while the current state remains visible
to the neighbors. Only when all the neighbors have computed their
own new states will the current state of the cell itself be replaced by
the new one. Note that, with this approach, a single updating step of
the original system will be replaced in the asynchronous model by an
updating cycle consisting of several steps.

b. In addition to the current state register, which is publicly shown, and
the next state register, which is a private affair of the cell, the cell is
provided with a phase variable (in this case, an integer from O through
3) that indicates its progress through the updating cycle. This variable
is also visible to the neighbors, to permit inter-cell coordination.

c. At no time shall a cell advance by one step of its updating cycle if it is
already one step ahead of at least one of its neighbors. This prescription

5This canonical solution to the synchronization problem is discussed in (56].

9.6. Asynchronous deterministic computation 93

is motivated below.

Here we shall be directly concerned only with points b and c; that is,
we shall implement only the phase variable and its evolution rule (in Section
12.8.3 we'll give an example where a definite computation is made to run
with such an asynchronous discipline). If we start with a flat "phase sheet"
spread over the array-that is, if all cells initially have the same phase - we'll
allow this sheet to develop peaks and valleys as it advances through time
in an asynchronous fashion, but never ''rips" corresponding to loss of causal
coherence.

From the viewpoint of each cell, the four values of the phase variable
correspond to the following stages of dialogue with its neighbors:

!QI I'm still looking at some of you (don't change your state yet); some of
you may be looking at me (I cannot change my state yet).

[I] I'm no longer looking at any of you (go ahead and post a new state if
you wish-I have already used the old one for computing my next state,
which I have stored in a private place); some of you may still be looking
at me (I'll keep my new state to myself and still display the old one) .

~ I'm not looking at any of you. None of you should be looking at me (I
can now post my computed new state on the publicly visible register,
superseding the previous one).

ra] I'm again looking at you (if you have already posted your new state,
hold it there; if not, proceed at your leisur~l'11 wait for it as long as
necessary); none of you should be looking at me yet.

At the prompt of an asynchronous clock the cell will look at the phases of its
neighbors, and perform a transition to the next phase of the above cycle only
if the situation permits it; otherwise it will mark time. Unlike the example
of Section 9.5, we are not concerned here with whether adjacent cells may be
activated at the same time. There we wanted to simulate an asynchronous
system by a synchronous one; here we want to do just the opposite, and an
occasional relapse into synchronism will not hurt.

We shall use CAM-A for the phase variable and a noise-box in CAM-B for
the Poisson clock. In CAM Forth the rule is as follows

STIMULUS? (-- FIT)
&CENTERS Oz \ Time to do something!

CENTERS+1 (-- next-phase)
CENTERS { 1 2 3 0}

TRANSIT? (-- FIT)
NORTHS CENTERS = \ Am I even with north neigh.
NORTHS CENTERS+!= OR \ or just behind?

94

SOUTHS CENTERS =
SOUTHS CENTERS+1 = OR
WESTS CENTERS =
WESTS CENTERS+1 = OR
EASTS CENTERS ..
EASTS CENTERS+1 = OR

AND AND AND

STIMULUS? TRANSIT? AND IF
CENTERS+1 ELSE

CENTERS THEN
>PLNA

Chapter 9. A sampler of techniques

\ Same for south

\ Etc.

ASYNC
\ If I can (and have to)
\ I'll advance,
\ otherwise, manana!

CENTERS+! simply defines the next phase in the cycle. TRANSIT? checks whether
there is some slack for the phase to advance. With the noise-box we've been using
all along, at every step a "worker" has a probability p = 1/4 to be prodded (by
STIMULUS) to mind the shop; different rates can be achieved by tuning the random
number generator.

We shall start all cells at phase [QI, corresponding to the situation where
all cells are displaying their current state and none of them has computed
its next state (recall that the state component of the system is not explicitly
represented in the present example; only the phase component is). As the
random clock ticks, some cells will advance to phase [1]. Eventually, some cells
will be surrounded by all [Il's, and will be able to move to phase ~ (in the
state-component of the system, at this point part of the array will already be
displaying a new state, ahead of the rest of the array). And so on.

Different parts of the phase ''sheet" will float at different time levels. The
phase difference between distant cells may attain several full cycles (one phase
cycle corresponds to one step of the synchronous automaton that is being
simulated in an asynchronous way). The maximum possible time separation
is one cycle over four units of distance: beyond that, the "pull" of lagging
phases in the neighborhood becomes irresistible and no further progress is
possible until a cell's neighbors pick up the slack.

Figure 9.8a shows a typical phase distribution at a time when memory
of the initial "flat" phase assignment is completely lost; in Figure 9.8b, the
asynchronous clock has been stopped for one cell,6 and eventually the whole
system grinds to a halt, earlier for the nearest cells and later for the ones
farther away.

9. 7 One-dimensional cellular automata

When dealing with a one-dimensional system, the resources of a two
dimensional cellular automata machine of size mxn can be redirected in

6 This was actually done by setting its phase two steps behind that of its neighbors.

9. 7. One-dimensional cellular automata 95

Figure 9.8: (a) Typical contour levels for the phase ''sheet.'' In (b), the sheet has
been "nailed down" at one spot by permanently deactivating one cell's clock.

several ways. For instance:

1. One can run multiple copies of the system-one in each row of the
array - starting each copy from different initial conditions , as in Figure
10.2. This may be useful for statistical studies.

2. One can simulate the system in a single row of the array. In this case,
the remaining m - 1 rows can be used to record the history of the
system, from the most recent state all the way back to the (m - 1)-th
step in the past, as in Figure 10.1. In this way, a view of the system's
spacetime history is "scrolled" through the array.

3. One can connect the rows end-terend in a spiral fashion, thus synthe
sizing a one-dimensional machine of size mn.

Approach 1 is trivial to implement. If the rule uses only the west, east,
and center neighbors one automatically has a one-dimensional system. For
wider neighborhoods, see Section 9.8.

With Approach 2 it is necessary to mark a row (say, the bottom one) as
the one on which the evolution takes place; this mark, which we shall call
the NOW line, can be stored in another plan~r can be obtained from the
hardware as a pseuderneighbor, as we'll explain below. The rule will sense
this line and operate regularly on the cells that are on it; on the other rows
of the array the rule will simply "shift north." In this way the most recent
state will be at the bottom of the array and the oldest one that is still visible

96 Chapter 9. A sampler of techniques

will be at the top; the time axis will be oriented downwards (physicists may
prefer to change the rule so that it shifts the other way).

For a very simple example, let's make a one-dimensional random-number
generator using the approach discussed in Section 8.2. The NOW line will be
placed at the bottom of plane 1, and the generator will be in plane O. The
rule is

N/VONN
NOW (-- Oj 1)

CENTER'
ONED-RAND

NOW IF \ If on NOW line
WEST CENTER EAST OR XOR ELSE \ run the rule

SOUTH THEN \ else shift north
>PLNO

CENTER' >PLN1 \ The NOW line stays put

The evolution of this random-number generator, which has been studied by
Stephen Wolfram[73], is shown in Figure 9.9a.

If we want to avoid wasting one plane for the NOW line we can use a signal
called -VFF, which is provided by the internal circuitry and is available on
the user connector. 7 To make a custom neighborhood in which this signal
is available we would use, for instance, the minor neighborhood assignment
&/USER, which feeds address lines 10 and 11 of the look-up table from the
user connector. On this connector, we would connect a jumper from the -VFF
pin to the USER 10 pin of CAM-A. Finally, we would assign the neighbor name
- NOW to address line 10, and define NOW as the complement of - NOW :

10 == -NOW
NOW (-- 011)

-NOW 1 XOR

The jumper can stay in place even when it is not needed, since it will be used
only when &/USER is in force.

For Approach 3, intuitively we have to "slice" the torus (cf. Section 2.2.4),
say, along the left edge of the array, and reconnect the two ends after having
offset them by one row with respect to one another, thus obtaining spiral
wrap-around. The mechanism for achieving this is to have cells on the right
edge of the cut treat as EAST what is actually N. EAST, and cells on the left
edge treat as WEST what is S. WEST. The position of the cut may be marked
by a vertical line stored in a plane or taken from the pseudo-neighbors -HOO
and -HFF available on the user connector (cf. footnote 7).

7 -VFF returns a O for the cells on the bottom row (FF is 255 in hexadecimal), and a 1
elsewhere. Also available are -VOO (the top line), -HOO (the leftmost column) and -HFF
(the rightmost column} .

9. 7. One-dimensional cellular automata 97

Figure 9.9: (a) One-dimensional random-number generator . (b) Sample spacetime
history from SCARVES-a one-dimensional mechanical microcosm.

A simple but very interesting rule, which is a one-dimensional analog of
the SPINS-ONLY rule of Section 17.3, has been studied by Charles Bennett .
SCARVES is a second-order reversible rule (cf. Section 6.2) which looks not
only at the first neighbors, WEST and EAST, but also at the second neighbors,
WEST-OF-WEST and EAST-OF-EAST (see the next section for ways to get hold
of these extra neighbors). In going from the past to the future, a cell will flip
if there are presently two [Q]'s and two [JJ's among its four neighbors. When
working in one dimension with Approach 2, there is no need to store the past
state of a cell (needed by the second-order rule) in an extra plane, since this
state is already available in an adjacent row of the same plane, where it can
be seen as the NORTH neighbor.

The cellular-automaton world defined by this rule is a veritable microcosm
of mechanical and statistical mechanical effects (Figure 9.9b). It supports a
great variety of elementary and complex ''particles" (analogous to the glid
ers of Section 3.4)-some small and fast, some large and sluggish. Particles
may be dismembered by a collision and emerge as new combinations of par
ticles; however, an Ising-like energy8 is conserved in the collisions[45]. If you
start with a cloud of "hot gas"-a random patch on a clear background-the
cloud will slowly lose heat by expansion and evaporation and various levels
of ordered structures will appear.

8 A quantity that counts how many of the present neighbors "disagree" with the past
value of the cell under consideration; cf. Sections 6.2, 17.2.

98 Chapter 9. A sampler of techniques

9.8 Neighborhood expansion tricks

Several techniques are available for sensing the second neighbors needed by
this rule, and , in general, for bringing within the neighborhood scope cells
that do not fall within the 3x3 window provided by CAM; we shall barely
touch on two of them, namely gathering and pleating.

Suppose you want to "gather" your second neighbors, which we shall call
WEST-WEST and E.AST-E.AST, into the neighborhood fold. You can copy the
current contents of plane O onto, say, plane 1, then shift plane 1 one position to
the right, and WEST-WEST will now be visible as WEST'. The extra step taken
by the shift slows down the simulation, but you have gained one neighbor.
As usual, a custom neighborhood and some ingenuity may be needed to make
the most of the available resources.

A more efficient way to get the extra neighbors is to "pleat" the array so
that it will become narrower in the west-east direction and correspondingly
gain in thickness; the extra thickness is provided by a second bit-plane . This is
illustrated by the following diagrams, in which letters represent cells; one five
cell neighborhood is given in upper-case letters. We start with a configuration
in which cells are arranged in one bit-plane

ab c DEF G Hi j kl ,

and we rewrite this configuration as one in which the same cells are arranged
into two bit-planes

a c E G i k
b D F H J l

In this configuration, all five neighbors of cell F are no more than one cell
away from F, even though some are in the other bit-plane.

With this pleating technique , the SCARVES rule becomes

NEW-EXPERIMENT N/VONN t/CENTERS

tcENTER

EAST CENTER' WEST' WEST+++

EAST EAST' CENTER WEST' + + +

NOW IF
4SUMO 2 = NORTH XOR >PLNO
4SUM1 2 = NORTH' XOR >PLN1 ELSE

SOtrrHS >PLNA THEN
CENTER >PLN2

MAKE-TABLE PLEATED-SCARVES

NOW

4SUMO

4SUM1

PLEATED-SCARVES

\ the past just
\ scrolled north

9.8. Neighborhood expansion tricks 99

Since the array has been compressed in the east-west direction, one unit of
space is now half the size of one unit of time, and the light-cone spans a
narrower angle, as is apparent from Figure 9.9b.

Chapter 10

Identity and motion

A farmer was complaining that his feet got
cold: the comforter was too short. "That's
easy," said his wife, "I'll cut a good strip off
the top and sew it on at the bottom!"

Competitive growth of the kind discussed in previous chapters can give rise
to some sort of motion. Say, a blob of matter is eroded on one side and grows
by accretion on the other side: it will appear to have moved-amoeba-like. In
this context, identity and motion are statistical features which vanish when
we examine the phenomenon on the scale of a single cell.

Several rules we've introduced give rise not only to such statistical m<r

tion, but also to a more microscopic kind of motion. For example, the gliders
of LIFE (Section 3.1) are patterns wbich, on a background of O's, are repro
duced by the rule after a number of steps in a displaced position. There is a
recognizable object which has moved. The SCARVES rule of Section 9. 7 also
supports a rich spectrum of such particles.

The simplest particle would be a [I] or a !QI moving on a uniform back
ground of IQJ's or Ill's. Therefore in this chapter our techniques for dealing
with identity and motion on a microscopic scale will be based on rules that
yield exact, deterministic, microscopic conservation of [I]'s and [Q)'s. Once we
have mastered the conservation of such "material" objects, it will be easy
to extend our methods to the conservation of more abstract quantities such
as energy or momentum, and of that most abstract quantity of all, namely
information.

For simpler experiments with conservation of material objects we will use
only the resources already introduced. Eventually, it will be desirable to use
the additional resources which CAM provides for this explicit purpose, which

102 Chapter 10. Identity and motion

embody directly in hardware some of the techniques employed in these simple
experiments.

10.1 A random walk

In a cellular automaton, to "transport" a particle from here to there one
has to make a copy of it there and erase it from here. Though performed
at different places, these two actions must take place as the two halves of
an indivisible operation-lest particles multiply or vanish-and thus must be
carefully coordinated, as we have seen in Section 9.1. Here we shall consider
the worst possible situation: the decision to move or not to move, or to go in
one direction or the other, is taken by the particle on the spur of the moment,
so that explicit travel arrangements cannot be made in advance.

Small particles of ink suspended in water are seen through the microscope
to be in a state of continual, irregular motion-the result of innumerable
collisions with the water molecules in thermal agitation. In this Brownian
motion, the behavior of an individual ink particle can be approximated by a
random walk: at each step the particle moves one unit right or left 1 depending
on the outcome of a coin toss.

As long as we have only one particle, this model is not hard to realize
on a cellular automaton. In CAM, for instance, we can use plane O for the
particle and plane 1 as a random-number generator, interpreting a [QI in the
latter plane as "left" and III as "right." In words, the directives for a cell are:

• If you have the particle, erase it: it will be picked up by one of your
neighbors.

• If the particle is on your right and the underlying random bit says "left,"
make a copy of the particle.

• Similarly, if the particle is on your left and the random bit says "right,"
make a copy of the particle.

The result is shown in Figure 10.la (where the second dimension shows the
progress of the particle in time, as explained in Section 9. 7).

The machinery of a cellular automaton is wasted on a single particle.
However, difficulties arise when we want to model more than one particle:
what shall we do when two particles, one coming from the right and one from
the left, try to step onto the same square? Shall we provide a separate bit
plane for each particle? 2 Shall we modify the rule so that particles somehow

1 For simplicity, we restrict our attention for a moment to one-dimensional models.
21n this case, no economy of machinery can be achieved, and the model is more efficiently

handled by a conventional computer.

10.2. A random shuffle 103

Figure 10.1: Random walk : (a) Spacetime history of a one-particle system, using
the "left/right" approach . (b) A many-particle system, using the "swap" approach.

"repel" one another? But then the path of a single particle won't be an ideal
random walk, since it will depend on factors external to the particle.

It should be clear that the difficulty is a conceptual one, not one of im
plementation:

• With one bit-plane per particle, the paths are true random walks. How
ever, an arbitrarily large number of particles may end up in the same
site; this is not observed in nature, where molecules are essentially im
penetrable to one another.

• With a single bit-plane , it would seem that we have no choice but to
steer a particle away from its randomly chosen course when a contention
arises. However, this would spoil the statistics of the ideal random walk;
yet, on the scale we are considering, it is that statistics that is observed
in nature.

Well, how does nature do it?

10.2 A random shuffle
In Brownian motion, particles do not travel in a vacuum. At each place we
have either ink or water-which is also impenetrable. When a particle moves,
it swaps places with some water; if there is a particle next to it, it can swap
places with the other particle.

Let us then build a new mental picture. Our model will consist of particles
filling all of space and having identical dynamical properties. We'll take the

104 Chapter 10. Identity and motion

liberty of painting some of these particles black (."ink") and leave the others
white ("water"). Using Poisson updating (Section 9.5), we shall choose a pair
of adjacent sites-which we shall call a block-and swap their contents. As a
result of this swap, at every tick of the "Poisson clock" a particle will take a
step left or right depending on its place within the cell pair. If two particles
are present, they will exchange places;3 they will never attempt to occupy
the same place. Note that with this approach the random decision to swap or
not to swap is associated with a whole twercell block, not with a single cell.

The swap rule is "data blind:" that is, the exchange takes place in the
same way no matter what the contents of the block is. We could update the
array without even looking at it! This is our guarantee that the path of an
individual particle will have the same statistics whether the particle is alone
or in company!

Poisson updating guarantees that at any moment we'll try to update only
one block. In fact, the above "swap" recipe is meaningless if applied to two
overlapping blocks:

··· abc ··· (10.1)

that is, the contents of cell b cannot be swapped at the same time with that of
a and that of c. On the other hand, ideal Poisson updating can be simulated
in a synchronous cellular automaton only in the limit of an infinitely slow
simulation, as explained in Section 9.5. A much faster simulation can be
achieved by introducing a suitable updating discipline. That is, we shall
divide the blocks into two groups-even and odd-as shown below

even even even

· ··0123456 ...
odd odd odd

and permit the updating of a block of one type only on even-numbered steps;
of the other type, on odd-numbered steps .

We'll run the new model of a random walk on CAM, using plane O for
the particles, plane 1 for the random-number generator that will supply the
Poisson clock, and plane 2 to store an alternating O / 1 pattern which will
be used for telling how the cells are paired in blocks. Since this is a one
dimensional model, we'll be able to run a different copy of the system on
each row of the array.

The main emphasis in the following construction is to make a cell rule-
which is the only kind provided by CAM-act as if it were a block rule;4

that is, the two cells of a block must act at the same time-whenever they
act at all-and separately perform the two halves of an indivisible operation

3If the ink particles only come in one color, this case is indistinguishable from the case
of no movement at all.

4 1n Section 16.5 we shall briefly examine a second approach to this problem.

10.2. A random shuffle 105

("swap' ' in this case). This construction will be the starting point for our
discussion of the Margolus neighborhood in Chapter 12.

We shall separately define different "pieces" of our machinery and put
them all together in the end.

Alternating block pattern. Before beginning the experiment, let us store
on each row of plane 2 the pattern

010101010101 ... ,

where O will be used to identify the left element of a block and 1 the right
element. At the next step, we would like to have the pattern

101010101010 · · ·,

and so on in alternation; this is taken care of by the simple rule component

(CAM-B) : CHANGE-GRID
CENTER NOT >PLN2 ;

which complements the pattern. (The comment CAM-B is a reminder that we
are operating in the CAM-8 context, since we are giving a rule for plane 2.)

To allow us to run multiple copies of the system, the row of alternating
0 's and 1 's was repeated on each line of the screen, so that plane 2 contains
alternating vertical stripes of O's and 1 's (cf. Section 14.3).

The "left/right" markers will be used by CAM-A, where they will be visible
under the neighbor name &CENTER; for clarity, we shall define

(CAM-A) : LEFT/RITE (-- 011)
&CENTER;

Neighbor multiplexing. No matter which kind of block we are in, the
relevant neighbor for the CENTER cell of plane O is the one opposite to it in
the block, i.e ., EAST for the left cell and WEST for the right cell. For this
reason, it will be convenient to define

(CAM-A) OPPOSITE
LEFT/RITE { EAST WEST }

OPPOSITE'
LEFT/RITE { EAST' WEST'}

so that from now on, given a cell as the current 'CENTER' of attention, one
can refer to its block companion as the ' OPPOSITE'.

Block clock. Plane 1 will contain the usual rudimentary random-number
generator (Section 8.2), defined by

(CAM-A) : STIR
CENTER'
NORTH' WEST' SOUTH' EAST'

AND XOR XOR XOR >PLN1

106 Chapter 10. Identity and motion

At each step, this generator will provide a different random outcome for each
cell. To make both cells of a block see the same activation signal, we process
these two bits so that the result is the same for the two cells:

(CAM-A) : POISSON-CLOCK (-- 011)
CENTER' OPPOSITE' XOR;

Since STIR provides an even mixture of O 's and 1 1s, the XOR of two random
bits will also give an even mixture, and thus this Poisson clock will tick on
average once every two steps.

Sw_a.pping, a.t last! A this point we are ready to write the main component
of the rule, namely that for the particles in plane 0.

(CAM-A) 1D-RANDOM-WALK
POISSON-CLOCK IF \ sense Poisson clock

OPPOSITE ELSE \ and accordingly swap
CENTER THEN \ or stay as you are

>PLNO

Putting it all together. The following is a summary of the complete recipe

NEW-EXPERIMENT
CAM-B

: CHANGE-LATTICE CENTER NOT >PLN2

CAM-A N/VONN t/CENTERS
STIR >PLN1
LEFT/RITE tcENTER
OPPOSITE LEFT/RITE { EAST WEST }
OPPOSITE' LEFT/RITE { EAST' WEST' }
POISSON-CLOCK CENTER' OPPOSITE' XOR
1D-RANDOM-WALK >PLNO

MAKE-TABLE CHANGE-LATTICE
MAKE-TABLE STIR
MAKE-TABLE 1D-RANDOM-WALK

Phew!
We'll start the experiment by filling the middle third of each row with ink

and the rest with water (Figure 10.2a): water and ink will steadily diffuse
into each other (b), eventually leading to an even mixture (c).

We have succeeded in constructing a microscopic model of diffusion that
is remarkably realistic and robust. If we define p as the density of ink par
ticles over a relatively large area of the array, this quantity will evolve in a
continuous way as a function of space and time. Unlike the diffusion equation

dp d2p
dt dx 2 '

(10.2)

10.2. A random shuffle 107

which is an extreme macroscopic approximation, our model captures impor
tant physical details such as the impenetrability of bodies and the finite speed
of propagation of information. 5 On the other hand, as we study it on a larger
and larger scale, our model converges to (10.2); this explains why the diffusion
equation is after all a legitimate modeling tool in the appropriate macroscopic
context.

Figure 10.2: Initially separated (a), ink and water diffuse into each other (b), even
tually producing a uniform mixture (c).

If we consider now a single copy of the one-dimensional ink/water system,
we can make CAM display a spacetime trace of its evolution, as explained
in Section 9.7 (the NOW line can be drawn on plane 3). If we start this
experiment with a tight cluster of particles somewhere near the middle of the
NOW line, we'll be able to see each particle of the cluster follow a separate
zig-zag path 1 as in Figure 10. lb. The diffusion rate is half of that of Figure
10. la, since the Poisson clock is ticking on average once every other step.

If we stop the Poisson clock during the experiment, 6 the diffusion rate goes
to zero as expected (Figure 10.3a). What will happen if we make the clock
invariably tick at every step ?7 (of course, such a synchronous clock hardly
deserves the "Poisson" name any longer). The result is shown in Figure 10.3b:
the swap operations are now perfectly coordinated, and the row of swappers
turns into a bucket brigade. Particles fly right or left at a uniform speed!
This type of particle-transport mechanism will be used in a number of gas
models to be introduced later.

5The diffusion equation predicts that in an arbitrarily short time some ink will be found
at an arbitrarily large distance from its starting point-which is physically unrealistic.

6 For instance by putting all O's in plane 1.
7Filling plane 1 with 1's won't do, since STIR will still return all O's; filling it with

alternating stripes of O's and 1's will-with the given definition of STIR . But of course
these are kludges, and it would be better to load a new rule where the clock is not sensed
at all.

108 Chapter 10. Identity and motion

Figure 10.3: (a) When the Poisson clock is stopped, particles stop diffusing. (b)
With a clock pulse at every step, a particle keeps moving always in the same direc
tion-right or left depending on where it started.

Chapter 11

Pseudo-neighbors

I have always wanted to have a neighbor just
like you! I've always wanted to live in a neigh
borhood with you!

[Mr. Rogers)

In the previous chapter, certain pieces of equipment needed for an experiment
were actually simulated in the cellular automaton as part of the experiment
itself. Besides the random-number generator used for the Poisson clock, we
synthesized the following features:

• A striped pattern, used to partition the array into twercell blocks.

• A mechanism for switching between this pattern and the complementary
one on successive time steps - so as to alternately use two different block
partitions.

• A cell neighborhood whose make.up-' CENTER, WEST' or 'CENTER,
EAST '-changes according to the cell's position in a block, and a relative
naming scheme by which the other element of a block always appears
under the same neighbor name- OPPOSITE- independently of whether
it happens to be, in absolute terms, the west or the ea.st neighbor of the
selected cell. 1

Since they are useful in quite general situations, CAM provides several
resources of this kind directly in hardware; in this way the bit planes and the

1 The look-up table is still physically connected to both neighbor lines, but the effect is
to multiplex these two lines into a single "virtual" line carrying the right information at
the right moment .

110 Chapter 11. Pseudo-neighbors

look-up tables can be better utilized, and the programming itself is simplified.
Spatial and temporal information useful for constructing block partitions and
for other purposes is available in the form of pseudo-neighbors-i.e., signals
that can be sensed directly by the look-up tables but whose source is not the
contents of a cell. In the next chapter we shall see that some of these signals
are also available indirectly, in a form that is even more effective for certain
purposes, through the neighbors of the Margolus neighborhood.

11.1 Spatial phases

Each cell position in the 256x256 array that makes up a CAM cellular automa
ton is uniquely identified by its row and column address (we shall assume that
both rows and columns are numbered from O trough 255). If the rule could
sense this address in its entirety it could specify a different behavior for every
cell ("If your address is (3, 7) do this, if it is (0, 95) do that, etc."). Leav
ing aside the practical difficulty of providing 16 more inputs for the look-up
table (256x256=2 16), this approach would represent a gross violation of the
spatial-uniformity policy that characterizes cellular automata; for example,
in this situation what sense would it make to say "Now run the same rule on
a 1000 x 1000 array"?

On the other hand, it is sometimes convenient-as we've seen-to use rules
that can avail themselves of a small amount of spatial "texture. 2" For this
reason, in CAM the least significant bit of a cell's column address is broadcast
(either directly or in complemented form, as the user wishes3) as an internal
signal called HORZ-the horizontal phBBe; similarly, the least-significant bit
of the row address (or its complement) is broadcast as the signal VERT- the
vertical phase. One way to "tune in" to these broadcasts is to select the
minor neighborhood &/HV (cf. Section 7.3.2), where they appear respectively
as &HORZ and &VERT . Thus, the value of tHORZ will alternate between O and
1 as one moves along a row of the array; since all of the rows are in-phase,
this yields a pattern of vertical stripes:

· · · 010101010 · · ·
· · · 010101010 · · ·
· · · 010101010 · · ·

similarly, &VERT will alternate along a column, yielding horizontal stripes:

· · · 000000000 · · ·
· · · 111111111 · · ·
· · · 000000000 · · ·

2 A crystal of NaCl is still uniform in spite of the alternating arrangement of Na and Cl
atoms on each row; to qualify as 'uniform', what counts is that the arrangement is periodic .

3 See Section 11.2.

11.2. Temporal phases, and phase control 111

By X0R'ing the neighbors &HORZ and &VERT one obtains a checkerboard
pattern

... 010101010 .. .

. . . 101010101 .. .

. . . 010101010 .. .

on the other hand, the joint version &HV of these two neighbors, which is a
four-state variable, yields the following two-dimensional periodic pattern

... 010101010 .. .

. . . 232323232 .. .

. . . 010101010 .. .

. . . 232323232 .. .

where the block g} is indefinitely repeated both horizontally and vertically.

11.2 Temporal phases, and phase control

Although in writing a rule it is convenient to visualize a neighbor word, say
NORTH, as returning the current state of a certain cell, it is important to
remember that these words are only used by the host software in compiling a
table; their role is exhausted once this table has been shipped to CAM. Thus,
NORTH does not answer the real-time question "What is the current state,
in CAM, of this cell's north neighbor?"-its value is only meaningful during
table generation.

Once CAM is operating, the table's input lines are connected to live hard
ware signals that are in one-to-one correspondence with the neighbor words
used in compiling the table. The signals corresponding to ordinary neigh
bors, such as CENTER, NORTH, etc., come from the bit-planes; who supplies
the signals corresponding to the pseudo-neighbors?

As mentioned in the previous section, the signals corresponding to the
spatial phases kHORZ and kVERT are generated internally by CAM's horizontal
and vertical counters-which know each cell's row and column address. The
remaining phase signals, corresponding to the pseudo-neighbors &PHASE and
&PHASE' mentioned in Section 7.3.2 (as well as PHASE and PHASE' to be
introduced in Section 12.5) are driven directly by the host computer - which
before every step can independently set each one of them to either O or
1 . If the signal corresponding to &PHASE , say, is set to 1 , during the step
itself the neighbor &PHASE will be seen to have the value 1 by all cells,
and thus will appear in the simulation as a space-independent-but possibly
time-dependent 4-parameter.

4 We are referring, of course, to cellular-automaton time, which advances in a discrete
fashion step after step. The fact that in CAM's internal implementation cells are updated
sequentially is irrelevant here: this internal time is hidden from view, as explained at the
beginning of Chapter 7.

112 Chapter 11. Pseudo-neighbors

Defining a rule that makes reference to a pseudo-neighbor word such as
&PHASE is of course pointless if the corresponding hardware signal is not
driven by the host computer through the desired sequence of values, step
after step, during the experiment itself. Thus, alongside the neighbor term
PHASE there exists a command of the form

(value) IS <&tPHASE>,

to be used for placing a specific value on the corresponding signal line. Ap
propriate contexts for giving this kind of command are discussed in the rest
of this chapter; for reference, here we shall list the available options and the
argument range for each.

I RANGE I COMMAND REMARKS

0 1 IS <&PHASE> signal seen by ckPHASE
0 1 IS <&PHASE'> signal seen by &PHASE '
0 1 2 3 IS <&PHASES> joint setting of the above
0 1 IS <ORG-H> origin of HORZ signal
0 1 IS <ORG-V> origin of VERT signal

(11.1)

0 1 2 3 IS <ORG-HV> joint setting of the above
0 1 IS <PHASE> signal seen by PHASE
0 1 IS <PHASE'> signal seen by PHASE '
0 1 2 3 IS <PHASES> joint setting of the above

A spatial-phase signal such as HORZ of course does take-during the same
step--d.ifferent values at different sites of the array; that is, for each cell this
value depends on the position of the cell itself, which is fixed, rather than
on the experimenter's whim at a certain moment. However, at each step
the experimenter may choose for HORZ either the pattern 010101 ··· - which
starts with a O at the origin of the array-or the complementary pattern
101010 ···-which starts with a 1. The choice of the value at the origin
is thus a time-dependent variable, listed in the above table as <ORG-H>; its
default value is O . Similar considerations apply to VERT. These two signals
can be set jointly, by assigning a value between 0 and 3 to the variable
<ORG-HV> (as shown above). The ordering of the two bits within this joint
variable is <ORG-HV> = <ORG-H> +2x <ORG-V>.

11.3 A two-phase rule

In Chapter 9 we saw how a suitable rule can make the state of a cell go through
a multi-phase cycle. As an illustration of the use of pseudo-neighbors, here
we'll describe a simple experiment where the rule itself changes from step to
step in a cyclic way.

11.3. A two-phase rule 113

We want to synthesize a "composite" rule called BORDER/HOLLOW that
works on bit-plane O as follows

• At even steps, grow a border of [I]'s around any cell that is in state [I].

• At odd steps, hollow out any solid areas by turning into a (Q] any cell
that is completely surrounded by [I]'s.

To know whether the time is ''even" or "odd," the rule looks at the pseudo
neighbor &PHASE; the value of this parameter will be made to alternate be
tween O and 1 on successive steps when the experiment is actually running.
The whole experiment is constructed as follows.

1. We start a clean slate by saying

NEW-EXPERIMENT

This initializes the whole machine-hardware and software-to a well
defined default state. Options will remain dormant until explicitly ac
tivated.

2. Then we make the appropriate neighborhood declarations and sepa
rately write down the two ''pieces" of the rule:

N/MOORE &/PHASES \ in this minor neighborhood
\ tPHASE and tPHASE' are visible

: BORDER (-- newstate)
CENTER NORTH SOUTH WEST EAST
N.WEST N.EAST S.WEST S.EAST

OR OR OR OR OR OR OR OR

NORTH SOUTH WEST EAST
N.WEST N.EAST S.WEST S.EAST
AND AND AND AND AND AND AND IF

0 ELSE
CENTER THEN

HOLLOW (-- newstate)

3. Out of these two pieces we make a single, phase-sensitive rule, and ship
it to the look-up table by passing it as an argument to MAKE-TABLE:

&PHASE { BORDER HOLLOW} >PLNO

MAKE-TABLE BORDER/HOLLOW

BORDER/HOLLOW

114 Chapter 11. Pseudo-neighbors

4. At this point, we define a run-cycle descriptor, i.e., a Forth word that
specifies to what value the signal corresponding to .tPHASE should be
set before each step. This word, which we have called EVEN/ODD, is
passed as an argument to the command MAKE-CYCLE (much as a table
descriptor is given as an argument to the command MAKE-TABLE). The
possible ingredients of a run cycle are discussed in Section 11.5; here
the matter is straightforward:

0 IS <&PHASE> STEP
1 IS <&PHASE> STEP

EVEN/ODD

MAKE-CYCLE EVEN/ODD

We are now ready to run. The cellular automaton will alternate one step
of BORDER with one step of HOLLOW . The result is essentially one of iterated
spatial derivatives; that is, the first two-step cycle will extract the outlines of
any solid region of [I]'s present in the initial configuration; the second cycle
will draw outlines of the outlines, and so on, eventually filling the space with
complex animated doodles (Figure 11.1).

Figure 11.1: Successive stages of the BORDER/HOLLOW rule.

11.4 Incremental phase control

In the previous example, the value of <kPHASE> was explicitly set to O or 1
on alternate steps of the run cycle. Since phase variables can be read as well
as written, instead of specifying the new value of a phase in absolute terms
one could specify it in relative terms, i.e., with respect to the phase's value
at the previous step.

For example, for a two-valued variable such as <&PHASE> , one can just
complement its value at every step. (With this incremental approach, ini
tialization of the phase variable at the beginning of a run, if required, must

11.5. The run cycle 115

be taken care of by a separate command). The run cycle would be set up as
follows

0 IS <&PHASE>

<&PHASE> NOT IS <&PHASE>

STEP CHANGE-PHASE

MAKE-CYCLE EVEN/ODD
!NIT-PHASE

INIT-PHASE

CHANGE-PHASE

EVEN/ODD

Note that commands such as !NIT-PHASE and CHANGE-PHASE, defined as
above as separate routines, can be interpolated at an arbitrary moment in
the course of a simulation 5 in order to alter the regular alternation of phase
values otherwise defined by the run cycle. This is one way to achieve time
reversal in rules where the direction of time is controlled by a phase variable
(cf. Chapters 12 and 14).

11.5 The run cycle

If one were dealing with a cellular automata machine where the only relevant
data were the contents of the bit-planes and that of the look-up table, then
to run an experiment one would just say, "This is the rule, this is the initial
configuration-go!" In fact, many simple experiments can be run on CAM in
just this fashion, as shown in the previous chapters.

On the other hand, in a composite rule such as that of Section 11.3 a
complete cycle may consist of several steps, each performed in a different
environment. Many of the resources of CAM may usefully be made to play
different roles at different points of the cycle: besides controlling the phases,
one might want to change the color map, service the event counter, or even
switch from one neighborhood to another.

Here we shall discuss the main iteration loop that runs a cellular automa
ton on CAM. This consists of a skeleton to which different kinds of "decora
tions" can be attached in order to create a specific run-cycle environment.

The command STEP tells CAM to perform a step. What kind of action
the step will take is determined by the contents of the look-up tables and by
the state of other signals-such as the pseudo-neighbors-which collectively
make up the dynamical parameters of the machine; these parameters can be
modified between one step and the next. 6 Besides using these parameters as

5E.g., by typing them at the keyboard or associating them with a control-panel key. ·
6It is also possible to modify between one step and the next the contents of the bit

planes, which collectively make up the state variables of the system. The CAM hardware

116 Chapter 11. Pseudo-neighbors

an "input," the step itself may return an "output"-for example a value in
the event counter.

Thus, to run an experiment one must (a) initially set all of the relevant
dynamical parameters, (b) specify what changes (if any) are to be made to
certain parameters before each step, 7 and (c) specify what data (if any) should
be monitored or collected after each step.

In essence, the ·'order of the day" for an experiment could be written as
follows

(service operations)
STEP

(service operations)
STEP

(service operations)
STEP

(service operations)

AGENDA

(of course, repetitive sections could be embedded in iteration statements),
and in fact this way of running CAM is useful for "canned" demos and other
specialized applications.

If we execute AGENDA, the machine will run at full speed (unless (service
operations) itself provides a delay); if we want to suspend the simulation we'll
have to abort the program-and it will be difficult to know where we were and
how to resume in an orderly way. Of course, we could intersperse throughout
the program explicit instructions to sense control-panel keys, synchronize
with an external clock, stop at certain points, etc. However, all of these
timing options are usually better kept separate from the essential issues of a
simulation-that is, what to do and in what order.

In CAM, this separation between timing and sequencing is achieved by
letting a program such as AGENDA run as a corou~ine of the main control
program-which will activat~ the coroutine whenever desired. A coroutine
used in this way will be called a run cycle. The main program will pass control
to the run cycle when it wants the next step to be executed, the run cycle
will pass control back to the main program when the step has been started
and parameters for the next step have been set up. Both the main program

provides in between steps a brief time-window'in which the host can "talk" to CAM without
disrupting the execution of the steps. There is enough time in this window to update all the
dynamical parameters-which are few; in the little extra time that remains one can read
or alter on-the-fly a few bytes of plane or ta.hie data. More extensive manipulations would
exceed the window width, and force CAM to suspend the simulation for one or more steps.
At the cost of slowing down the simulation, both plane and table data can be modified at
will between steps.

7When several CAM modules are used together, parameters for each of them can be
modified independently between steps.

11.6. Alternating spatial textures 117

and the run cycle always continue where they left off each time control passes
to them.

The grammar is the following. We tell CAM that the word AGENDA (for
example) is to be the current run cycle by the declaration

MAKE-CYCLE AGENDA

In the run cycle, occurrences of the word STEP have a special significance; as
soon as it is declared as the run cycle, AGENDA will start running and continue
until the first occurrence of STEP is found. Right before executing that word,
AGENDA will go to sleep: the machine's parameters are all set up for the first
step, but the step itself hasn't been performed yet.

The main program will have responsibility for generating the "ticks'' of
the simulation clock. Ticks may come fast or slow; they may be suspended,
resumed, sent in groups of two, etc. , as desired. At each "tick," the command
NEXT-STEP is issued; this command wakes up AGENDA, which executes the
pending STEP and keeps running until it finds the next occurrence of the
word STEP-at which point it goes back to sleep. Now the first step has
been performed, and the machine is already set up for the next one-and so
on.

When AGENDA reaches the end of its code, it goes back to the beginning:
there is no need for an explicit iteration statement to run the cycle over and
over.8

For example, for all the cellular automata introduced so far9 it would be
sufficient to say

MAKE-CYCLE STEP

That is, since no parameters are changed between steps, the task to be exe
cuted at every tick of the clock consists of just STEP .

I

The bare word STEP is the default run cycle; thus, applications that do
not need a custom run cycle need not even be aware of the existence of this
scheduling mechanism.

11.6 Alternating spatial textures

Textures that can be created in one or two dimensions with the help of the
spatial phases (such as block partitions, stripes, or checkerboards) are partic
ularly useful when a regular alternation of phase values is added to the time
dimension.

8The command FINISH-CYCLE will continue execution of the current cycle until the end
of its code, and then put it to sleep . This is useful when during an interactive session one
wants to switch in an o:r:derly way from a given run cycle to a different one.

9Except, of course, the ad hoc example of Section 11.3.

118 Chapter 11. Pseudo-neighbors

One example was provided by the random-walk experiment of Section
10.1, where we used bit-plane 2 to provide a pattern of vertical stripes that was
complemented at every step. To achieve the same result using a spatial-phase
pseudo-neighbor, one would select the minor neighborhood &/HV (rather than
&/CENTERS) and use the following definition for the block marker LEFT /RITE
used in that example

: LEFT/RITE
tHORZ

An appropriate run cycle (cf. table (11.1) and Section 11.4) would be

ALT-STRIPES
STEP <ORG-H> NOT IS <ORG-H> ;

If it is important to start the cycle with a definite choice of pattern, the run
cycle can be defined as follows (cf. Section 11 .4):

0 IS <ORG-H> STEP
1 IS <ORG-H> STEP

ALT-STRIPES

Note that in order to gain access to the two pseudo-neighbor lines of
&t/HV one has to relinquish the two neighbor lines of &/CENTERS . In the
next section we'll show how one can "have one's cake and eat it too."

At any rate, even though these particular trade-offs are specific to CAM,
they reflect a real contention for resources, and thus are illustrative of the
trade-offs that one would have to consider in other high-performance simula
tion contexts.

A standard technique in the simulation of lattice models of physical sys
tems is to update at one step the cells lying on the "black" sublattice of a
checkerboard, and at the next step those belonging to the ''white'' sublattice
(cf. Section 17 .3). The intuitive reasons for this are provided by the examples
of Sections 9.5 and 10.1; indeed, the two approaches based on "alternating
partitions" and ''alternating sublattices'' are in a sense dual aspects of the
same approach, as explained in Section 17. 7.

Chapter 12

The Margolus neighborhood

Do unto others as you would have others do
unto you.

[The golden rule)

In this chapter we shall discuss the resources offered by CAM in support of the
Margolus neighborhood, a cell-interconnection scheme that is useful in phys
ical modeling, particularly when microscopic reversibility is an issue. The
conceptual motivations for the Margolus neighborhood and typical applica
tions will be given in Part III; here we shall be concerned principally with its
functional aspects-what it is and how it is used.

12.1 Block rules

Following the precedent of Section 10.2, let us introduce a new style of cellular
automaton, called a partitioning cellular automaton: 1

1. The array of cells is partitioned into a collection of finite, disjoint and
uniformly arranged pieces called blocks.

2. A block rule is given that looks at the contents of a block and updates
the whole block (rather than a single cell as in an ordinary cellular
automaton); an example is given by table (12.1) below. The same rule
is applied to every block. Note that blocks do not overlap, and no
information is exchanged between adjacent blocks.

1 We are not changing the rul es in th e middl e of the game! At the cost of using more
states and neighbors , a system of this kind can always be rewritten as an ordinary cellular
automaton.

120 Chapter 12. The Margolus neighborhood

3. The partition is changed from one step to the next, so as to have some
overlap between the blocks used at one step and those used at the next
one.

Point 3 is essential: if we used the same partition at every step the cellular
automaton would be effectively subdivided into a collection of independent
subsystems.

In this book we shall use only the simplest partitioning scheme, namely:

• The array of cells is subdivided into blocks of size 2x2.

• Steps in which the blocks are aligned with the even grid of the "graph
paper" alternate with steps that use the odd grid, as shown in Figure
12.1.

This partitioning scheme is called the Margolus neighborhood, and is directly
supported by CAM.

0 0

(a) • (b)
0 • (c) • 0

0 0

Figure 12.1: The 2x2 blocks of the Margolus neighborhood; consecutive steps al
ternate between the even grid (thick lines) and the odd grid (thin lines). Depending
on which grid is used, the cell marked in (a) will have as neighborhood either an
even-aligned block {b) or an odd-aligned block (c) .

Notice that the Margolus neighborhood makes use of only two partitions
(namely the even grid and the odd grid) . In general, it is understood that the
different partitions used step after step by the rule of a partitioning cellular
automaton should be finite in number and reused in a cyclic way, so as to
retain uniformity of space and time. 2

12.2 Particles in motion

To give a simple example of use of the Margolus neighborhood, let's model
a stylized gas consisting of particles moving at uniform speed with no inter-

2 Cellular automata can be seen as dynamical systems whose laws are periodic in space
and time. In an ordinary cellular automaton, one temporal cycle corresponds to one step
of the rule, and along either axis one spatial cycle corresponds to one cell. Partitioning
cellular automata, though defined on the same spacetime grid, have laws that are periodic
with a coarser pitch. Specifically, with the Margolus neighborhood it takes two steps to
complete a cycle along the time axis (one step will use the even grid, the other the odd
grid) , and it takes two cells (the length of a 2x2 block) to span a cycle along either spatial
axis .

12.2. Particles in motion 121

actions. Cells can be in one of two possible states; i.e., a cell can be empty
(' ') or contain a particle ('•'). The rule is the following

• SWAP-ON-DIAG In every 2x2 block of the current partition, swap the
contents of each cell with that of the cell diagonally opposite to it.

Such a block rule can be given explicitly, by listing for each possible state of
a block the corresponding new state ; the full table consists of 16 entries:

EB-EB ~-~ ~ ~ -.. ~~~
~-~ ~-~ ~~ ~-~ -. (12.1)

~-~ ~-~ ~ em ffi]-lffi I-+ •

fim I-+ fim •• tfj-~ em ~ I-+ •• m ffi] I-+ •

Since the present rule is rotation-invariant, several entries of (12.1), such as,
for instance,

coincide up to a rotation; for clarity and brevity, it will be convenient to
use a compressed form of table (12.1) in which each equivalence class under
rotation is represented by a single entry, so that only six rather than sixteen
entries are needed:

(12.2)

It will be instructive to analyze in detail the behavior of this rule.

• Observe that the prescription of table (12.2) is consistent with the fol
lowing intuitive interpretation: a particle lying in a given corner of the
block it currently occupies will move to the diagonally opposite corner
of the same block.

• Recall that the make-up of the blocks alternates in time between the
even grid and the odd grid.

122 Chapter 12. The Margolus neighborhood

• Look at an isolated particle. For the first step choose, say, the even
grid (solid lines), and consider a particle lyirig in the upper-left corner
of its block (Figure 12.2a); the rule will make the particle move to the
lower-right corner, in a down-right diagonal motion.

• At the next step use the odd grid; here the particle will again find itself
in the upper-left corner of a block, and the rule will again drag it in a
down-right motion.

• Continue like this, alternating the two partitions. Each particle will
move on a diagonal at a uniform rate; which of the four possible direc
tions it will follow is determined by its initial position.

• When two particles meet head-on they exchange places on the diago
nal as a matter of routine (SWAP-ON-DIAG swaps anything it finds
particles or vacuum-without even looking at it!) and continue on
their courses; particles traveling on intersecting diagonals go by with
out noticing one another (Figure 12.2b).

Figure 12.2: SWAP-ON-DIAG: (a) Uniform motion of a particle (here and in the
following figures the particle is shown at the beginning of an even step-where the
relevant blocks are those delimited by thick lines). (b) Particles go "through" one
another without interacting.

The resulting dynamics is rather trivial: since particles do not interact
with one another, each particle constitutes an isolated system. However,
the particle-transport mechanism presented here is the main ingredient in
a number of rules (introduced starting in the next section) of interest for
computation and for physical modeling.

12.3 Collisions

Having provided a simple mechanism for uniform motion, we shall now com
plement it with a collision mechanism that will maintain as far as possible
the analogy with physics.

In a stylized gas such as that described in the previous section, one may
think of the particles as having mass and consequently kinetic energy. Since

12.3. Collisions 123

all particles are identical and travel at the same speed, they all have the same
energy; thus, energy conservation is equivalent to conservation of particles
and of course particles are conserved by a ''swapping" rule such as SWAP
ON-DIAG. Momentum is also trivially conserved, since particles have uniform
motion.

If one wants to introduce collisions that conserve momentum as well as
energy, inspection of look-up table (12.2) will show that only one modification
is possible.3 Namely, the third entry of the table, where two particles traveling
in opposite directions along a diagonal meet head-on, can be changed so
that the particles instead of proceeding undisturbed will leave in opposite
directions along the other diagonal (in either case, the total momentum is
zero before and after the interaction):

(12.3)

The table for this rule, called HPP-GAS, is thus

(12.4)

Figure 12.3 illustrates the behavior of this rule.

Figure 12.3: HPP-GAS: (a) Uniform motion of an isolated particle. (b) Particles that
collide head-on leave along the opposite diagonal.

A remark is in order. Let's call a and b the two particles undergoing a
collision, and assume that all particles are identical. Then, because of the
symmetry of the output, it does not make sense to ask which of the two
outgoing particles is a and which is b; one may imagine, if one wishes, that
the collision annihilates the original particles and creates a brand new pair.

3Observe that the first and the last entries cannot be changed because of energy conser
vation. The second entry, which describes the free motion of a particle, characterizes the
family of gases we are interested in now ; altering this entry (which is possible only at the
cost of breaking one more symmetry at the microscopic level) leads to a different family of
gases, discussed in Section 12.7.

124 Chapter 12. The Margolus neighborhood

Despite the fact that its particles are restricted to a discrete set of positions
and move at a fixed speed in one of four possible directions, the macroscopic
properties of HPP-GAS are in many respects identical to those of physical
gases. This important result will be discussed in Chapter 16, devoted to fluid
dynamics.

12.4 How to turn a block rule into a cell rule

A block rule such as that of table {12.2) specifies the new state of every cell
of a given block (let's label them UL, UR, LL, LR for "upper-left," "upper
right," "lower-left," and "lower-right") as a function of the current state of
the same four cells; in formulas,

ULnew
URnew
LLnew
LRnew

fUL (UL, UR, LL, LR),
fUR {UL, UR, LL, LR),
fLL(UL, UR, LL, LR),
fLR {UL, UR, LL, LR).

(12.5)

In CAM, however, the rule must be given in the form of a recipe for updating
a single cell, rather than a whole block; to simulate the effects of a block rule
we must use a ''position-smart" recipe that in essence would instruct a single
cell as follows

1. If in the current grid you happen to be the UL cell of your block, then
use the first expression of (12.5); if you are the UR cell, use the second
expression, and so on.

2. Having determined where you are in the block-and consequently which
of the four expressions to use--find out where the other block neighbors
are with respect to you. For example, if you are a UL cell, then the UR
argument in that expression coincides with your EAST neighbor, the LL
with your SOUTH neighbor, and the LR with your S. EAST neighbor;
of course, since you are a UL cell, the UL argument is nothing but
yourself-i.e., the neighbor called CENTER .

In other words, the first expression of (12.5) applies only to UL cells,
and for them it is equivalent to

CENTER.new = fUL (CENTER, EAST, SOUTH, S.EAST).

All this sounds rather complex; however, the situation is greatly simplified
by special hardware provisions and matching software support. The Marg~
lus neighborhood declaration {in any of its "flavors" N/MARG N/MARG-HV and
N/MARG-PH) activates, among others, a set of neighbor words that is particu
larly appropriate for rules that are rotation-invariant. 4 With respect to any

4See Section 12.5 for a complete list of Margolus neighbors.

12.4. How to turn a block rule into a cell rule 125

of the four cells, treated as the current CENTER of attention-and which may
happen to be in any of the four block positions-the other three cells of the
block will be called CW, CCW, and OPP (from your corner of the block, the
other three corners can be reached by moving clockwise, counter-clockwise,
or diagonally opposite), as shown here (the star indicates the CENTER cell):

~
~ ~II:: I~ 11--:-1--:-:-:---lffi

With this relative labeling, the
simply

OPP >PLNO

(12.6)
SWAP-ON-DIAG rule of table (12.2) becomes

SWAP-ON-DUG

that is, the new state of any given cell is the current state of its opposite
neighbor, OPP. Note that OPP "knows" which grid is in use at the present
step and where in its block the given cell is located.

Similarly, the HPP-GAS rule of table {12.4) can be expressed as follows

CENTER OPP=
CW CCW = AND

CENTER CW<> AND

COLLISION IF CW ELSE OPP THEN
>PLNO

: COLLISION (-- flt)

HPP-GAS

where we have modified the above SWAP-ON-DIAG rule by inserting an IF
clause that takes care of the "collision" entry. 5

The simplicity of the code for SWAP-ON-DIAG and HPP-GAS above derives,
of course, from the rotational invariance of these rules and from the fact
that the relative block neighbors CENTER , CW , OPP , and CCW refer to block
elements in a way that is indifferent to rotations. Thus, four expressions
analogous to those of (12.5) can be condensed into a single expression of the
form

CENTERnew = f (CENTER, CW, CCW, OPP),

and the issue of selecting one of four expressions according to the position
in the block (cf. point 1 above) is avoided. Moreover, the work of point 2 is
automatically performed by these "position smart" neighbor words.

5In COLLISION, we check that each diagonal is either full or empty, and then th at if
one is full the other is empty. In HPP-GAS, if a collision occurs we rotate the whole block
counter-clockwise by replacing each cell by its CW neighbor .

126 Chapter 12. The Margolus neighborhood

An advantage of using a 2x2 block rule is that each bit-plane contributes
only four bits of input to the look-up table. Thus, in order to see a whole
block's contents for both planes O and 1 the look-up table need only use eight
probes, rather than the eighteen required for a 3x3 neighborhood.

Having been exposed in Sections 9.1 and 10.1 to the cumbersome tech
niques needed for "programming" particle dynamics in ordinary cellular au
tomata, the reader will not fail to appreciate the clarity of description and the
economy of means that can be achieved with this alternative approach. The
issue is not merely one of compact notation; in CAM, the implementation is
essentially isomorphic to the conceptual model, and its simplicity translates
directly into simulation efficiency.

12.5 The Margolus neighbors

As already mentioned, in CAM the Margolus neighborhood is supported by
special hardware; this leads to a more efficient utilization of the look-up tables
and gives one access to a wider range of experiments.

As noted in Section 11.1, the two spatial phases tHORZ and &VERT jointly
provide the information necessary to partition the array of cells into a grid of
2x2 blocks; in fact, one can define a block as a set of four adjacent cells for
which the values of the joint spatial phase tHV are arranged as follows

01
23

The two different groupings of cells into blocks corresponding to the even and
the odd grid are obtained by alternating between O and 3 the value taken
by .tHV at the origin of the array (this is done by manipulating <ORG-HV> as
explained in Section 12.6).

In principle, then, one could define the relative block neighbors of the
previous section in terms of the usual cell neighbors NORTH , N. EAST, etc.
provided by the Moore neighborhood. For example, CW , CCW, and OPP are
functionally equivalent to

tHV { EAST SOUTH NORTH WEST}

&HV {SOUTHWEST EAST NORTH}

&HV { S.EAST S.WEST N.EAST N.WEST}

cw

ccw

OPP

In other words, the rule table could be programmed so as to multiplex eight
ordinary neighbors into three block-neighbors, under control of the spatial
phases (the fourth block neighbor is CENTER , and can be used directly).
However, in order to synthesize four block-neighbors in this way one would

12.5. The Margolus neighbors 127

have to use 11 of the 12 table inputs (nine spatial neighbors plus two spatial
phases), leaving little room for any additional features.

In CAM the above multiplexing is done directly by the hardware, so that
CW , CCW , and OPP - as well as CENTER -correspond to actual signals on the
board; this is done for plane 1 as well as for plane 0. These eight signals
(four for each plane) are connected to eight inputs of the look-up table by
the Margolus neighborhood major assignment, as shown in table (7.2) . This
assignment comes in three slightly different "flavors," namely N/MARG, which
yields the neighbors

CENTER cw ccw OPP
CENTER' cw· ccw· OPP'

N/MARG-HV, which yields the neighbors

CENTER cw ccw OPP HORZ
CENTER' CW' CCW' OPP' VERT

and N /MARG-PH , which yields

CENTER cw ccw OPP PHASE
CENTER' CW' CCW' OPP' PHASE'

The N/MARG assignment leaves two inputs available for user supplied
neighbors on the user connector-see Section 7.3.1. The other two flavors of
this neighborhood fill out the ten inputs of a major assignment with pseudo
neighbors. In particular , PHASE and PHASE' correspond to two additional
host-controlled phase signals, analogous to &PHASE and &PHASE' (which are
offered by the minor assignment &/PHASES) but distinct from them; they
are available only in the N/MARG-PH neighborhood. On the other hand, the
HORZ and VERT pseudo-neighbors offered by the major assignment N/MARG
HV refer to the same internal signals as &HORZ and &VERT (which are offered
by the minor assignment &/HV).6 Note that in the neighborhood selected by
the assignment

N/MARG-PH &/PHASES

the spatial phases HORZ and VERT do not appear at all as inputs to the
look-up tables; this does not prevent CW , CCW , etc. from working properly,
since these block-neighbors are synthesized by the hardware by tapping the
spatial-phase information from the signals HORZ and VERT, whether or not
these are routed to the look-up tables.

The absolute block-neighbors UL, UR, LL, and LR return the values of
the four cells of a block according to their absolute position within a block (cf.

6Thus, there is no point in accompanying the major assignment N/MARG-KV by the minor
assignment 11:/HV.

128 Chapter 12. The Margolus neighborhood

Section 12.4), no matter where the cell that requests them is located in the
block. They are not directly provided by the CAM hardware; however, they
can be defined in terms of the relative block-neighbors CENTER, CW, CCW and
OPP and the two spatial phases. Since all this information is available to the
look-up tables in the N/MARG-HV neighborhood, when this neighborhood is
selected the software makes the neighbor words UL , UR , etc. available for use
within a rule definition.

In conclusion, the following neighbor words are available in the three ver
sions of the Margolus neighborhood

N/MARG
CENTER CENTER' CENTERS
cw CW' cws
ccw CCW' ccws
OPP OPP' OPPS

N/MARG-PH
CENTER CENTER' CENTERS
cw CW' cws
ccw CCW' ccws
OPP OPP' OPPS
PHASE PHASE' PHASES

N/MARG-HV
CENTER CENTER' CENTERS UL UL' ULS
cw CW' cws UR UR' URS
ccw CCW' ccws LL LL' LLS
OPP OPP' OPPS LR LR' LRS
HORZ VERT HV

12.6 Even/ odd grid selection

In Section 11.3 we discussed how to synthesize a two-phase rule. The time
phase was toggled between O and 1 by the host computer according to an
appropriate run schedule, and this value was made available to the rule in
the form of a pseudo-neighbor, &PHASE.

In the Margolus neighborhood we have a similar situation; however, the
value of the time-phase {say, 0 for a step using the even grid, and 1 for the
odd grid) is not directly communicated to the rule; the rule is affected by it
only indirectly, through the the block neighbors' "position smart" behavior,
which is aware of which grid is in use.

12. 7. A phase-sensitive gas 129

As noted before, the block neighbors OPP I CW, etc. know their relative
positions in a block by sensing the internal spatial-phase signals HORZ and
VERT. The value of HORZ alternates in space between O and 1 as one moves
horizontally through the array, and that of VERT I vertically . Which of the two
grids is in use at a given step is determined simply by the joint value that this
pair of signals takes at the origin of the array: a value of (0, 0) corresponds to
the even grid, and (1, 1) to the odd grid. Thus, to switch between even and
odd grids one must alternate in time-i.e., step after step-between O and
1 the values of <ORG-H> and <ORG-V>, as explained in Section 11.2; this is
taken care of by the following run cycle

0 IS <ORG-HV> STEP
3 IS <ORG-HV> STEP

ALT-GRID

12.7 A phase-sensitive gas

In the above examples the same recipe was used for both even and odd steps;
however, if the same time-phase that is used for selecting one of the two
grids is also explicitly made available to the tables as a pseudo-neighbor,
then it becomes possible to ''sense" this phase from within the rule and use
different recipes for different values of the phase. Thus, the dynamics of a
cellular automaton using the Margolus neighborhood can be ''modulated" by
the time-phase not only implicitly, through the even/odd grid alternation,
but also explicitly through the rule itself. An appropriate run cycle for this
would be the following

0 IS <ORG-HV> 0 IS <PHASE> STEP
3 IS <ORG-HV> 1 IS <PHASE> STEP

ALT-GRID-PH

Here we shall describe an alternative particle transport mechanism in
which particles move horizontally and vertically-rather than diagonally as
in Section 12.2. Having both kinds of mechanisms available is sometimes
convenient (see Chapter 15.6).

We shall use the N/MARG-PH neighborhood and the ALT-GRID-PH run
cycle defined above. In analogy with Section 12.2, we shall construct first a
mechanism for making particles travel at a uniform rate, without interactions.
This time the particles will move along the rows and columns of the array.
The block rule is the following

• ROT-CW/CCW On an even step (PHASE=O), rotate clockwise the entire
contents of the block; on an odd step (PHASE= 1), rotate it counterclock
wise.

130 Chapter 12. The Margolus neighborhood

In other words, use one of the following two tables depending on the value of
PHASE:

PHASE= 0: PHASE= 1: (12.7)

In CAM Forth, the rule is simply

ROT-CW/CCW
PHASE { CCW CW} >PLNO

In fact, to rotate the whole block clockwise it is sufficient to ask each cell to
make a copy of its CCW neighbor {cf. Section 5.1); to rotate it counterclock
wise, a copy of the CW neighbor. The sense of rotation is selected by the
value of PHASE.

• --
(a)

-
(b) -

-

Figure 12.4: ROT-CW/CCW: (a) Uniform motion of a particle . (b) Particles pass by
one another without interacting.

Let's examine the behavior of this rule in detail.

• Look at an isolated particle. For the first step choose, say, the even grid,
and consider a cell lying in the upper -left corner of its block (Figure
12.4a); by rotating the block a quarter-turn clockwise, the rule will
make the particle move to the upper-right corner.

• At the next step use the odd grid; here the particle will find itself in
the lower-left corner of a block, and the counterclockwise rotation of
the block will move it to the lower-right corner.

• We have completed one cycle of two steps, and the particle has moved
two positions to the right. At the next step, we will again be in the
situation we began with .

12. 7. A phase-sensitive gas 131

• Continue like this, alternating the two grids. Each particle will move
horizontally or vertically at a uniform rate; which of the four possible
directions it will follow is determined by its initial position.

• As in the case of the SWAP-ON-DIAG rule, particles that meet head-on or
at 90° continue on their courses without noticing one another; the rule
moves anything it finds-particles or vacuum-without even looking at
it!

4 • - ~
-

(a) (b) -
~

Figure 12.5: TM-GAS (a) Particles that collide within a block bounce at a 90° angle;
the little loop is a reminder that they stay in the same place for one step. (b)
Collisions do not occur for particles that fly past one another on adjacent blocks,
or for particles that travel orthogonally.

To introduce momentum-conserving collisions, again only one modifica
tion is possible in our tables (12. 7); namely, the third entry of both tables
(where two particles traveling in opposite directions have just entered the
same block and are about to pass by one another) can be changed so that
instead of proceeding undisturbed the two particles will come out in oppo
site directions along the other axis of the array (i.e., if they were proceeding
horizontally they will continue vertically after the collision, and vice versa).
The new entry is

(12.8)

that is, when two particles collide the corresponding block is not rotated at
all. In CAM Forth the rule is

: TM-GAS
COLLISION IF
CENTER ELSE

PHASE { CCW CW} THEN >PLNO

where we have modified the ROT-CW/CCW rule by inserting an IF-clause that
takes care of the "collision" entry; the COLLISION condition is the same as
for HPP-GAS (Section 12.3), but the outcome of a collision is different. The
behavior of this rule is illustrated in Figure 12.5.

Note that in TM-GAS two particles that pass each other on adjacent rows
or columns do not necessarily collide-if the wrong grid is in effect at the
moment of closest approach, the particles will be in separate blocks and will
not see each other at all.

132 Chapter 12. The Margolus neighborhood

12.8 Examples

In this section we shall give a few examples of interesting rules that can be
obtained using the Margolus-neighborhood scheme. The major examples (in
cluding the cellular automaton model of computation for which this technique
was originally invented) are given in Part III-devoted to physical modeling.

12.8.1 Fractals

A rule which generates some simple fractals (cf. [34]) is the following

FORGET-ME-NOT
CW CCW OPP XOR XOR >PLNO

CENTER >PLN1

(here and in the following Margolus-neighborhood rules, we imply use of a
run cycle that will provide the required grid alternation). Plate 10 illustrates
the behavior of this rule starting from a small square of [l]'s in the center of
the screen (the ECHO in plane 1 is just to add some color).

Curiously enough, there is a second-order rule which exhibits similar be
havior while using the Moore neighborhood, namely

N/MOORE
: ME-NEITHER

N.EAST N.WEST S.EAST S.WEST
XOR XOR XOR
CENTER' XOR >PLNO

CENTER >PLN1

Indeed, there are some formal connections between reversible rules obtained
by means of the Margolus neighborhood techniques and those obtained using
the second-order technique (cf. Sections 14.2, 14.3, and 17. 7).

If you rotate the last rule by 45 ° as follows

: NOR-ME
NORTH SOtml WEST EAST

XOR XOR XOR
CENTER' XOR >PLNO

CENTER >PLN1

you'll again get essentially the same behavior, provided that the initial con
figuration is also rotated by 45° (i.e., start with a diamond rather than a
square).

12.8.2 Critters

The FORGET-ME-NOT rule of the previous section is reversible, and can be
made to run backwards by simply having it use the same grid twice in suc
cession and then resuming the alternation (as explained in more detail in

12.8. Examples 133

Section 14.5). This works because in this rule the transformation applied to
a single block coincides with its inverse. Most of the reversible block-rules
we shall deal with in this book, including that used by the HPP-GAS rule of
Secti?n 12.3, have this property; here, however, we'd like to present a rather
interesting reversible rule which does not. The rule is the following

CENTER 1 XOR

OPP 1 XOR

CENTER OPP CW CCW + + +

{-CENTER-CENTER CENTER

-CENTER

-OPP

CRITTERS

-OPP -CENTER} >PLNO

That is, a block is complemented unless it contains exactly two [I]'s, in which
case it is left unchanged. A block containing three [I]'s is rotated through
180° in addition to being complemented. The inverse rule is

: CRITTERS•
CENTER OPP CW CCW • + +

{-CENTER-OPP CENTER
-CENTER -CENTER} >PLNO

Since CRITTERS rotates and complements a block with three (l]'s in it, the inverse
rule must rotate through -180° and complement a block with one [1] in it.

Since the block transformation performed by CRITTERS is not its own
inverse, to make the system go backwards in time it is not sufficient to retrace
backwards the sequence of grid alternations: one must also use the inverse
transformation, namely CRITTERS* . However, we can use CRITTERS itself
and still see the system proceed on a backwards trajectory-provided we
wear "complementing glasses." In fact, this rule is time-reversal invariant
(cf. Section 14.1) under the operation of complementation: each state of
the "inverse'' run obtained by complementing the final state and then using
CRITTERS is just the complement of the corresponding state in the true inverse
run, obtained by leaving the final state as is and using CRITTERS* .

CRITTERS produces a variety of structure and a liveliness reminiscent of
LIFE (Fig. 12.6a and Plate 11). Since it is invertible, it cannot produce
structure from randomness (this is, in simple words, the second law of ther
modynamics); however, if we start from a very nonuniform initial state (such
as a blob of randomness on a background of [Ql's) we'll see a rich evolution.
Small ''critters' ' race horizontally and vertically; when they collide they may
bounce back or execute a right-angle turn; occasionally they stick together
at least until freed by being hit again-or even pile up to form complicated
little pieces of circuitry.

134 Chapter 12. The Margolus neighborhood

Figure 12.6: (a) "Critters" swarm out of an amorphous lump of matter. (b) A TRON
choreography .

Since areas of all ~'s or [I]'s are complemented at every step, the screen
will display an annoying flicker; to eliminate it, you may want to use a run
cycle which brings in a different color map at even and at odd steps

0 >RED
ALPHA >BLUE

0 >GREEN
ALPHA >INTEN

0 >RED O >GREEN
ALPHA NOT >BLUE ALPHA NOT >INTEN

MAKE-CMAP EVEN-MAP O IS <ORG-HV> STEP
MAKE-CMAP ODD-MAP 3 IS <ORG-HV> STEP

MAKE-CYCLE CRITTER-CYCLE

EVEN-MAP

ODD-MAP

CRITTER-CYCLE

Observe that the color map is a small table of data (only 16 items), and
thus can be changed between steps without slowing down the simulation.

12.8.3 Asynchronous computation

A rule with a rather pretty evolution is

CENm CW CCW OPP+++
,:

{ '1 U U U O } >PLNO

TRON

(where U is an abbreviation for CENTER, as before). This rule complements
the state of a block if all four elements are the same; otherwise it leaves

12.8. Examples 135

things unchanged. A rich choreography of line patterns will arise from simple
straight-edge shapes on a background of [Q]'s (Figure 12.6b).

This rule also happens to provide bit patterns that can be used as "phases''
for driving the evolution of an asynchronous cellular automaton, in analogy
with Section 9.6-but with a simpler scheme permitted by the Margolus
neighbor discipline {also cf. [37]). Briefly, suppose we run any rule that uses
the Margolus neighborhood (for example, FORGET-ME-NOT) on plane O, and
the TRON rule on plane 1 (changing CENTER to CENTER ' , etc., of course).
CAM-B will provide a Poisson clock suitable for the Margolus neighborhood,
as explained in Section 15. 7; that is, the same bit of randomness is supplied
to all four cells of a block.

N/MARG-PH &/CENTERS

0 IS <ORG-HV> 0 IS <PHASE> STEP
3 lS <ORG-HV> 1 IS <PHASE> STEP

&CENTER'

PHASE CENTER'-= PHASE CW'=
PHASE CCW' • PHASE OPP'•

AND AND AND
RANDO<> AND

GO? IF
FORGET-ME-NOT

CENTER' NOT >PLN1 ELSE
CENTERS >PLNA THEN

ASYNC-CYCLE
\ alternate both grid
\ and phase

RAND

\ asynchronous clock
GO?

\ Can I update?
\ Must I try?

ASYNC
\ If I do it,
\
\
\

here's the new data
and the new status

else nothing changes

The random stimulus will be a signal to try to update a block {rather than a single
cell as in Section 9.6). Even blocks are only allowed to run the rule if all four
synchronization bits on plane 1 are [Q]'s; odd blocks, only if they are all (Il's. The
information about which grid is in use is carried by PHASE. If a block is prodded to
update by the asynchronous clock and permitted to update by the synchronization
pattern in plane 1, then we run the rule on that block and complement the block
on plane 1 (this is our way to tell the synchronization mechanism that we are done
with the update step for that block); otherwise we leave the block {both planes
0 and 1) unchanged. Note that if we run this rule deterministically (i.e., if RAND
always returns a [!]) then the evolution of the phase bits in plane 1 is simply that
prescribed by TRON.

Let's start off with plane 1 filled with [Q)'s: all nodes of the asynchronous
network start in-phase, for simplicity. The computation in plane O will pro
ceed with hills and valleys of time-places that have been updated more
often than their neighbors, or less often- but with a limited slope and no
breaks. This activity couldn't be recognized as the computation we had in
mind (namely FORGET-ME-NOT) if the pattern on plane 1 didn't keep track of

136 Chapter 12. The Margolus neighborhood

who's ahead of whom; in other words, the bit-pattern in plane 1 is a contour
map of those time hills and valleys.

If at some point we change the definition of RAND to be a constant of [I]
(for example, by changing the rule on CAM-B to the identity rule and filling
plane 2 with [I]'s), then the hills and valleys will flatten out, and you'll see
that indeed the synchronization is correct: we will get a pattern on CAM-A

where all cells have been updated exactly as if FORGET-ME-NOT had been
running synchronously all along.

12.8.4 Digital logic

Here we give a simple rule that allows conventional digital logic to be sim
ulated in a straightforward manner. Of course, any rule that can simulate
general digital logic elements can simulate digital computers. A proof that a
rule such as LIFE can simulate such logic is something of a tour de force-a
bit like showing that one can make a computer out of the collisions of billiard
balls! A more humble approach is to design a rule expressly to be able to do
logic-then the proof is rather simple.

Our rule will work as follows. On plane 1 we'll draw lines one-cell thick
that go from place to place; these will be our wires. On plane O we'll put
particles that follow these wires and interact at certain junctions; these will
be our signals.

NEW-EXPERIMENT N/MARG

EVEN-GRID STEP
ODD-GRID STEP

ALT-GRID
\ alternating-grid rule

#WIRES (-- 0 .. 4)
CENTER' CW' CCW' OPP'+++ \no.of wires in block

SIGNALS
OPP' IF OPP THEN \ signals follow wires
CW' IF CW THEN
ccw· IF ccw THEN

OPP' O= IF OPP THEN
CW' O• IF CW THEN
CCW' O= IF CCW THEN

CONTROLS
\ AND? OR? for 3WIRE

1WIRE (-- 011)
OPP CW CCW OR OR \ source of ones nearby?

2WIRE (-- 011)
SIGNALS cw· ccw· OR IF 'check for NOT (SIGNALS

OPP XOR THEN \ gives one output here)

CONTROLS IF
SIGNALS AND ELSE
SIGNALS OR THEN

3WIR.E

\ SIGNALS produces 2 values
\ when there are 3 wires.

12.8. Examples

LOGIC
CENTER' IF

#WIRES
{ 0 lWIRE 2WIRE 3WIRE OPP}

MAKE-TABLE LOGIC
MAKE-CYCLE ALT-GRID

ELSE
CENTER THEN >PLNO

CENTER' >PLN1

137

With this rule, signals follow wires; which way they go depends on which
grid you start with. In a block that contains two pieces of wire with a signal
on one of them, the signal moves onto the other piece of wire (Figure 12.7a) .
Thus signals can move horizontally, vertically, or diagonally-they just follow
the wires.

.. . ,. ,...
I,

,. ,. . ,. ,. .. ,._,.,, ,,.,.,,. ,.,,. ,. ~

Figure 12. 7: Signal propagation, cross-over, and fanout .

If you want to make two signals cross (Figure 12. 7b), just cross their wires:
the signals will pass through without looking at one another (make sure to
cross the wires in the middle of a block, so that the block contains four pieces
of wire).

If you need fanout (Figure 12.7c) just split the wire: a copy of a signal
will follow both pieces (make sure to split the wire in the middle of a block,
so that the block contains three pieces of wire) .

To perform logic, a signal sitting next to a straight segment of wire (but
not on it) will be frozen in place, and will cause signals going by in the wire
to be complemented (Figure 12.8a). Such a signal sitting next to a fork in a
wire (Figure. 12.8b) will turn this fork into an AND gate-each of the three
branches will always be the AND of the other two inputs.

Finally, to illustrate the circuit compactness that is possible with this rule,
we show in Figure 12.8c a binary half-adder.

A rule such a.s this could be used a.s the basis of a VLSI chip that im
plements soft circuitry. You need only download the initial pattern of wires

138 Chapter 12. The Margolus neighborhood

.
"• • • • • • I C."'-,:

Figure 12.8: NOT {a) and AND {b) gates . (c) A complete half-adder.

and gates to a parallel implementation of this rule contained in such a chip
transducers on the chip could continually transform a few inputs and outputs
between their cell-value format within the chip, and voltage levels on the
pins. An unclocked, asynchronous implementation using the technique of the
previous section might be made to run quite fast. 7

7 Brian Silverman and Warren Robinett have both invented cellular automata rules that
might be suitable for soft circuitry . Roger Banks' rules, one of which was discussed in
Section 5.5, might also be suitable.

Part III

Physical modeling

Chapter 13

Symptoms vs causes

Entia non sunt multiplicanda praeter necessi
tatem .

[Occam's "razor"]

The part which we are entering now, devoted to physical modeling, is con
ceptually the central one of this book. In spite of their wide interdisciplinary
appeal, cellular automata would have remained at the level of a parlor game
if they had not been shown to be capable of playing a serious role in the mod
eling of physics-a role analogous and to a certain extent complementary to
that of differential equations.

Much of the recent progress in this direction comes from the interplay of
two factors. On the technological side, there are computers available now that
can carry out the directives of a cellular-automaton model in a reasonably ef
ficient way. On the conceptual side, we are learning how to construct discrete,
distributed models which capture essential aspects of physical causality-such
as microscopic reversibility.

13.1 Fine-grained models of physics

Science is concerned with explaining things. Many of the systems that we
are interested in do not come with descriptive manuals and schematics, and
cannot easily be inspected or taken apart without disturbing their behavior.
We say we "understand" a complex system when we can build, out of simple
components that we already understand well, a model that behaves in a
similar way.

142 Chapter 13. Symptoms vs causes

If the assortment of components at our disposal is too lavish, it is often
too easy to arrive at models that display the expected phenomenology just
because the outward symptoms themselves, rather than some deeper internal
reasons, have been directly programmed in, as the special effects in an arcade
game.

Science has little use for models that slavishly obey all of our wishes. We
want models that talk back to us, models that have a mind of their own. We
want to get out of our models more than we have put in. A reasonable way
to start is to put in as little as possible.

The simpler the primitives used to describe a complex system, the greater
is the computational burden required for obtaining explicit, detailed predic
tions from a model. 1 For this reason, the development of mathematics in
a certain period of time reflects to a much greater extent than many would
suspect the nature of the computational resources available at that time. In
the past three centuries, enormous emphasis has been given to (1) models
that are defined and well-behaved in a continuum, (2) models that are linear,
and (3) models entailing a small number of Jumped variables. This emphasis
does not reflect a preference of nature, but rather the fact that the human
brain, aided only by pencil and paper, performs best when it handles a small
number of symbolic tokens having substantial conceptual depth (e.g., real
numbers, differential operators); in this context, one tends to concentrate
effort on problems that are likely to yield a symbolic, closed-form solution.

The advent of digital computers has shifted the region of optimum perfor
mance. While much progress can still be made in the above more traditional
areas, the horizon has dramatically expanded in the complementary areas,
namely (1') discrete models, (2') nonlinear models, and (3') models entailing
a large number of distributed variables. Such models give more emphasis to
the handling of a large number of tokens of a simple nature (e.g., Boolean
variables and logic functions)-a task at which computers are particularly
efficient.

Cellular automata attempt to explore the logical limit of this approach.
They reduce the number of primitive ingredients that can go into a model to
one-namely a ''unit cell" governed by a simple rule and coupled to identical
cells by a uniform interconnection pattern. The challenge is to choose the
rule and the pattern so that everything we want from the model, over a wide
range of scales, will follow from this one choice.

Whether this approach will work depends, of course, on what it is that we
are trying to model. Physicists have for centuries used the working hypothesis
that "the world is basically simple-only there is so much of it!" If this is true,

1 For example, chemistry is in principle reducible to quantum mechanics, but only the
structures of the simplest atoms have been computed in full detail on that basis; for more
complex substances, one must make recourse to approximations, empirical shortcuts, or
higher-level phenomenological theories.

13.1. Fine-grained models of physics 143

cellular automata and cellular automata machines may represent a useful tool
in trying to understand and describe nature.

Chapter 14

Reversibility

Now, if we run our picture of the universe
backward several billion years, we get a object
resembling Donald Duck. There is obviously
a fallacy here somewhere .

[S. Harrison]

As far as we know, reversibility is a universal characteristic of physical law.
In particular, it is a precondition for the second law of thermodynamics to
hold, 1 and is a sufficient condition for the existence of conserved quantities. 2

In cellular automata, certain basic features of the physical laws-such as
uniformity and locality-are directly built-in; on the other hand, reversibility
does not come automatically: it has to be programmed in. Until quite recently
no one knew how to do that in a systematic way, and it was even suspected
that one could introduce reversibility only at the cost of losing other properties
(such as computation- and construction-universality) that are essential for
general-purpose modeling.

It turns out that it is possible to construct nontrivial cellular automata
that display exact reversibility (in this respect , they suffer from none of the
approximations that are so common in conventional numerical simulations).

1 For locally-interacting systems having a finite amount of information per site, such as
cellular automata, reversibility is equivalent to the second law of thermodynamics.

21n physics, a reversible system having n degrees of freedom possesses 2n -1 conserved
quantities, some of which (e.g., energy, momentum, etc .) are of special significance because
of their connection with fundamental symmetries of the physical laws[33]. The arguments
that lead to these conservation laws can be generalized to cellular automata: the key idea
is that a given state "encodes" all of the information necessary to identify the particular
dynamical trajectory it lies on, and, if the system is reversible, none of this information is
lost in the course of its evolution .

146 Chapter 14. Reversibility

Thus, one can arrive at models that, though perhaps drastically stylized in
other respects, make no compromises in the representation of this fundamen
tal aspect of a physical process.

14.1 Invertible cellular automata

A cellular automaton is a deterministic system, i.e., for every possible state
of the whole cellular automaton the rule specifies one and only one successor.
Can we run a cellular automaton "in reverse?" That is, given a rule, can
we construct a new rule that will force the system to retrace its steps back
wards in time? It is clear that this is possible in general only if the system
defined by the original rule is also backward-deterministic, i.e., if for every
possible configuration of the cellular automaton there exists one and only one
predecessor.

A system that is deterministic in both directions of time is called invert
ible, and the rule that makes it go backward in time is called the inverse rule
with respect to the original, or direct rule. (The term 'invertible', preferred
by mathematicians, is equivalent to the term 'microscopically reversible' or,
simply, 'reversible', as used by physicists in the present context.)

Note that, except for trivial cases, the inverse rule-when it exists-is
different from the direct one. For example, after watching for a while a
picture being dragged upwards by the SHIFT-NORTH rule of Section 5.1, we
can view the whole process in reverse by switching to the inverse rule

SHIFT-SOUTH
NORTH >PLNO;

which is clearly different from SHIFT-NORTH.
However, in special cases it is possible to achieve materially the same

"time-reversal" effect by running the same rule as in the forward time di
rection, but using as an initial state for the backward run one that is
obtained from the final state of the forward run by a prescribed simple
transformation-a "transliteration" procedure.

A dynamical law having this property is said to be time reversal invari
ant under the specified state transformation, or simply time reversal invari
ant when the operator is understood .3 Thus, "time-reversal invariance" is a
stronger property than just ''reversibility.''

The theory of invertible cellular automata has many open problems[58J; in
particular, no general decision procedure is known for determining whether
a given rule has an inverse (and this question may well be undecidable).
However, given two rules it is always possible , in principle, to decide whether

3 In Newtonian mechanics , for example, the time-reversal procedure consists of reversing
the momenta of all particles.

14.2. Second-order technique 147

they are the inverses of one another. With the techniques presented below
for constructing invertible cellular automata, the direct rule always comes
accompanied by its inverse, so that there is never any doubt concerning its
invertibility-either in principle or in practice.

14.2 Second-order technique

The first general method we shall consider for arriving at cellular automata
that are invertible involves constructing second-order systems that are time
reversal invariant. An example of this technique was given in Section 6.2, of
which the present discussion is a natural continuation.

To paraphrase Zeno, if we cut a single frame out of the movie of a flying
bullet, we have no way of knowing what the bullet is doing. However, if
we are given two consecutive frames, then we can figure out the bullet's
trajectory. That is, from these two frames, interpreted as the bullet's "past"
and 1'present" positions, we can construct a third frame giving the bullet's
"future'' position; this procedure can be iterated. The laws of Newtonian
mechanics are such that, if for some reason the two frames got exchanged, we
would end up figuring the bullet's trajectory in reverse.

The following general approach for constructing cellular automata that
work in an analogous way was suggested by Ed Fredkin of MIT.

Let us start with a dynamical system in which the sequence of configura
tions the system goes through is given by iterating a relation of the form

(14.1)

where for the moment one can think of the configurations e's as, say, real
numbers. T is the dynamical law of the system, i.e., the function that takes the
current configuration ct as an argument and returns the next configuration,
ct+i. In general, (14.1) gives rise to a noninvertible dynamics.

Now, let's consider a new system, defined by the relation

(14.2)

This is an example of second-order system-where the "next" configuration
ct+1 is a function of both the "current" configuration ct and the ''past" one,
ct-l (thus, it takes a pair of consecutive configurations to completely deter
mine the forward trajectory). In general, second-order relations also give rise
to noninvertible dynamics. However, a second-order relation of the specific
form (14.2) guarantees the invertibility of the dynamics for an arbitrary T.

In fact, by solving (14.2) with respect to ct-1, one obtains the relation

(14.3)

148 Chapter 14. Reversibility

that is, a pair of consecutive configurations suffice to determine in a unique
way also the backward trajectory.

Note that in this case a single configuration isn't enough to allow one to
continue the trajectory. A complete specification of the system's dynamical
state is now represented by an ordered pair of configurations, of the form
(a, b) (in (14.1), a configuration by itself was a state of the system). 4

The fact that for a system defined by (14.2) a reverse trajectory exists and
is unique means that the system is invertible; the fact that its inverse behavior
can be calculated by applying the direct dynamics to suitably defined time
reversed states means that the system is invariant under such a time-reversal
operation. Here, time-reversal is defined as the operation that swaps the two
configurations that make up a state; i.e., (c13, Co,} is changed by time-reversal
into (c01 c13).

The above considerations can immediately be extended to cellular au
tomata. In equation (14.1), let the e's be configurations of a cellular automa
ton, and T an arbitrary cellular-automaton rule. If our cells have n states
(0, 1, ... , n - 1) the '-' in (14.2) can be taken mod n, and the second-order
rule becomes

• For each cell, apply the original rule T to the cell's "present" neighbor
hood.

• Before releasing this result as the cell's "future" state, subtract the cell's
"past" state. 5

Second-order reversible rules can be constructed using operations other than
subtraction in an equation like (14.2). You can even let the decision of which
operation to use depend on the neighbors at time t. In the most general
second-order reversible rule, the neighborhood at time t is used to select a
permutation on the state set {O, 1, ... , n - 1}. The cell applies this permuta
tion to its previous state to construct its next state(62].

In the examples of Chapter 6, the two consecutive frames that jointly specify
the system's state are stored in bit-planes O ("present") and 1 ("past"). At each
step, we construct the "future" configuration from planes O and 1 and put it in
plane 0, while the current contents of plane O is moved to plane 1. In this way,
planes O and 1 always contain the two most recent frames.

In CAM one can easily deal with four-state cells by storing the present in CAM-A

(planes O and 1) and the past in CAM-B (planes 2 and 3). The coupling between
present and past is made possible by the neighborhood assignments

4One can have a. system whose state is a pair of configurations and is not second-order.
The fact that the dynamics is a second-order one is expressed by the constraint that a state
(a, b) can be followed by another state (c, d) only if b = c.

51n the examples of Sections 6.2-6.3, the cells had just two states, and 'n mod 2' could
be written as XOR.

14.3. Alternating sublattices

CAM-A &/CENTERS
CAM-B &/CENTERS

149

whereby CAM-A can see the past in CAM-B and use it for computing the future,
while CAM-B can see the present in CAM-A and save it for one more step as the
past.

14.3 Alternating sublattices

Let us denote by ctj the state at time t of the cell located at coordinates i, j.
A special situation arises when only the four neighbors north, south, west,
and east enter as arguments of T, so that equation (14.2) becomes

t+l _ (t t t t) t-1
ci,j - 7 ci,j-1, ci,i+l, ci-1,j, ci+l,j - ci,j ·

This relation con:n:ects only spacetime sites for which i + j + t has the same
parity, i.e., sites that all belong to the same sublattice (black or white) of
a spacetime checkerboard. Thus, the system consists of two independent
subsystems-one running on the black sublattice and one on the white
having identical dynamical properties.

In this situation it is reasonable, for clarity and efficiency, to try to simu
late only one of the two subsystems. But then the past state of a cell can be
stored in the other sublattice, rather than in a second bit-plane. At one step
the even sites (i.e., where i + j is even) represent the present and the odd
sites the past. During the step itself, the past is modified by T and turned
into the future. At the next step the roles are reversed.

Note that at each step we look at only one sublattice, and use this infor
mation to change the state only of the other. When we want go back in time,
the arrangement is such that the same information that was used to make a
change is now available to ''undo" the change. (To be reversible, the change
must of course be a permutation of the cell state.)

Thus, alternating sublattices can be seen as a specialization of the second
order technique for achieving reversibility. This approach (which has a long
tradition in numerical analysis) will be used for the Ising spin models of
Chapter 17.

14.4 Guarded-context technique

In the alternating sublattice approach, the spatial position of a cell is used
to determine whether the cell can be updated at a given step without risk of
information loss (that is, indeed, what invertibility is about). It is possible
to devise rules where information sufficient for this purpose is encoded in the
state of the cells; that is, the context represented by the collective state of

150 Chapter 14. Reversibility

the neighbors is used to guard against irreversible changes. Only cells which
find themselves in a distinguished position in a special neighborhood pattern
may change their state.

This technique, which is discussed in [55,62] is cumbersome to use and is
mentioned here only for completeness.

14.5 Partitioning technique

The invertibility of second-order systems such as those discussed in the pre
vious section comes as a bit of a surprise. Note that in (14.2) the function r
could be chosen arbitrarily; if the e's are real numbers, r might involve, say,
squaring and rounding off-operations that "throw away" information. Yet
the resulting dynamics is invertible, that is to say, information-lossless. One
is left with the feeling that a feat of mathematical magic was performed.

We will now discuss a method for producing invertible rules in a much
more deliberate and obvious way-i.e., partitioning cellular automata, some
examples of which were considered in Chapters 10 and 12.

In a conventional cellular automaton, the machinery that in one step
produces a new configuration from the current one can be thought of as
an array of logical gates, one per cell, uniformly extending in space and time.
As sketched in Figure 14.la (where, for clarity, only one spatial dimension is
represented), each gate has several inputs lines, corresponding to the cell's
neighbors, but only one output line-at which the new state of the cell will
appear. In general, the function computed by a gate of this kind cannot be
an invertible one: since only a fraction of the information available at the
inputs can appear at the output, some information will be lost.6 It is true
that some of each gate's input information is also seen by neighboring gates
and so there is a chance that what was lost here may have been preserved
in some form elsewhere. However, it takes a very clever conspiracy to insure
that no information is ever lost anywhere during the operation of the cellular
automaton.

For the above reasons, almost any rule that one may write down yields a
noninvertible cellular automaton (in fact, until a few years ago only a handful
of invertible rules were known, and even these were utterly trivial[58]).

In partitioning cellular automata, on the other hand, owing to a special
discipline for the information flow, there is an immediate connection between
the invertibility of the overall dynamical system and the invertibility of the
individual gates that make up the array. Thus, invertibility can be directly

6This loss of information cannot be ascribed to what the function does for a specific input
assignment; rather, one has to consider all possible input assignments, and see whether the
input-output correspondence is such that from the output one can always reconstruct the
input.

14.5. Partitioning technique 151

(al (b)

t t+1 t+2 t t-+1 t+l

Figure 14.1: (a) In a conventional cellular automaton, a gate is associated with
each cell and has many inputs but only one output. (b) In a partitioning cellular
automaton, a gate is associated with each block and has as many outputs as inputs.

programmed in. This is illustrated using the Margolus neighborhood (cf.
Chapter 12)-one of the simplest partitioning schemes.

In this neighborhood, the rule uses as inputs the four cells of a block and
returns as outputs the new states of all four cells of the same block. Thus,
the cellular-automaton's machinery can be represented as as uniform array of
gates each having as many outputs as inputs (Figure 14.lb), where none of
the inputs are shared with adjacent gates. In this situation, each gate oversees
the information flow for a whole four-cell block, and has total control over it.
If the individual gate is invertible, the global process is invertible as well; if
the gate loses information, none of its neighbors will be able to make up for
its losses, and the process is certainly noninvertible.

A rule for the Margolus neighborhood will be invertible if and only if it
establishes a one-to-one correspondence between the old and the new state
of an individual block. In other words, if in the first column of the look-up
table that defines the rule we list all the possible states of a block, then in
order for the rule to be invertible the second column must be a permutation
of the first, as in the following example (note that each of the sixteen states

152 Chapter 14. Reversibility

of the left column appears somewhere in the right column):

rn ~ 1:1:1 ~~1:1.1 ~-1.1:1 1.1.1~~
fij~~ fill-fill 1·1.1-1·1.1 ~-fij (14.4)

~~~ 1.1·1 - 1.1·1 11:1-tl 1.1:1-~ 
1·1-,~~ ~~~ 1·1:1-~ ~ ~ rn 

It is easy to verify that the full table for the HPP-GAS rule (cf. Section 12.4-
where the table is given in an abbreviated form since the rule is rotation
invariant) has this property, and thus HPP-GAS is an invertible cellular au
tomaton. 

In the applications discussed in later chapters we shall make heavy use 
of this block-updating technique. The stimulus for its development was prer 
vided by the study of reversible models of computation, and indeed its first 
application was a cellular-automaton realization of "billiard-ball" computers 
(cf. Chapter 18). 

Having constructed an invertible rule with this partitioning technique and 
having run it for a number of steps, how do we go backward in time? Clearly, 
by performing the inverse steps in the reverse order. Suppose, for definiteness, 
that we were using the rule of table (14.4) and that the last step had been 
done on the odd grid. Then the first step of the reverse process will again use 
the odd grid (we want to "undo" what has just been done to each block), and 
will use the rule obtained from table (14.4) by reversing the direction of the 
arrows, i.e., by looking up the argument in the second column and finding the 
result in the first. This new table, in fact, defines a permutation that is the 
inverse of the original one. We will keep using the inverse rule throughout 
the backward run, alternating even and odd grids as before. With a rule such 
as HPP-GAS (cf. Section 12.3), which happens to be its own inverse, all one 
has to do to start going backwards is use the same grid twice in a row, and 
then resume the alternating pattern. 

This discussion can easily be generalized to more dimensions, more states 
per cell, and more complex alternations of partitioning schemes and rules. 7 

The key considerations can be summarized as follows. 
A cellular automaton can be thought of as a distributed mechanism whose 

evolution is governed by a system of coupled equations; the number of equa
tions equals that of cells. The problem of assigning these equations in such 
a way that the system is globally invertible is very hard in general ( the dif
ficulty is analogous to that encountered in studying the invertibility of large 

7 Cf. the TM-GAS rule of Section 12. 7, where two different versions of the same basic recipe 
are used for even and odd steps. 



14.6. Reversibility and randomness 153 

matrices) ,. but becomes easier if the interconnection pattern obeys a suitable 
discipline. Specifically, if during a given step the mechanism is effectively 
partitioned into a collection of small independent regions, then the step as 
a whole is invertible if and only if its action with respect to each individual 
region is invertible. The latter is a local property, and thus is easy to enforce. 

Of course, if the partition were to remain the same at all steps, the in
dividual regions would be permanently isolated from one another. However, 
by cycling through different partition schemes on successive steps, communi
cation between regions is again made possible. 

In this way, not only does one guarantee invertibility: one automatically 
obtains the inverse law as well. Namely, 

• To undo a step, undo the transformation of each individual region. 

• To undo the overall time-evolution, undo the individual steps, from the 
last to the first . 

14.6 Reversibility and randomness 

If we fill the cells of our screen with randomly-chosen binary values and then 
evolve it according to the LIFE rule, we see a complex web of structure and 
activity (Chapter 3) with various levels of organization. If instead of LIFE 
we follow some invertible time evolution, we invariably find that at each step 
the system looks just as random as when we started; in physical terms, the 
entropy will not decrease (but it may-and in general will-increase, unless 
it is already as large as possible). 

This property of reversible systems can be derived by a simple counting 
argument: since most configurations look random, only a very few random 
configurations can be mapped in any given number of steps into the few 
simple-looking configurations-if the mapping is an invertible one. That is, 
there is no way to establish a one-to-one correspondence between a large set 
and a small set. 

One shouldn't conclude that reversible cellular automata are less inter
esting than irreversible ones. It's just that, in these systems as in physics, 
nothing particularly interesting can occur if we start from a maximally dis
ordered state. 



 

Chapter 15 

Diffusion and equilibrium 

When the atoms are traveling straight down 
through empty space by their own weight, 
at quite indeterminate times and places they 
swerve ever so little from their course. 

[Lucretius] 

As a preliminary to discussing models of fluid mechanics and other physical 
phenomena of a fundamentally statistical-mechanical nature, in this chapter 
we shall present simple models of diffusion and equilibrium. 

15.1 Noise-driven diffusion 

In Section 10 we presented a simple model of the one-dimensional random 
walk. The system consisted of a single particle, which at every step would 
move right or left depending on the outcome of a coin toss. The model 
couldn't deal with more than one particle: two particles might have tried to 
occupy the same spot. 

We also discussed a physically more realistic model. At every step the 
system was partitioned into two-cell blocks, and the contents of each block 
was shuffled at random. In this simple case, the shuffle could have only one 
of two outcomes, that is, (1) leave the two cells of the block as they are or 
(2) swap their contents. The partition was changed at every step, so that 
information could travel from place to place. 

The tools we had to synthesize in order to enforce the partitioning dis
cipline are useful in a much more general context, and for this reason they 
are provided in CAM as primitive resources-in the Margolus neighborhood. 



156 Chapter 15. Diffusion and equilibrium 

Here we shall tackle first the analogous problem of diffusion in two dimen
sions, making direct use of these resources. 

Two-dimensional shuffle. In a Margolus-neighborhood block, the cell to 
be updated, called center, is automatically associated with its block neighbors, 
called, relative to the cell itself, clockwise, opposite, and counter-clockwise. 
The contents of such a block can be shuffled in 4! different ways; for our pur
poses, a choice of two distinct shuffles will be sufficient, namely ( 1) rotate the 
block's contents one-quarter turn clockwise or (2) rotate it counterclockwise. 
As a reminder, the rule that would rotate all blocks of plane O clockwise is 
simply 

CCW >PLNO 

( cf. Section 12. 7). 

CLOCKWISE 

In the present diffusion model, the decision to rotate a block in one or the 
other direction will depend on the outcome of a coin toss, represented by a 
•'noisy neighbor'' RAND , and the diffusion rule will be the following: 

: 2D-BRDWNIAN 
RAND { CCW CW } >PLNO ; 

Of course, the run cycle ALT-GRID of Section 12.6 will be in force, in order 
to alternate between the two grids on successive steps. 

A coin toss for each block. In CAM, the above rule is applied individually 
to each cell of the array, and in particular to the four cells of each block; the 
value returned by RAND may change from block to block and from step to 
step, but at each step must be the same for the four cells of a block. Therefore, 
the random-number generator in plane 1 must be told to let all four cells see 
the same result. 

In analogy with Sectionl0.2, the stirrer in plane 1 will be 

MARG-STIR 
CENTER' cw· OPP' ccw· 

AND XOR XOR >PLN1 

This provides a random bit for each cell, and thus four bits for each block. 1 

These four bits are combined in a symmetrical way into a single random bit 
by 

CENTER' CW' OPP' CCW' 
XOR XOR XOR 

RAND ( -- 011) 

so that the result will be the same when seen from any cell of the same block 
(cf. table (12.6)). As usual, plane 1 will be filled with a random seed. 

1 As mentioned in Section 8.4, higher-quality randomness can be obtained from a hard
ware random-number generator, or from another CAM module. 



15.1. Noise-driven diffusion 

. ~• 

157 

Figure 15.1: (a) Tangled path of a particle in a two-dimensional random walk 
(magnified view). (b) Gradual diffusion of a dense cluster of particles. 

We are ready to run. A single particle placed in plane O will move about in 
a jerky fashion, describing a tangled, unpredictable path ( as in Figure 15. la, 
where plane 2 was used to record a trace of the particle). A dense cluster of 
particles placed in the middle of the screen will slowly diffuse in all directions, 
as in Figure 15.lb; compare this result with that of Figure 9.3a, which was 
obtained with a more naive approach. There are two remarkable things about 
this behavior: 

• Over a region, say, twenty cells across, the distribution of particles is 
quite uniform; from a certain distance, where the individual particles 
can no longer be clearly distinguished, the effect is that of a half-tone 
picture: different concentrations of particles appear as different shades 
of gray. This becomes even more apparent in the brief time-exposure 
of 15.2a (the blurring of time-averaging being in this case equivalent to 
that of space-averaging.) It makes sense to associate with each point r 
of the picture the density p(r) of the surrounding area; as the scale of 
observation is made coarser, this density becomes a continuous function 
of r: real numbers emerge out of bits. 

If we study p as a function of time, in the same macroscopic limit 
we'll see that p(r, t) becomes a continuous function oft as well as of r. 
At this point, one may wonder whether the evolution of p(r, t) can be 
described by a differential equation. Indeed, by choosing a sufficiently 
coarse scale, p will be found to obey as closely as desired the so-called 
heat equation 

!: = 'v2p. 



158 Chapter 15. Diffusion and equilibrium 

The sequence of time-exposures in Figure 15.2 attempts to convey some 
of the flavor of this continuous behavior. 

• At each step a particle can go up, down, right, or left with probability 
1 / 4 for each of the four directions; 2 intermediate directions are not 
allowed. Thus, on a microscopic level the rule is certainly not isotropic: 
if one could see only the particle one would nonetheless be able to infer 
the orientation of the lattice's axes. However, on a macroscopic level 
all directions are equally likely, and the diffusion pattern is exactly 
circular. This is in striking contrast with the cellular-automaton rules 
we've presented so far-in which the orientation of the lattice leaves its 
signature on the evolution no matter how coarse a scale one uses. 

One might object that the "footprint" of this rule's light-cone is a 
diamond-like that of Figure 5.lb: after a time t the probability for 
the particle to be in any given place within this diamond will be dif
ferent from zero, while it will be exactly zero outside the diamond. As 
t increases the diamond will grow proportionally in size, always main
taining the same shape; won't this shape be recognizable by the macro
scopic observer? It turns out that, as t -+ oo, the probability that a 
particle will be found at a distance much larger that v'i, from its original 
position becomes negligible: the probability distribution spreads much 
more slowly that the light cone, and the overwhelming bulk of it remains 
circularly symmetric (cf. Figure 15.6)--even though the remotest, van
ishingly thin edges of it do reach out to the diamond's perimeter. 

Figure 15.2: Gradual evolution in time of the particle density p. 

In conclusion, in this system a symmetry emerges, on a macroscopic scale, 
that was not present at the microscopic level: not only the pitch, but also the 
orientation of the lattice is forgotten. The first of these features is common 
to practically all lattic e models (and thus is in no way remarkable) while the 

2For the sake of the present argument, one can ignore the fine-grained correlations that 
arise from the partitioning into blocks. 



15.2. Expansion and thermalization 159 

second seems to be very rare, and is particularly desirable in the context of 
physical modeling-since on any known scale physics is isotropic. 

15.2 Expansion and thermalization 

In the previous example, the random-number generator could be thought of as 
a source of thermal agitation. In this interpretation, one step of the cellular
automaton model corresponds to a physical time-interval long enough for 
real molecules to go through innumerable collisions on a finer scale than that 
represented in the model, so that the direction of a molecule at the end of the 
interval is totally unrelated to that at the beginning: the molecule has had 
enough time to "forget," as it were, where it was going. In this idealization 
the path of an ink particle is completely determined by the noise. 

We shall now consider the opposite idealization: namely (a) no external 
noise is present, (b) particles travel in a vacuum, and thus ( c) any deviations 
from a rectilinear path are due solely to the effect of collisions with other 
particles. 

A rule appropriate for this situation is TM-GAS, which was presented in 
Section 12.7. Here particles travel horizontally or vertically; two particles 
traveling in opposite directions on two adjacent rows or columns may undergo 
a glancing collision, in which case both particles make a right-angle turn, leav
ing in opposite directions. {Most of the considerations of this section apply as 
well to the HPP-GAS rule of Section 12.3, where, however, particles travel in 
diagonal directions.) Uniform motion was achieved by making the contents 
of a Margolus-neighborhood block rotate clockwise or counter-clockwise on 
alternating steps-in an invariable, predetermined sequence rather than at 
the whim of a noise generator (cf. end of Section 10.2 for analogous behavior 
in one dimension). Collisions were achieved by replacing a rotation step by a 
"no change" step whenever two particles occupied opposite corners of a block. 
We recall the rule here 

COLLISION IF 
CENTER ELSE 

PHASE { CCW CW} THEN 
>PLNO 

TM-GAS 

For our first experiment we shall put this gas in a "bottle." The outlines 
of this container {Figure 15.3a) will be drawn on bit-plane 1. Collisions 
between particles and the container's wall will be taken care of by modifying 
the rule as follows. If any portion of the wall falls inside a given block, then 
no rotation of the block's contents is performed at that step-just as in the 



160 Chapter 15. Diffusion and equilibrium 

case of particle-to-particle collision. The reader may verify that with this 
provision particles do indeed bounce off a wall. 3 The rule is the following 

CENTER' CW' OPP' CCW' 
OR OR OR 

COLLISION WALL OR IF 
CENTER ELSE 

PHASE { CCW CW} THEN 
>PLNO 

CENTER' >PLN1 

WALL ( -- 011) 

TM-GAS/WALLS 

\ walls don't move 

Here too we'll start with a dense cloud of particles in the middle; the 
rest of the container will be empty ((a) in Figure 15.3). This time the cloud 
will expand very rapidly. The leading particles travel in a vacuum, all at the 
same speed, and thus proceed on straight lines all the way to the walls (b). 
As they bounce off the walls they start disrupting the paths of the particles 
that come after them (c); this disruption rapidly extends in scope (d), and 
after a while the original cloud will have diffused through all the available 
space (e). Eventually the container will be filled with rarefied gas in a state 
of thermodynamic equilibrium (f). 

Observe that the initial expansion pattern is strongly anisotropic. This 
should not come as a surprise: in a vacuum, the peculiar kinematic constraints 
of this lattice gas ( only one speed and four directions) are directly reflected 
in the shape of the expansion pattern. The situation is different if we dump 
in a second scoop of gas: the new particles start colliding with the old ones 
before reaching the container's walls, and their paths get randomized sooner. 

Let us dump in more and more gas until a good fraction of the cells are 
occupied. At equilibrium, the mean free path of a particle is now only a few 
cells (cf. Section 15.4) and the individual particle will follow a tangled path 
very similar to that of the previous experiment. Thermal agitation is now 
driven by the totality of the remaining gas particles rather than an external 
noise source. 

The fact that the system as a self-contained whole is perfectly determinis
tic makes little difference to the individual particle-which is still swimming 
in a sea of noise (cf. Sections 17.3-17.5). In this light, the issue of whether a 
cellular-automaton rule is deterministic or stochastic is a moot one; Lucretius' 
clinamen is conceptually superfluous. 4 

3Reftections off the walls will not be specular-but of course, on the scale of a molecule, 
walls cannot be imagined as being "smooth" or having a definite orientation. 

4In his book On the nature of things, the Roman poet Lucretius (1st century BC) gives 
an unabashedly reductionistic-and surprisingly modern-sounding-account of the natural 
world. The clinamen was an ever-so-slight random swerving of atoms from their straight 
paths, which the author felt he had to introduce--with some reluctance--in order to make 
his model do what he believed it should but otherwise couldn't. 



15.3. Self-diffusion 161 

' , I 

.. 
. : .. 

' . ~ . . . . .. . . . 

Figure 15.3: Expansion of a TM-GAS cloud in a vacuum. Repeated collisions between 
particles and with container's walls eventually lead to thorough thermalization. 

15.3 Self-diffusion 

In the previous experiment we used a container of rather irregular shape in 
order to destroy possible symmetries in the initial conditions-which in an 
absolutely isolated gas may otherwise linger for a long time ( try the same 
experiment using all of CAM's array as a boundaryless toroidal universe) . 
Once the gas has reached equilibrium we can forget about the container. 
Here we shall fill the whole array with gas already at equilibrium; a uniformly 
random configuration of a certain density will do. 

We shall take the liberty of painting some of the particles red and some 
green (respectively black and grey on the printed page, as in Figure 15.4) 
without altering the particles' distribution. This is easily done by identifying a 
red particle by means of a marker in plane 1 and letting the marker accompany 
the particle on its journey (we'll leave the code for this variant of the rule as 
an exercise for the reader). In this way, the array will contain three kinds of 
cells, namely red particles, green particles, and empty cells. 

For a color-blind observer nothing has changed, and the gas is still at 
equilibrium; however, a color-sensitive observer will see red and green gases 
diffuse into each other (Figure 15.4) until this newly-introduced degree of 
freedom reaches equilibrium (in the form of a yellow mixture). Color does 



162 Chapter 15. Diffusion and equilibrium 

not affect the dynamics, and for this reason helps us understand that even 
in an "uncolored" gas self-diffusion is a real phenomenon; the rate of self
diffusion is one of the transport parameters that characterize the response of 
a gas to perturbations of equilibrium (cf. Chapter 16). 

Figure 15.4: Self diffusion of two gases having different colors but identical dynam
ical properties. 

15.4 Mean free path 

For the sake of illustration, let's compute the mean free path of a particle as 
a function of the particle density, in TM-GAS. From a particle's viewpoint, 
at any moment the remaining three cells of its block will be occupied with 
probabilities given by the following table ( where a solid circle denotes the 
particle under consideration, and p is the particle density) 

~ (1 - p)3 ,-,~, p2(1- p) 

~ p{l - p)2 l~lol p2(1 - p) 
{15.1) m p(l - p)2 1·1~1 p2(1 - p) 

~ p{l - p)2 fffl 0 
p3 

According to the fourth entry of this table, the probability of a collision ( and 
by this we mean a binary collision-the only kind that can deflect a particle's 
trajectory in TM-GAS) is p = p(l - p)2 . One can easily express the probability 
of a certain sequence of collisions; for instance, the probability that in seven 
steps the particle will collide at, say, the second and the seventh steps is 

qpqqqqp= q5p2 

{where q = 1 - p), and a free path of length i (i.e., free flight for i steps 
followed by a collision at the (i + 1)-th step) will occur with probability qip. 



15.5. A tour de force 163 

50 
' 
' I 

. 
l 
I 

' I 
I 
\ 

\ 
' . . 

0 
0 113 f Z/J 1 

Figure 15.5: The solid line plots the mean free path >. a.s a function of the particle 
density p, in TM-GAS; the dashed curve plots the mean free path for the "holes." 

The mean free path, i.e., the weighted sum of all possible free-path lengths is 
thus 

). - Op + lqp + 2qqp + 3qqqp + · · · 
- qp(l + 2q + 3q2 + · .. ) 

qp - q 
(1 - q)2 - p' = 

(15.2) 

We could have arrived at the same result by a more intuitive argument. If 
a particle has a probability p to collide at any step, then on average it will 
spend a time 1 / p from one collision to the next ( mean free time); since for one 
unit of this time the particle is ''stuck" (in TM-GAS, no travel occurs during a 
collision step) the mean free path is 1/p - 1 = q/p. 

Figure 15.5 plots the particle's mean free path >. as a function of the 
particle density p. This curve has a minimum of .X = 23/4 (~6) for p = l/3. 
For small values of p, particles travel almost freely in a vacuum; at high 
densities, they slide almost freely past one another (since encounters of more 
than two particles inhibit collisions). 

Since the rule is symmetric between particles and vacuum (i's and O's), 
"holes" in a sea of particles behave much as particles in a sea of vacuum. 

15.5 A tour de force 

Here we shall describe an experiment of a kind that in ordinary circumstances 
one would think twice about before undertaking-and that instead can be 
approached very light-heartedly with a cellular automata machine. 

When diffusion is driven by an external random source each segment of 
a particle's path is completely independent of the previous one: the noise 
is absolutely fresh at every step. However, correlations may arise when a 



164 Chapter 15. Diffusion and equilibrium 

particle's path is determined by collisions with other particles; intuitively, 
some of the effects of one collision may ''come around" to affect the same 
particle. Since any deviations from an ideal random walk are expected to be 
slight, a long accumulation of statistical data is necessary. 

In the present experiment the path of one gas particle starting at the 
origin of coordinates is followed for a fixed number t of steps-say, a few 
thousand. The particle's path is recorded, and in particular the particle's 
final position is noted. The procedure is repeated a large number n of times, 
each time with a different initial arrangement of particles. Each run entails, 
of course, simulating the entire gas system, consisting of tens of thousands of 
particles. Various kinds of statistical analyses can then be performed on the 
collected data. 

This experiment was conducted at MIT by Andrea Califano. One result is 
the numerical determination of the probability distribution P(x, y; t); this is 
shown in Figure 15.6 for t = 1024 steps. For any value of x, y the height of the 
plot represents the actual number of runs on which the particle ended at x, y: 
thus, the total number of runs equals the volume of the "Gaussian mountain" 
in the .figure. Given the wide dynamic range, in order to have a reasonable 
resolution for the lower values of Pit is necessary to make a very large number 
n of runs-about half a million in this case. Thus, the plot of Figure 15.6 
corresponds to a computation involving a total of 256x256x 1024x500,000 
( ~ 30 trillion) cell updates! 

Who is going to record the position of the selected particle step after step? 
If we paint the particle red, the eye can follow its trajectory on the screen 
with relative ease; however, the coordinates of this particle do not explicitly 
appear anywhere in the simulation: we just have an array of cells of which 
some happen to be green, one red, and the rest empty. We could instruct the 
host computer to stop the simulation after every step, read the contents of 
the array, and look for the cell that contains the red particle, but this would 
be grossly inefficient. The technique that was actually used is the following. 

Assume we start with PHASE= 0 and. with the particle in the upper-left 
corner of a block of the Margolus neighborhood. If the COLLISION condition 
is true the particle will not move during the first step; otherwise it will move 
to the right (since the whole block rotates clockwise). In this situation, in 
order to know the position of the particle at the end of the first step we 
don't have to look at the whole array; we only need to be given one bit 
of information, namely whether the particle collided or not. At the next 
step we know that PHASE = 1 , and from the bit collected from the previous 
step we know the particle's position within a block at the beginning of the 
current step. Again, a single bit of information will allow us to determine 
the particle's new position at the end of this step. As long as we are only 
concerned with that particle, the entire history of a thousand-step simulation 
can unequivocally be compressed into a a string of a thousand bits. The 



15.6. A tuneable noise source 165 

host computer can easily process one bit per step-even as CAM is updating 
hundreds of thousands of bits during the same time interval. 

As explained in a little more detail in Section 17.6, alongside the look-up 
table that computes a cell's new state ( transition function), an auxiliary look
up table fed with the same neighborhood data is programmed to compute the 
following values (output function): 

1, If the cell contains a red particle and this particle is 
undergoing a collision. 

0, Otherwise. 

This value is fed to the event counter, which accumulates cell events on-the
fly; since only one red cell is present, the total count at the end of each step 
will be O or 1 ; this is all the information that we need, and it can be read off 
the event counter at the end of each step without disturbing the simulation. 

For many analysis purposes this string of bits can be processed in real
time as it comes out of the .machine. However, the string itself captures all 
of the relevant data of the experiment in such a compact form that storage 
on, say, a disk file presents no problems. In this way the same string can be 
used for many different analysis purposes. For example 

• By "integrating" the string of an individual run one can reconstruct the 
end-position of the particle in that run, and thus accumulate one more 
volume element for a histogram like that of Figure 15.6. 

• The string can be compared to that produced by an ideal random
number generator. 

• The string can be correlated with a delayed version of itself; this is 
probably the most relevant piece of analysis in an experiment of the 
present kind. 

Techniques for computing autocorrelations involving the whole contents 
of the bit-planes - rather that a single bit extracted in the above fashion-will 
be discussed in Section 16.6. 

15.6 A tuneable noise source 

Lattice gases such as HPP-GAS and TM-GAS provide convenient noise sources 
for experiments on a cellular automata machine. Their most useful feature is 
that, since the initial number of[IJ's is conserved by these rules, the probability 
p of finding a [II at any site is constant and is adjustable in fine increments 
over a wide range. To obtain a different probability it is not necessary to load 



166 Chapter 15. Diffusion and equilibrium 

Figure 15.6: Histogram of P(x, y; t}-the probability that a particle of TM-GAS will 
be found at x , y at time t-as determined by a long series of simulation runs on 
CAM. 

a new '"stirring" or ''sampling" rule: one can just add or remove particles 
from a bit-plane. 

Moreover, the equilibrium properties of these gases are well characterized. 
The spontaneous equalization of density and pressure observed in Section 15.2 
is analogous to that of a viscous fluid and obeys similar laws (cf. Section 16.2). 
The mean free path, which is related to how vigorous is the randomization 
process, is less than a dozen cells over most of the density range ( cf. Fig
ure 15.5). Local correlations do exist, of course, since information cannot 
diffuse faster that one cell per step, but they are fairly short-term and well
understood (cf. Section 16.6). 

The availability of two distinct gases, in one of which particles travel on 
rows and columns (TM-GAS) and in the other on diagonals ( HPP-GAS ), is 
also very useful. For example, a rule based mostly on horizontal and vertical 
exchanges of information (e.g., one that uses the von Neumann neighborhood) 
is least likely to be affected by the correlations of a diagonally moving gas. 

The two gases can be run on different bit-planes and used as a combined 
noise source, for instance by AND'ing or X0R'ing them. One advantage is 
that two noise sources based on different mechanisms compensate to a certain 
extent for one another's limitations. The other advantage is that, by taking 
the product of the probabilities p and p' supplied by the two bit-planes, one 
can synthesize a much lower probability pp' without using gases of too low a 



15. 7. Diffusion-limited aggregation 167 

density (which would yield a long mean free path and thus sluggish shuffling). 

Finally, local correlations can be virtually eliminated by using an addi
tional CAM module. In fact, CAM's architecture allows one at any moment 
to offset the spatial origin of one module with respect to the other in any 
direction and by any amount simply by changing the contents of a register . 
This makes "action at a distance" possible, and in particular permits global 
(rather than just local) scrambling of data. One would run a lattice-gas noise 
generator on the second module, and shift the origin of this module by a 
random amount both vertically and horizontally at every step; the random 
numbers for this shift are only required at the low rate of one or two per 
step, and are easily provided by the host computer using any of a number of 
well-known algorithms . 

This method was used for the experiment of Figure 17.6, where a good
quality random-number generator was needed to simulate an ideal heat bath . 

15.7 Diffusion-limited aggregation 

Diffusion-limited aggregation occurs when diffusing particles stick to and pro
gressively enlarge an initial seed represented by a fixed object. The seed typ
ically grows in an irregular dendritic shape resembling frost on a window, as 
we shall see in a moment. Diffusion-limited aggregation is a reasonable model 
of physical growth processes (frost , for one), in which dendritic growth occurs 
because the material needed for growth must diffuse from outside , or some 
growth byproduct (such as heat) must escape[69,51,53]. 

The following is a variant of a rule suggested by Charles Bennett. In 
CAM-A, plane O will contain the diffusing particles, as in 2D-BROWNIAN of 
Section 15.1, and plane 1 will contain the initial seed and accumulate the 
growing dendrite. Both planes use the Margolus neighborhood. The diffusion 
is driven by a noise generator in CAM-B. 

The growth mechanism is very simple; the presence of the dendrite is 
detected just as the container's wall in Section 15.2. If a portion of dendrite 
appears anywhere in a block, any diffusing particles contained in this block 
will ''stick" to the dendrite , i.e., are transferred from plane O to plane I
where they remain without moving. The effect is much like that of flypaper. 

CAM-AN/MARG &/CENTERS 
RAND ( -- 011) 

&CENTER' \ noise comes from CAM-B 
WALL ( -- 011) 

CENTER' CW' OPP' CCW' \ sense wall 
OR OR OR 

DENDRITE 
WALL IF \ Particles : If on wall, 



168 Chapter 15. Diffusion and equilibrium 

Figure 15. 7: Dendritic growth by diffusion-limited aggregation. The process was 
started from a one-cell seed in the middle, and with a 10% density of diffusing 
particles. 

0 ELSE 
RAND { CW CCW} THEN >PLNO 

WALL IF 
CENTER' CENTER OR ELSE 

CENTER' THEN >PLNl 

\ stick to it 
\ else keep going 
\ Dendrite: If wall, 
\ catch any particles 
\ else no change 

Since the connection between CAM-A and CAM-Bis only through the center · 
cell, a little ingenuity is needed to provide in CAM-B a random-number gen
erator suitable for the Margolus neighborhood in CAM-A. The casual reader 
may skip the following description. 

CAM-B N/MARG-HV 
STIR/SAMPLE/DELAY 

UL UR XOR \ Take data from both 
LL LR AND XOR \ planes, shuffle, 
UL' LL' AND \ and return same outcome 
UR' LR' XOR XOR XOR >PLN2 \ to all four cells 

CENTER >PLN3 \ One-step delay line 

We noted in Section 15.1 that all four cells of a block must see the same random 
outcome in order to take concerted action; there, RAND XOR'ed the four block 
neighbors to produce such a block-position-invariant outcome. Here, since CAM

A cannot see the four block neighbors in CAM-B, such an invariant outcome is 
computed within CAM-B and stored in plane 2. However, a problem arises; that 
is, this result is available only one step later, when the machine is using the other 
partition . To have it in the correct phase, we delay the result one more step by 
copying it from plane 2 to plane 3, where CAM-A will eventually see it through 
&CENTER'. 



15. 7. Diffusion-limited aggregation 169 

To give a reasonably random result, the function that is to produce the position
invariant outcome for plane 2 cannot consist only of XOR's; a nonlinear component 
such as AND is required as well. This destroys the rotational symmetry of the 
function, and forces us to use the absolute block neighbors UL, UR, etc. (cf. Sec
tion 12.5). 

To initialize the random-number generator, put a random pattern on plane 2 
and run 2 steps. This fills the one-step "delay line" with valid data , and you can 
now proceed to initialize the planes of CAM-A. 

Figure 15. 7 shows an early and a late stage in dendritic growth obtained 
with this rule, starting with a particle density of ~10% (see also Plate 12). 
The shape is a branched cluster; branches form because the progressive de
pletion of particle density in the interior bays of the existing cluster inhibits 
growth there. Branch tips get to "pick first," as it were, and only a few of 
the diffusing particles make it to the space between the branches . 

For higher densities of the diffusing particles the shape of the aggregation 
cluster is more globular; for lower densities, more dendritic. In the low-density 
limit, diffusion-limited aggregation produces patterns having a well-defined 
fractal dimension; in two-dimensional models the fractal dimension is ~1.7 
(see [53], page 121). 



 

Chapter 16 

Fluid dynamics 

This chapter deals with the modeling of fluid dynamics by reduction to mi
croscopic laws (in a somewhat idealized form). 

In a very large system, even relatively small portions of the system still 
contain a large number of parts, and thus can be meaningfully subjected to 
a macroscopic analysis. An interesting situation arises when equilibrium has 
established itself on a certain scale but not yet on a larger scale, so that the 
system as a whole is not at equilibrium. In this situation, the macroscopic pa
rameters gradually change from place to place; 1 moreover, at each place these 
parameters may gradually change also in time-such macroscopic evolution 
being of course driven by the spatial gradients of the macroscopic quantities 
involved. 

A system of this kind can be visualized as a collection of local equilib
ria that smoothly merge into one another and smoothly evolve in time; the 
various macroscopic quantities flow in a continuous way. 

16.1 Sound waves 

We shall continue here the series of experiments started in Chapter 15. Under 
a rule such as TM-GAS, particles (represented by [I]'s in a vacuum of [Q]'s) travel 
in straight lines and collide with one another; these collisions are momentum
conserving. Collisions lead to a gradual randomization of the particles' paths, 
and eventually the gas attains equilibrium. 

What happens if we suddenly disturb this equilibrium? Let's start, for 
definiteness, with a configuration having density p = 1/2, and let's replace a 

1Changes are gradual because any two samples that overlap to a substantial extent must 
have almost identical parameters. 



172 Chapter 16. Fluid dynamics 

small yolume of this gas by a tightly-packed cloud of particles (Figure 16.la). 
The cloud will immediately start expanding, compressing the surrounding 
gas; the momentum of this outward rush is such that at a certain moment 
the center of the disturbance will be left depleted of particles (b). In turn, 
the compressed ring will expand outwards and inwards as well, thus creating 
a new pressure peak at the center. Alternating compressions and rarefactions 
propagate outwards as a sound wave ( c). The overall effect is much like that 
of a bucket of water dumped into a pond. 

Plate 13 shows the same phenomenon at a higher resolution, using a four 
bit-plane version of HPP-GAS described in Section 16.5. 

There are a number of remarkable facts about the above behavior: 

• On a time scale comparable with the size of the disturbance, the gas be
haves as an elastic medium; motion is underdamped. The extra density 
at the center does not just slowly leak out; it rushes out; in attempting 
to equalize its pressure, the gas overshoots its mark, and overshoots 
again when it tries to correct the first attempt. 

• Although the microscopic laws are strongly anisotropic-there are privi
leged directions of motion ( cf. Figure 15.3b )-the sound wave is circular. 
Much as in the diffusion of Section 15.1, here too the collective behavior 
of the particles displays a symmetry that is not present in the behavior 
of the individual particle. 

• The speed v of sound in this medium is substantially less than that 
of the particles; namely, using the latter as a unit, v = 1/../2 (cf. 
Section 16. 7). This speed is independent of the direction, the wave
length, and, as it turns out, also of the density of the lattice gas. Thus, 
a well-characterized mechanical property emerges at the macroscopic 
level which has no counterpart at the microscopic level. 

Figure 16.1: Circular wave produced by a localized disturbance. 



16.2. Hydrodynamics 173 

16.2 Hydrodynamics 

Sound waves are only one aspect of the phenomenology of fluids, and actually 
one of minor interest in hydrodynamics; we shall return to them at the end 
of this chapter for experiments in wave optics (Section 16:7). 

Hydrodynamics is chiefly interested in situations where different parts of 
a fluid move with respect to one another and with respect to solid obstacles 
at velocities that are much smaller than that of sound. In this limit, and 
neglecting external forces such as gravity, any density differences equalize 
themselves in a negligible time and the fluid can be treated as incompressible. 
Even when these simplifications apply, the phenomenology of fluids can be 
enormously varied. Depending on the speed of the main flow, the size and 
shape of the obstacles, and the viscosity of the fluid one can have laminar 
flow, vortices, turbulence, etc. (cf. [65] for a rich collection of illustrations). 

In this context, the relevant variable is the velocity V (a vector) of flow 
at different points, and the relevant parameter is the viscosity v of the fluid. 
The behavior of the fluid is governed by the Navier-Stokes equation 

av 1 
-8 +(VV)V = --Vp+v\7 2V, 

t p 
(16.1) 

where pis the pressure and pis the (constant) density. This is is a nonlinear 
differential equation, and, except for special cases, one must make recourse 
to numerical methods in order to find its solution for given initial and bound
ary conditions. Much computer time all over the world is devoted to the 
simulation of hydrodynamical problems. 

It turns out that, on a macroscopic scale, the gases described by a cellular
automaton rule such as HPP-GAS or TM-GAS obey the Navier-Stokes equa
tion approximately[23]; and a similar rule on a hexagonal lattice, namely 
FHP-GAS, discussed in Section 16.5, obeys this equation exactly[18]. Many 
researchers have recently become interested in such models of fluid dynamics, 
which have a number of attractive conceptual features and show considerable 
practical promise[28J. 

Reasonably detailed simulation of fluid dynamics problems requires a very 
large amount of computational resources. Figure 16.2 shows a simulation of 
flow past an obstacle conducted by Salem and Wolfram[50J (similar experi
ments were also conducted by d'Humieres et al[14] at about the same time). 
This experiment was run on a Connection Machine, which was programmed 
as a cellular automaton with an array of ~5000x5000 bits; the rule is a vari
ant of FHP-GAS; the arrows show the magnitude and direction of the flow. To 
draw the arrows, the array was divided into regions of approximately 25,000 
bits each; a computer program outside of the simulation proper explicitly 
counted the number of particles going in different directions in each region. 



174 

16.3 

Chapter 16. Fluid dynamics 

- --------'-'-___ ,________--___________ ~-:--.--~_:,_____.--------------~------ ,_,-___ ,__.......__ 
--- --- --- ----~ .............. ---= :::---..__--....... ............ ____,- > ~-.........--.. ____ ___,,, ,... .. .-,..---/ _____ ......._ .................. ......._ ________ -------___________________ ........__.,,... / /_.-_--......'-..,""-.:: 

.,....-_..-//....------....-...:::.........,___-........_,,,I// -'---......::. ~ , ....._ _ _,,.,.,,,,,,..,.-_.-_ 

-----ep,~1~J ~l f: ~tip? - ~=~~~J-----S 
~ - / I~. } ~:. ~ti~~=, :::;W~V/2/j :: 
-----........ ' \ I ~/1/ f;1/,/----.... --- ~ -
---- -....-, \ ,-,./////~},;, --.......-: 1/-
___,.____........_.......__"-,----......,-//// / ---..... :-......-/, 1/// -
__ ........_........_......___........__........__,...,.._---==-//// ,......._...._ :---..-........--.r:: 1// /-
~........_ '-... '-... -.....--......-..,,, .,,. :;Y' / ,........ ____ ....._ "' ........_ ________ // / / -
---,-.....,-.....-------...... .. ,~----, .................. ......, .,.-,.--,,......-.,...-// 
~~, ......... ----=--- - -~ -=- -- --:V'//// _,........_......._ ____ _ ___ .....,.,,=.. ___ ....,...,,,_..../ // 

-----,-....-~ =- ------~ --::----// __ __........,__,,-------.--~ .,, - ------ -- ~1/ 
Figure 16.2: Flow past an obstacle (from Salem and Wolfram). 

Tracing the flow 

With a single CAM module one can barely begin to see the significant aspects 
of hydrodynamic flow-though with more modules or with the ''scooping" 
technique mentioned at the end of this section a substantial range of possi
bilities opens up. Much larger cellular automata machines are needed for ex
periments on a significant scale. However, the basic concepts and techniques 
can be explored quite independently of the size of the available machinery. 

The equilibrium state for TM-GAS obtained by filling the array with acer
tain density (say 50%) of particles at random does not exhibit, at a macro
scopic level, any net flow: the fluid is stationary. To make the fluid slowly 
drift in one direction we have to increase the fraction of particles going in 
that direction and decrease the fraction going in the opposite direction. In 
the absence of obstacles, the momentum thus introduced will be conserved. 

Let us call PN, Ps, pw, and fJE the "concentrations" of particles going in 
the four cardinal compass directions, so that 

p=pN+Ps+Pw+PE (16.2) 

where p is the total density. In a drifting gas at equilibrium, even though 
these concentrations are different, each concentration must be, in the long 
run, constant; each population must be replenished at the same rate as it is 
depleted by collisions. 

On collision, a north/south pair will produce a west/east pair and vice 
versa; we can symbolically denote these two "reactions" by 

N+s-w+E W+E-N+S. 



16.3. Tracing the flow 175 

The rate of each reaction is proportional to the product of the concentrations 
of the colliding species; thus, the corresponding rates are 

PN/JS PWPE· (16.3) 

At equilibrium the two reaction rates must balance; therefore, the equilibrium 
concentrations must obey the relation 

PNPS = PWPE, (16.4) 

which, together with (16.2), completely characterizes the equilibrium state. 
For small drift velocities, one may use the linear approximation 

PN + Ps = Pw + PE, 

where the geometric averages of (16.4) have been replaced by arithmetic av
erages. 

Thus, if we construct an initial configuration where the density of north
or south-going particles is p/4, east (1 + 2t)p/4, and west (1 - 2€.)p/4, the 
gas will be close to equilibrium, and as a whole will drift rightwards at a 
speed f. Such a configuration, with p = 1/2 and f = 1/10 is shown in Figure 
16.3a. Since the density is uniform, there are no macroscopic symptoms that 
the gas is in motion; intuitively, we are looking at a clear stream with no 
distinguishing marks that we can follow. To make the streamlines visible 
one could use the approach of Figure 16.2-which however requires a large 
amount of nonlocal processing. Here we'll try an approach that more closely 
mimics what is possible in a physical experiment. 

The idea is to place some discrete tracers in the flow, and follow their 
trajectories. For this purpose we shall mark a few of the particles, as in 
Section 15.3; the motion of each particle will of course have a random compo
nent (Brownian motion) but superposed on this there will be a slight right
ward bias. Figure 16.3b shows the drift of marked particles emitted by a 
''smokestack.'' It is clear that on this scale the drift is barely noticeable, 
swamped as it is by the random component of the motion. 

However, as the scale of the simulation is increased-so that the markers 
can be followed for a longer time t-the coherent component of the motion 
grows as t while the random component grows only as Vt; as the relative 
weight of the random component decreases, well-defined streamlines begin to 
appear. Figure 16.3c shows the same experiment performed on an array of 
1024x1024. 

Scooping. In spite of the fact that it uses an array sixteen times as large 
as that of CAM, the experiment of Figure 16.3c was still performed using a 
single CAM module . The basic idea is to keep the large array stored in the 
memory of the host computer; you take a small ''scoop" of this array, give it 



176 

.. ,. 
•'· 

Chapter 16. Fluid dynamics 

Figure 16.3: (a) The direction of drift is invisible if the fluid has uniform density. 
(b) Markers ejected by a smokestack diffuse in the fluid. ( c) On a larger-scale 
simulation, the streamlines start becoming visible. 

to CAM to process for, say, a dozen steps, and store the result back into the 
array; you then move to the next scoop, and so on. 2 When a pass over the 
whole array has been completed ( the whole array has now evolved a dozen 
steps) a new pass is made, continuing like this as long as desired. 

Using this technique, CAM can update an array of arbitrary size with a 
slowdown of less than a factor of two in time per cell-update. 

16.4 Flow past an obstacle 

Flow past an obstacle is achieved by making the walls of the obstacle reflect 
the gas particles, for example as in Section 15.2. Sources and sinks can be 
introduced as well. Obstacles, sources, and sinks are "programmed" by just 
drawing them on auxiliary bit planes; they can be positioned in an arbitrary 
way and given arbitrary shapes. Different amounts of friction with the walls 
are not programmed by introducing an ad hoc "coefficient of friction" in 
certain equations; they are achieved altering the texture of the wall-which 
can be made pitted or spongy. It will be up to the individual particle to find 
its way in and out of these pits; its momentum will be altered to a greater or 
lesser extent by the collisions, and friction will spontaneously emerge as the 
collective result of these detours. 

Note that boundary conditions can be made as complex as desired with
out making the simulation in any way harder to program or more expensive 
to carry out. Moreover, since macroscopic quantities appear only as averages 
taken over explicitly represented microscopic configurations, numerical insta-

2Since the scoop within CAM does not receive edge information from the adjacent scoops, 
which are still in the host computer, after twelve steps the edge of the scoop will contain 
useless data for a thickness of twelve cells. This portion is thrown away; thus, each scooping 
operation updates a portion of the array that is a little smaller than the scoop itself. 



16.5. Other lattice gases 177 

bilities and diverging solutions are ruled out . When "things are what they 
seem," we can safely let them "do what they must." 

16.5 Other lattice gases 

A number of conceptual and practical variations can be played on the lattice
gas theme. Here we shall briefly present the FHP approach[18], but first we'll 
take a second look at the HPP gas introduced in Chapter 12. 

The HPP gas was originally formulated as follows[23]. Consider an or
thogonal lattice consisting of sites connected by north, south, west, and east 
links. There are four kinds of particles, one for each direction, and a site can 
be occupied by at most one particle of each kind ( thus, there can be up to 
four particles per site). The updating is done with a two-step cycle. At step 
0 each particle moves along a link from its current site to the adjacent site 
corresponding to its direction; at step 1 particles get shuffled within each site 
in a way analogous to table (12.4). That is, if there are at that site exactly 
two particles which have come in from opposite directions, say north and 
south, then they are replaced by a west/east pair; otherwise nothing changes. 

This approach can be implemented directly on CAM. The four bit-planes 
correspond to the four kinds of particles, so that all four bits of a cell are used. 
At step O ( "move") each plane is made to shift one step in the appropriate 
direction, while at step 1 ("collide") the contents of the four center bits is 
examined and the appropriate swaps are performed . On CAM it is possible 
to combine the two steps into one by using a custom neighborhood. That 
is, some neighbor and phase signals are routed to the tables externally via 
the user connector rather than internally (cf. Sections 7.5, 9.7). The shift 
step by itself involves collecting one compass n,<-:ighbor from each plane and 
depositing it in the center position of the same plane; but once we have these 
four bits as arguments to the look-up table, before depositing them we might 
as well program the table to shuffle them as prescribed by the collide step. 
Figure 16.4 shows circular wave propagation in this more dense realization 
of the HPP model. This sort of scheme is an example of partitioning the 
state-set of each cell ( each bit of the state of a cell is used as a neighbor by 
exactly one other cell) rather than using block-partitions. 

It must be noted that this realization of the HPP gas uses CAM less effi
ciently than that which uses the Margolus neighborhood; the particles belong 
to two decoupled spacetime sublattices, each evolving independently of the 
other (cf. Section 14.3). Instead of a system containing N particles one ends 
up simulating two separate systems containing N /2 particles each. With 
the Margolus neighborhood version, only one sublattice is represented and 
simulated . 

Although the smaller number of bits used at each cell by the Margolus 



178 Chapter 16. Fluid dynamics 

neighborhood implementation was a disadvantage when we wanted to produce 
pictures with more particles visible in a 256 x 256 window ( compare Figures 
16.1 and 16.4) it will be an advantage in the next section when we want to 
simultaneously run two copies of the same system on different bit-planes, in 
order to compare corresponding sites. 

Figure 16.4: Wave propagation in a denser realization of the HPP gas model. To 
enhance contrast, only sites that contain three or four particles are shown. 

As we mentioned earlier, the behavior of the HPP model departs from 
the Navier-Stokes equation; even at a macroscopic level the viscosity is 
anisotropic-a ''ghost" of the lattice. This blemish is removed by the FHP 
model[18], which uses six kinds of particles; i.e., there are six directions of 
travel, with a 60° angle from one to the next. The lattice is a hexagonal one, 
and each site can contain up to six particles (one of each kind). As in the 
HPP and TM models, collisions are defined so as to conserve energy ( number 
of particles) and momentum. 

A simple version of the FHP rule has a collision occur whenever the mo
mentum at a site is zero. If there is no collision, all particles go straight . If 
there is a collision, all particles at that site are deflected 60° clockwise ( or 
counterclockwise) from the path they were following. 3 

The FHP model can be implemented on CAM using the Margolus neigh
bor hood on two planes . One axis of the lattice has to be imagined tilted at 
30° from the vertical, as shown in Figure 16.5. Each block represents one site ; 
of the eight bits of the block (four per plane) six are used for the particles; the 
remaining two are "spares" and can be used, for example, to define obstacles 
or other space-dependent properties of the medium (cf. Section 16.7). The 
FHP-GAS rule, which we won't write here in detail, uses a two-step cycle, as 
in the above HPP model; one step is used for moving the particles along the 
links, and one to carry out the shuffle entailed by a collision. 

3 In the original FHP rule, four-particle collisions were ignored, and this is the version we 
used for Figure 16.6. During a single step, we used the same direction of rotation for all 
deflections, and the two possible rotations were alternated on successive steps. 



16.6. Autocorrelations 

~ 
\ 

\ 
\ 

"" 

179 

Figure 16.5: For the FHP-GAS rule, the blocks of the Margolus neighborhood are 
conceptually arranged in a hexagonal pattern. Each block implements a site. Solid 
links refer to particles in plane 0, dashed ones to particles in plane 1. 

An embedding similar to that of Figure 16.5 allows an ordinary (non
partitioned) hexagonal neighborhood to be implemented on CAM: simply 
write rules for the N/M00RE neighborhood which don't use, say, N. EAST 
and S. WEST ( try the rules of Section 6.4 on this hexagonal neighborhood). 
By using a custom neighborhood and two CAM machines, one can similarly 
implement the FHP model with 6 particles at each site: use separate bit-planes 
for each of the six velocities, and alternate steps which shuffle the particles at 
each site (collisions) with steps which shift the bit-planes {movement). Just 
as in the HPP example above, these two steps can be combined by using a 
neighborhood in which each cell is connected to the south-going plane of the 
cell above it, the north-going plane of the cell below, etc . Unlike the N/MARG 
implementation we described first, this realization would avoid wasting half 
of its time on data.shifting steps. It would however be more awkward to use 
for the autocorrelation experiments of the next section. 

16.6 Autocorrelations 

The velocity time-autocorrelation function answers the following question: 
Consider the microscopic velocity of the fluid at a certain place; how different 
is this velocity likely to be some time t later? Similar questions can be asked 
for quantities other than velocity, or for space- rather than time-correlations. 
Autocorrelations represent an important tool, both theoretically and experi
mentally, for establishing connections between macroscopic and microscopic 
properties of a system. 

Conceptually, the measurement of autocorrelations entails dealing with 
two copies of the same system, one offset with respect to the other by a 



180 Chapter 16. Fluid dynamics 

certain space or time amount (or both). 4 In many cases of interest the amount 
of correlation decreases rather steeply as the offset is increased, and soon 
becomes swamped by statistical noise; a large amount of data is required to 
filter out this noise. In this context, it is desirable to measure the correlation 
at every point of the array and average over the whole array; a further average 
of these results is taken over the course of a long simulation run. 

The differential-measurement technique discussed in Section 9.2 can be 
extended to the study of autocorrelations. Instead of comparing in real-time 
the histories of two copies of a system started from slightly different initial 
configurations, here one uses the same initial configuration-but one copy of 
the system is started t steps later. ( A similar approach is used for spa.ce
autocorrelations .) 

In a lattice gas such as HPP-GAS or TM-GAS, each cell of a Margolus
neighborhood block is reserved for a particle having a certain direction of 
motion (Sections 12.2, 12.7). The velocity at that point can be defined as 
1 if the cell contains a particle and O if the cell is empty. The velocity 
autocorrelation between two homologous cells5 is defined as the product of 
the corresponding velocities. Thus, if one copy of the system is run on plane 
0 and the other on plane 1, one can program the intensity output of the color 
map to return the product of these two planes, cell by cell 

ALPHA ALPHA' AND >INTEN 
AUTOCORR-MAP 

\ Product of C. C' 
\ Other colors as desired 
\ for visual display 

Here we used 'AND' rather than • * ' (the result is identical; cf. Section A.14) to 
stress that the product of two bits is a one-bit value. 

As explained in Section 7. 7, the intensity output of the color map is fed to 
the event counter- which will thus integrate at each step the autocorrelation 
over the whole array. The responsibility for averaging these counts over a 
large number of steps-a trivial task-is left to the host computer. 

Theoretical arguments suggest that for simple lattice gases in one, two, or 
more dimensions the velocity time-autocorrelation function v(t) should be a 
power oft (at least asymptotically, as t --+ oo). The exponent of this power, 
which in a log-log plot of v(t) is simply the slope of the curve, is expected to 
approach -1 for large t in a truly 2-dimensional model. 

Figure 16.6 shows the measured values of v(t) for the three lattice gases 

4 When the simulation costs are overwhelming one may prefer to run a single copy of 
the system, record its history, and then study it . As noted in Section 9.2, this approach 
may be very burdensome. 

51.e., a given cell and the corresponding cell under a time or space shift. 



16.6. Autocorrelations 181 

Figure 16.6: Time-correlation function v(t) for HPP-GAS (a), TM-GAS (b), and 
FHP-GAS (c). 

mentioned in this book, namely HPP-GAS, TM-GAS, and FHP-GAS .6 These 
experiments, discussed in [36], were conducted at MIT by us and Gerard Vich
niac, using a single CAM module. Each of the data points plotted represents 
the accumulation of a billion or more comparisons-the whole experiment 
entailed accumulating about 3/4 of a trillion comparisons, and took about 
two and a half days to run. 

Experiments of this kind take good advantage of CAM's bit-serial, plane
parallel internal architecture (cf. beginning of Chapter 7 and Section B.5). 
At each step the two bit-planes containing the two copies of the system under 
study are scanned serially, in lock step. A single AND function straddled across 
the two bit-streams monitors the local correlations on-the-fly (this is what 
AUTOCORR-MAP accomplishes) and feeds them to the event counter (which in 
this implementation is simply a serial counter) where they accumulate in the 
course of a step. At this stage, out of a simulation stream involving, say, a 
hundred-thousand bits per step, the relevant information, consisting of just 
a few bits ( the contents of the counter), has already been extracted, and any 
further processing is trivial. 

6For our implementation of FHP-GAS, one copy of the system occupies planes O and 1 
(see Figure 16.5) while a second copy of the system is run on CAM-B. Two steps are used 
to compare the two corresponding pairs of planes-since update/translate also takes two 
steps, these comparisons can be done without slowing down the simulation. 



182 Chapter 16. Fluid dynamics 

16.7 Wave optics 

A theoretical analysis[23] shows that, for small perturbations from equilib
rium, the elastic properties of lattice gases of the present kind are linear. In 
this situation, the propagation of a disturbance is governed, at a macroscopic 
level, by the familiar wave equation 

We can thus consider using the lattice gas as an "ether" and study phenomena 
of wave interference, reflection, diffraction, and refraction. The experiments 
of Section 16.1 show that a good approximation of this behavior can be at
tained on a scale smaller than that required for the study of flow. 

Here we shall use the HPP-GAS rule. In addition to waves traveling at 
the speed of sound this rule also supports "solitons" traveling at the speed of 
light. These solitons, which in one orientation consist simply of alternating 
vertical stripes superposed on the random medium, behave much like sound 
pulses but undergo less scattering and allow one to operate with shorter 
wavelengths. 

Reflection on a mirror is achieved by treating the mirror as a solid wall; 
the interaction of HPP-GAS with a wall can be achieved in analogy with what 
was done for TM-GAS in Section 15.2. Figure 16. 7 shows the reflection of a 
plane-wave pulse by a spherical mirror. 

Figure 16.7: A plane pulse traveling towards a concave mirror (a) is shown right 
after the reflection (b) and approaching the focal point (c). 

Reflection was easy. How about refraction? can we make a Jens? What 
we need is a medium with a higher refractive index than the ''ether;" i.e., in 
this medium signals should travel at reduced speed. 

We'll draw the lens in plane 1, and we'll modify the rule so that cell-blocks 
of "lens material" will be updated at half the rate as ''ether'' blocks. This 



16. 7. Wave optics 183 

will slow down the particles by a factor of 2, yielding a proportionately higher 
refractive index for the lens. The rule is the following 

N/MARG-PH 

CENTER' cw• OPP' ccw• 

OR OR OR 

LENS PHASE AND IF 

CENTER ELSE 

COLLISION IF 

CW ELSE 

OPP THEN 

THEN 

>PLNO

CENTER' >PLN1 

0 IS <PHASE> 

0 IS <ORG-HV> STEP 

3 IS <ORG-HV> STEP 

1 IS <PHASE> 

0 IS <ORG-HV> STEP 

3 IS <ORG-HV> STEP 

MAKE-TABLE REFRACT 

MAKE-CYCLE 0011-CYCLE 

LENS ( -- 011) 

\ is some of the lens 

\ within the block? 

REFRACT 

\ when within lens

\ mark time on PHASE=! 

\ 

\ 

\ 

otherwise behave 

like the ordinary 

HPP-GAS 

\ the lens stays put 

0011-CYCLE 

\ Two steps of PHASE=O: 

\ everyone works 

\ Two steps of PHASE=1: 

\ only ether works 

Recall that HPP-GAS performs one step using the even grid and one using the odd 
grid. We want to slow down the activity within the lens, but without separating 
the two elements of the step pair ( this pairing of steps is an essential aspect of the 
rule). Within the lens, a pair of active steps will be followed by a pair of idle steps, 
and so on in alternation. PHASE is used for distinguishing between active and idle 
steps. Everything else is as in the plain HPP-GAS rule; the definition of COLLISION

was given in 12.4 and is not repeated here. 

Figure 16.8: Refraction and reflection patterns produced by a spherical lens. 

The experiment is shown in Figure 16.8. The part of the wave that enters 



184 Chapter 16. Fluid dynamics 

the lens first is slowed down first; this bends the wave-front and makes the 
wave converge. Since we are using a circular lens the converging rays show 
spherical aberration: instead of a sharply defined focal point they produce a 
caustic-the pattern one sees when light is reflected on the inside of a cup 
filled with milk. 

Notice that there is also a weak reflected wave. This is not an artifact 
of the model; in a reversible medium, theory predicts reflections whenever 
there is a sharp discontinuity in the index of refraction, i.e., in the speed of 
propagation of information. If information arrives faster than it can proceed 
onward, some of it must be reJJ.ected since none can be lost. 



 

Chapter 17 

Collective phenomena 

Every individual endeavors to employ his cap
ital so that its produce may be of greatest 
value. He generally neither intends to pro
mote the public interest, nor knows how much 
he is promoting it. He intends only his own 
security, only his own gain. And he is in this 
led by an invisible hand to promote an end 
which was no part of his intention. By pur
suing his own interest he frequently promotes 
that of society more effectually than when he 
really intends to promote it. 

[Adam Smith] 

It is a common occurrence in nature for a large number of similar elements 
( e.g. molecules, animals) to interact in such a way as to exhibit large-scale 
phenomena not present in the individual elements. An example we have 
already discussed is that of gases: molecules that individually obey rather 
simple collision laws give rise to collective behavior that can be quite varied 
and complex, including sound waves, vortices, and turbulence. 

What is interesting from a modeling viewpoint is that substantially the 
same macroscopic behavior can be obtained starting from "individuals" that 
are much simpler than real molecules, namely, the cells of a cellular automa
ton. Only certain features ( such as, in this case, conservation of particles 
and of momentum) manage to make their effects felt all the way up to the 
macroscopic level; the others become irrelevant on a sufficiently large scale. 

In this chapter we show how cellular automata can be used to simulate 
other collective phenomena such as magnetization, and to study the phase 



186 Chapter 17. Collective phenomena 

transitions that occur at critical values of certain parameters. This phe
nomenology was originally observed in physics, but analogous effects have 
been described in other fields, such as biology and economics, where the in
teracting individuals may be much more complicated than gas molecules. As 
was the case with gases, the essential aspects of these collective phenomena 
can generally be reproduced by cellular automata because they possess the 
essential feature of locality of interaction among a large number of similar 
individuals. 

17.1 Critical parameters and phase transi
tions 

In an ideal gas, the equilibrium state corresponding to given global constraints 
( total energy, momentum, etc.) is unique and undifferentiated; that is, (a) es
sentially all initial states compatible with those constraints eventually evolve 
into the same macroscopic state, and (b) in the absence of external fields, 
samples of the system taken at different places or times all look the same. 

In brief, equilibrium in ideal gases is a rather undistinguished business. Is 
this the case for equilibrium in general? 

Intuitively, many of the properties of matter are the outcome of a contest 
between attractive forces, which tend to induce an orderly local structure, and 
heat, which tends to break up this order. A number of distinctive phenomena 
occur near the so-called critical temperature, where the tendency to achieve 
more local order and the disordering effect of heat are in balance, with no 
long-term winner. 1 

The phenomenology of collective phenomena is extremely varied. Other 
parameters may interact with temperature in establishing critical sets of val
ues, around which smooth changes in some variables lead to strikingly sudden 
(and interesting, if only for that reason) modifications of structure. 

17.2 Ising systems 

As a paradigm for systems having a richer equilibrium phenomenology than 
that of ideal gases we shall consider Ising systems-a class of models that were 
originally introduced in the study of magnetic materials. We shall retain here 
some of the suggestive terminology that comes from that physical context. 

Spins. The "individuals'' of an Ising system are spins (which can be 
naively visualized as little magnets) arranged in a regular array. Unlike gas 
particles, these spins occupy fixed positions: the only thing that is left variable 

1 In a classical "ideal gas" there are no attractive forces: disorder distributes itself as 
evenly as possible, and there is no critical temperature. 



17.2. Ising systems 187 

is a spin's orientation in space. We shall further restrict our attention to 
the case in which a spin is permitted only two orientations, conventionally 
denoted by up (T) and down (l). (One can imagine the "up/down'' axis 
oriented perpendicularly to the plane of the array). For a one-dimensional 
array, a possible configuration of the system would be the following 

... ii li 1i !l i !lll ii! ... 

Two spins will be called parallel if they point in the same direction (ii), 
anti-parallel if they point in opposite directions ( i ! ) . 

Familiarity with ordinary magnets suggests that spins may exert on one 
another forces depending on their mutual orientation and distance and on the 
nature of the intervening medium. In the ca.'3e of Ising systems the analogy is 
retained; however the details of the coupling (which in the original physical 
situation involves quantum-mechanical effects) will be assigned on the basis 
of rather abstract considerations, and only immediately adjacent spins will 
interact (no long-range forces). 

Coupling energy. Let us consider the very simple case of a spin system 
in which the forces between neighboring spins tend to align them. The bond 
between two spins can be visualized a.'3 a spring which is at rest when the 
spins are parallel, and under tension when they are anti-parallel. Each spring 
under tension stores one unit of energy. In the following configuration, where 
the energy of each coupling is explicitly indicated by a O or a 1, 

a b c d e 

···i0Toi1!1i1!0!···, {17.1) 

spin a is aligned with both of its neighbors. If you try to turn it from i to !, 
so as to obtain the configuration 

a b c d e 

···i1!1i1l1T1lol···, (17.2) 

you'll have to fight two springs at the same time, one on the right and one on 
the left, and the system will gain two units of energy; similarly, flipping spin 
c in (17.1) would release two units of energy. On the other hand, spin bin 
(17.1) is in an indifferent energetic situation: if you flip it, as the spring on 
the right is put under tension the one on the left is released, and the overall 
energy of the system remains the same. 

Energy-conserving transformations. In physics, in the time-evolution 
of an isolated system energy is conserved. In the Ising models presented in the 
following sections we'll keep faith with this principle no matter what drastic 
simplifications may be introduced in other respects. 

In a real spin system there may be many more "places" -besides the inter
spin bonds-where energy can be stored, and there are a variety of Ising-type 



188 Chapter 17. Collective phenomena 

models that take this into account, some of which we shall examine later. For 
the moment, however, let us consider a simple model where the only energy 
that matters is that of the inter-spin bonds. In this situation, can we write 
a cellular-automaton rule that makes the system evolve in a nontrivial way 
while obeying a strict energy-conservation policy? 

Suppose for a moment that you update one spin at a time-say, one 
chosen at random; the two possible outcomes of the updating are "flip" and 
"no-flip." If you flip the spin, the only bonds that will be modified are those 
surrounding it. Then, energy conservation will only allow you to flip spins 
that are in an indifferent energetic situation, such as spin b in 

a b c d e 

···iofoj1!0!1i1l· ··. (17.3) 

As soon as bis flipped, spin a-which formerly was ''stuck" in place by ener
getic constraints-becomes a good candidate for flipping: 

a b c d e 

(17.4) 

Thus, one change may lead to another, and after a while the system may have 
evolved by a substantial amount. 

Now, suppose that you are in a hurry to make the system evolve as fast as 
possible. First of all, whenever the spin you happen to choose is not prevented 
from flipping by energetic considerations, you always flip it. Then, you may 
get the help of an assistant: you pick a spin and start working on it, while he 
works on a different one. Of course, both of you flip only energy-indifferent 
spins. As long as the two of you keep a minimum distance apart, everything 
goes well; however, suppose you set your eyes on spin c in {17.3) and your 
assistant on spin d-which happens to be next to it. At either site the energy 
picture looks favorable to a flip; you each flip your spin-but when you look 
at the result 

u b C d e 

··· jojojojofoj1l- ··, (17.5) 

you realize that the total energy has changed from 3 to 1! A spin is energy
indifferent only under the assumption that when you flip it its neighbors 
remain in the same orientation. {This situation is analogous to that of "land 
developers" of Section 9.5.) If one wants to (a) act with a local rule, (b) 
update in parallel as many spins as possible, and (c) conserve energy, a safe 
policy is to update all even-numbered spins at one step, all odd-numbered 
ones at the next step-and so on, back and forth. 

Similar considerations apply to the two-dimensional case. Here spins are 
arranged in an orthogonal lattice, and are connected to their four neighbors 



17.2. Ising systems 189 

by bonds having energy O or 1, as in the following diagram 

[11 1 [f] 1 rn 0 rn 
0 0 0 1 
[IJ 1 [I) 1 rn 0 [!] , (17.6) 
0 1 1 1 
rn 0 rn 1 [!] 1 [!] 

For updating, the lattice is divided into two sublattices, much as in an ordi
nary checkerboard 

(17.7) 

and the two sublattices are updated in alternation. Note that each bond joins 
two cells of different colors, so that at each step its energy may be modified 
only "from one end;" in this way, a purely local accounting scheme is adequate 
to make sure that energy is conserved. 

In what follows, it will be more convenient to denote 'up' by [1] and 'down' 
by~-

In the following sections we shall use the Ising-spin framework to simulate 

• An isolated system, whose energy is strictly conserved. 

• A system that exchanges energy with its environment, either 

- explicitly, by keeping track of individual transactions, so that the 
sum of the energies of the system and the environment is conserved, 
or 

- implicitly, by treating the environment as a massive thermal reser
voir, or heat bath, which gives and takes energy from the system 
with certain probabilities but is not itself significantly affected by 
these exchanges. In the latter case the energy of the system is 
conserved only in a statistical sense. 

The implicit (heat-bath) approach is traditional, having been used for 
many decades of numerical and theoretical work on the Ising model. The 
explicit-environment approach was introduced and extensively discussed by 
Creutz[13]. The isolated system approach (discussed in the next section) 
though conceptually simplest, has been used in large scale simulations only 
recently (by Herrmann[26J). It is based on the Q2R rule discovered by 
Vichniac[66] using CAM, and shown by Pomeau[45] to provide a conserva
tive dynamics for the Ising model. 



190 Chapter 17. Collective phenomena 

17.3 Spins only 

With CAM, the above Ising system can be realized as follows. The spatial 
phases are used to establish the checkerboard pattern (cf. Section 11.6), so 
that even- and odd-numbered sites can be updated in alternation. Spins are 
in plane 0, with state [I] denoting "spin up" and [QI, "spin down." In the 
currently active sublattice, any spin that can be flipped with no energy gain 
or loss ( with four neighbors, this corresponds to having exactly two neighbors 
of each kind) will be flipped. The rule, called SPINS-ONLY, operates in the 
following run-cycle context: 

NEW-EXPERIMENT 
N/VONN .t/HV 

tHORZ &-VERT• 

NORTH SOlITH WEST EA.ST+++ 

ACTIVE-SITE ( -- FIT) 

4SUM ( -- 0, . . ,4) 

u 
CENTER \ unchanged 

FLIP 
CENTER NOT \ flipped 

ACTIVE-SITE IF 
4SUM { U U FLIP U U} ELSE 

CENTER THEN >PLNO 
MAKE-TABLE SPINS-ONLY 

<ORG-H> NOT IS <ORG-H> 

STEP CHANGE-LATTICE 
MAKE-CYCLE ALT-LATTICE 

SPINS-ONLY 

CHANGE-LATTICE 

ALT-LATTICE 

The word ACTIVE-SITE locates those spins that belong to the currently active 
checkerboard sublattice { tHORZ = .tVERT ); the alternation between active sublattices 
is brought about by the run-cycle ALT-LATTICE, which complements the ''phasing'' 
of ltHORZ at every step. 4SUM counts the number of spin-up neighbors; SPINS-ONLY 
uses this count to decide whether to flip a spin or leave it unchanged; the spin will be 
flipped if it is in an indifferent energy situation, i.e., if it has exactly two neighbors 
of each kind ( 4SUM=2). 

Let's fill the plane at random with half of the spins up and half down 
and run the rule: as one might expect, the chaos keeps churning and nothing 
significant happens. 

Now, let's try with one quarter of the spins up-a somewhat thinner 
random soup. Soon this soup coalesces into an "emulsion" of smallish black 
and white globs separated by irregular, unsteady boundaries (Figure 17.la). 
After a while, the amounts of black and white will be approximately equal; if 



17.3. Spins only 191 

you measure and record step-after-step the fraction u of spins up ( this can be 
done on-the-fly, without interrupting the simulation, as. explained in Chapter 
7.7), you'll find that this fraction remains close to 1/2, with small , short-term 
fluctuations. 

Figure 17.1: Equilibrium configuration (a) above the critical energy and (b) at the 
critical energy. 

Note that the number of [I]'s is definitely not conserved. On the other 
hand, the overall length of the boundary between black and white areas is 
conserved; in fact, each unit segment of this boundary separates two adjacent 
spins having opposite orientations - and thus represents one unit of bond en
ergy. For an initial random configuration in which spins up have a probability 
p, the (expected) energy per site,2 t, is given by the relation i = 4p(l - p) , 
plotted below 

a..-- ----------, 

(17.8) 

2It is convenient here to divide the total energy of the array, E, by the number of sites, 
so that the resulting energy range is independent of the size of the array. 



192 Chapter 17. Collective phenomena 

This relation can be used to calibrate in terms of energy the dial of the 
random-number generator used for constructing the initial configuration. 3 

The dynamics of SPINS-ONLY is reversible, and indeed is equivalent ( cf. 
Section 14.3) to a second-order reversible rule[66]. If you stop the simulation, 
issue the command CHANGE-LATTICE, and resume, the system will go back
wards in time. If the system has run forward for two hours, on the backward 
run the fraction u of spins up will spend the best part of two hours hovering 
about 1/2, in an apparently aimless way, but in the last few seconds it will 
suddenly drop down to 1/4-the value you started with. 

In place of the fraction u of spins up it is customary in the literature to 
speak of the magnetization of the sample, defined asµ= u- (1- u) (i.e., the 
fraction of spins up minus that of spins down). When all of the spins are up 
µ = + 1, while when they are all down µ = -1. 

As the initial random fraction of spins up-and correspondingly the energy 
f-is gradually lowered, the average size of the black and white blobs becomes 
larger, but the equilibrium distribution of the two colors remains in balance 
(µ = 0). This trend continues until f. reaches a critical value f.crit (Figure 
17.lb ); at that point, µ very suddenly starts departing from zero. As the 
energy is further decreased below the critical value, µ will settle on one of 
the two values indicated in Figure 17.2: two distinct equilibrium states are 
equally possible, one with a white majority, as in Figure 17.3a, and one with a 
black majority. The curve was obtained experimentally by Charles Bennett, 
using CAM. 

When f. is still just slightly below f.crit-and thus the two values ofµ differ 
by little-the system may occasionally be observed to swing quite suddenly 
from one equilibrium state to the other. At lower energies this spontaneous 
reversal of magnetization becomes virtually impossible. 

For the above reason, some attention must be given to preparing symmet
ric initial conditions if one wants to observe the symmetry-breaking implied 
by Figure 17.2. 4 One procedure is to prepare a non-equilibrium state having 
f. < f.crit but u = 1/2. For example, one can fill half of the array with, say, 
5% of [IJ's, and the other half with 5% of ~'s. This balance is precarious: the 
boundary between the two regions will swing wildly (Figure 17.3b), the re
gions themselves will break up, and eventually one color will dominate ( with 
equal chances for the two colors). 

3 The largest energy achievable with a random distribution of spins is E = 1, for p = 1/2. 
However, the largest possible value is E = 2, achieved by a completely regular configuration 
where one of the sublattices contains all [IJ's and the other all (ffl's; in this case, every bond 
is "excited." 

4Note that in (17.8) the same value of E can be obtained for two different settings of 
p. Below the critical point, however, the lower setting of p will result with overwhelming 
probability in the lower value for u (and similarly for the higher setting). 



17.4. Energy banks 193 

ti ~- .. ........... ·, 

½ 

Figure 17.2: Magnetization µ versus energy f. Below the critical value fcrit, two 
distinct values of µ are possible. 

.:~fl::Jt 
•. , · . ,I , ·."' 1·,· . f .. . 

. f,--~'J. : ·, ... .. 
:_~,.~t-~~= ~:!" i~·; -~-,-~' -.· '·· ' · 

'~if1f}l 
Figure 17.3: (a) One of the two equilibrium states below the critical energy. (b) 
Approach to equilibrium from a non-equilibrium state. 

The sharpness of the critical point depends on the size of the array. Only in 
the ideal case of an infinitely extended array does this point become perfectly 
localized. 

17.4 Energy banks 

For a given spin system, consider the set f(E) of all configurations having a 
certain energy E. A question of wide interest in statistical mechanics is how 



194 Chapter 17. Collective phenomena 

the properties of this set vary as a function of E. 
Even for systems having a moderate number N of spins the size of this 

set is astronomical ( since the number of configurations grows exponentially 
with N1; it is clear that one cannot explicitly generate and examine all the 
configurations of a given energy. However, a relatively small sample of r 
may give a good approximation of the statistical properties of the entire set, 
provided that the sampling procedure is somehow "fair." 

To construct such a sample one could choose new configurations com
pletely at random, calculate their energy, and take only those whose energy 
equals E; this approach is extremely inefficient and is hardly ever used in 
practice. The dynamics discussed in the previous section can be seen as a 
cheaper approach to the same goal: one starts from a configuration of known 
energy E and by a series of local changes constructs new configurations hav
ing the same energy-thus walking more or less at random through the set 
f(E). In this way one never has to explicitly calculate the energy of a config
uration ( only to realize, in the majority of cases, that that configuration was 
not among the ones sought!): one just 1'knows'' that each new configuration 
has the same energy E as the initial one. On the other hand, with this timid 
exploratory approach one may get stuck forever in one "valley" of energy E: 
there may be no level path around a barrier that separates this valley from 
another one of equal energy ( or existing level paths may be so long and de
vious that the chances of following one to the end are negligible). Can we 
set up a bank from which modest amounts of energy can be borrowed to go 
uphill, later to be returned when going downhill? 

In the following Ising model, each cell is equipped with a little "piggy
bank" capable of storing just one coin-worth two energy units (cf. [13]). The 
spins will be in plane O as before, and the banks in plane l. The instructions 
for each site are 

• If you can flip the spin with no energy gain or loss, do it. 

• If flipping would release two energy units and the bank is empty, flip 
the spin and put the energy in the bank. 

• If flipping would require two units of energy and the bank is full, take 
the energy from the bank and flip the spin. 

The new rule, SPINS-BANK, defined below, uses the same run-cycle environ
ment as SPINS-ONLY of the previous example. 5 

5Plane 1 is now used for the banks rather than for the usual ECHO of plane O (cf. Section 
3.2), and the colors on the screen will reflect this role. If an ECHO is desired, a plane of 
CAM-B can be devoted to this function, or an output function can be used to achieve the 
same effect without tying up a plane. 



17.4. Energy banks 

NORTH SOUTH WEST EAST+++ 
CENTER IF 4 SWAP - THEN 

CENTER' { 0 3} 

CENTER' { 3 0} 

CENTERS 
ACTIVE-SITE IF 

BONDS { 0 GET 1 PUT O} 
XOR THEN 

>PLNA 

BONDS ( -- 0, .. ,4) 

GET 

PUT 

SPINS-BANK 

195 

With CENTERS , we put the joint state of the spin and its bank on the stack, and 
then we use the value of the bond energy, namely BONDS, to decide how to alter this 
state-by XOR'ing it with an appropriate mask. A mask of O means no change ; 1, 
complement only the spin bit; and 3 , complement both spin and bank. BONDS is 
just the sum of the four neighbors if the spin bit is [Q], and its complement relative 
to 4 if the spin bit is II). If the bond energy is O or 4 we leave everything unchanged. 
If BONDS =2 we flip the spin without making recourse to the bank. GET and PUT , 
corresponding respectively to energy values of 1 and 3, check if the bank is available 
for the desired transaction; if so, they produce a mask that complements both bits 
of CENTERS (the spin bit, to flip the spin, and the bank bit, to move two units of 
energy in or out of the bank); otherwise they return a "no change" mask. 

We can play with this rule. Start with empty banks and fill the spin 
plane with, say, 50% of [I)'s. Run for a few seconds, until spins and banks 
axe at equilibrium; since some of the initial bond energy is now stored away 
in the banks, the configuration in the spin plane will look pretty much like 
that of Figure 17.la-where we had started with a lower energy. Now clear 
plane 1, thus wiping away all the savings; the spin configuration will adjust 
by making more deposits until the two forms of currency {bonds and savings) 
axe again at equilibrium with one another (Figure 17.4a). You can repeat 
this procedure to bring the system to a state of lower and lower energy. 

In the intervals between your interventions, the system's total energy is 
strictly constant. However, the energy of the spin component is, at equi
librium, only approximately constant; repeated measurements will reveal an 
energy distribution having some spread about a central value E. The appro
priate parameter for describing the equilibrium state of the spin plane is no 
longer energy, but temperature: 6 stealing energy from the banks "cools" the 
spin system, and adding energy "heats'' it. As in the previous model, a phase 
transition similar to that of Figure 17.2 will occur at a certain critical value 

6 In this context, the concept of 'temperature' is well-defined only in the limit of an 
in.finite spin system; this term will acquire its strict technical sense even for a finite spin 
system in the model introduced in the next section. 



196 Chapter 17. Collective phenomena 

·.'.' ' · ... ·' ... .... ~ 

Figure 17.4: (a) Equilibrium state of Ising model with energy banks, a little below 
the critical point. Spins up are colored dark-gray {bank empty) or black (bank 
full), while spins down are colored respectively white and light-gray . (b) Checkered 
phases appear as the temperature goes above the upper critical point; the right half 
of the con.figuration is shown XOR'ed with a checkerboard pattern. 

( of the energy of the spin/bank system, or of the temperature of the its spin 
component). 

As we have seen, at low temperature the spin system neatly separates 
into two phases (states of matter having a well-defined composition and mi
croscopic texture); in one phase most spins are aligned upwards, in the other, 
downwards . Regions of one phase are separated from regions of the other 
phase by boundaries that become more sharply defined and straighter as the 
temperature decreases (cf. Section 5.4). What will happen if we pump more 
and more energy into the banks? The result, shown in Figure 17.4b, could 
have been guessed from the cue of footnote 3. The system again separates into 
two phases; this time, however, in each phase adjacent spins are anti-parallel 
rather than parallel, and thus the microscopic arrangement is a checkered one; 
in one of the phases the [I]'s are positioned on the even sublattice, in the other, 
on the odd sublattice. (Figure 17.4b is a split-screen picture. The left-hand 
side shows only the spins, arranged in checkerboard domains that only differ 
by the relative phase of the checkerboard; the right-hand side of the picture 
is the right half of the same configuration, but was correlated, i.e., XOR'ed, 
with a checkerboard of a given phase, so as to clearly show the two kinds of 
domains.) In this spin system, increasing the energy beyond a certain point 
brings about order rather than disorder! 7 The curve that plots the fraction 

7This phenomenon is well known in physics, and has led to the coining the term ''nega
tive temperature ." One may imagine the temperature axis to be wrapped around, so that 



17.5. Heat bath 197 

v occupied by either of the two checkered phases runs for a while at the level 
1/2 as the temperature is increased but eventually , as more energy is added, 
splits into two lines (in analogy with that of Figure 17.2). Thus, alongside a 
critical temperature associated with the parallel phases, the system possesses 
a second critical temperature associated with the anti-parallel ones. 

17.5 Heat bath 

In the previous example (spins with banks) one might be tempted to view the 
bond energy as potential energy, and the energy stored in each bank as kinetic 
energy associated with the corresponding spin: if a spin has enough kinetic 
energy it can use it to climb a potential hill of a certain height . However, this 
analogy does not lend itself to useful generalizations; what really matters is 
that we have introduced a new energy account in addition to that of inter
spin bonds, and that the two accounts are coupled in a reversible way so that 
they can achieve statistical equilibrium with one another. 

The capacity of the banks may be increased, 8 neighboring banks may be 
allowed to transfer energy between one another, and transactions may be 
subject to more complicated rules (for example, a spin may not be allowed 
to perform two bank transactions in a row). As we proceed in this direction, 
from the viewpoint of an . individual spin the mechanics of the underlying 
banking complex becomes too involved to track in detail, and (as in real life) 
transactions with the bank take on a probabilistic flavor. The concept of 
heat has been invented to deal with energy that presents itself in this random 
form. 

From a macroscopic point of view one may visualize the array of spins 
as laid out on a thermal substrate having a heat capacity proportional to 
the size of the banks and a thermal conductivity proportional to the ease of 
exchanging sums between banks. Near equilibrium, deposits and withdrawals 
made by an individual spin average out in the long run, and the banks have 
time to equalize their holdings; in this situation, the whole banking complex 
can be treated as a monolithic heat reservoir whose willingness to supply 
energy is described by a single parameter, namely temperature. 

From a practical point of view, the heat-bath approach dispenses with 
the many variables representing the banks, and replaces them by a random 
number generator which decides each banking transaction probabilistically. 

by increasing the temperature one eventually reaches zero again, passing through negative 
temperatures of decreasing absolute value. With this convention , the two ordered textures 
(all parallel, all anti-parallel) of the spin lattice both correspond to temperatures that are 
close to zero--one positive and the other negative . 

8With the resources of one CAM module , for example , an easy thing to do is use the 
bits of a third plane so that banks can deal with coins worth four-as well as two--energy 
units (in this way , isolated [I]'s and [Q]'s also get a chance to flip). 



198 Chapter 17. Collective phenomena 

It is an elementary result of equilibrium statistical mechanics that a heat 
bath has a well-defined temperature T if and only if, for any energy change 
t::.E, the probability P(t::.E) that a request for a loan of size t::.E will be 
granted and the probability P(-t::.E) that a deposit of the same amount will 
be accepted are connected by the relation 

P(t::.E) _ -ffi-
P(-t::.E) - e ' 

(17.9) 

where k is a proportionality constant that defines the units in which temper
ature is measured. 

To set up a CAM experiment appropriate to this situation, observe that, 
in the spin system we have been considering, a spin flip may only involve one 
of the following values for the change of energy of the spin system, t::.E 

-4, -2, 0, +2, +4, 

( as one can easily verify). Therefore, the corresponding probabilities 

P-4,P-2,Po,P2,P4 

must be set up so that 

P4 = ( P2 )2, 
P-4 P-2 

and P2 - 2 J -=e 1.'l", 
P-2 

where the energy amount associated with a bond has been written as J so 
as to make the dimensional aspects clearer. Since we are dealing only with 
ratios, there is some latitude in choosing the probabilities themselves; for 
simplicity, we shall choose Po= P2 = p4 = 1, so that the final values are 

with 

p 2 ,P, 1, 1, 1, 

T= 2J 
klogp 

(17.10) 

(17.11) 

The last relation allows us to calibrate the setting p of the random number 
generator in terms of T. 

We shall put the spins in plane 0, as usual, and use CAM-Bas a random
number generator. In CAM-B, each plane will independently provide 1 's with 
a probability p, so that by AND'ing the two bits one obtains 1 's with a prob
ability p2 • Access to CAM-B demands that the minor neighbor assignment for 
CAM-A be t/CENTERS-and thus cuts us off from access to the spatial phases. 
To avoid using a custom neighborhood, we shall synthesize the ACTIVE-SITE 
pseudo-neighbor by initializing plane 1 with with a checkerboard pattern and 
complementing this plane at every step, much as we did in Section 10.1. The 
rule for this system is 



17.5. Heat bath 

CAM-A N/VONN &/CENTERS 
ACTIVE-SITE ( -- 011) 

CENTER' \ checkerboard 
CHANGE-LATTICE 

CENTER' NOT >PLN1 \ complement chckrbrd 
MAKE-TABLE CHANGE-LATTICE 

&CENTER 

&CENTER &'CENTER' AND 

NORTH SOUTH WEST EAST+++ 

CENTER IF 
4SUM ELSE 

4 4SUM THEN 

CENTER 
ACTIVE-SITE IF 

DELTA { P2 P 1 1 1} 
XOR THEN 

>PLNO 
MAKE-TABLE SPIN-CANON 

p ( 011) 

P2 ( 011) 

4SUM 

DELTA ( -- 0, .. ,4) 

SPIN-CANON 

199 

From the state of the cell and that of its neighbors, DELTA computes the value of 
the energy exchange in a form that is useable by the case statement (i.e., tlE/2+2 
rather than tlE). This value is used by SPIN-CANON to select one of the five 
probability values assigned in (17.10). The bits P and P2, corresponding to the 
probabilities p and p2 , are obtained from the random-number generator in CAM-B. 

A system such as the SPIN-CANON model that exchanges energy freely 
with an external thermal reservoir is called canonical. By contrast a self 
contained deterministic system such as the SPINS-ONLY model of Section 17.3 
is called microcanonical. The behavior of the two models is nevertheless 
rather similar, because in the microcanonical model each part of the system 
exchanges energy with a "thermal reservoir" consisting of the rest of the 
system. Figure 17.5 shows (a) a typical configuration and (b) a time-exposure 
just below the critical temperature. Note that, unlike Figure 17.3a, there are 
no isolated spins that remain stuck in the same direction for a long time: 
the thermal reservoir is capable of giving or accepting, with an appropriate 
probability, any amount of energy.9 

In Figure 17.6 we show the magnetization-vs-temperature curve for this 
system, as determined experimentally by Charles Bennett on a large number 

9 Two-bit bankers, capable of loaning the entire energy needed for an isolated spin to 
flip, allow a system to overcome energy barriers almost as efficiently as with a thermal 
reservoirf 13]. 



200 Chapter 17. Collective phenomena 

of runs with CAM. 10 

From a practical viewpoint, the introduction of a heat bath is justified by 
a faster and more thorough equilibration. On the other hand, the explicit 
banks and the spins-only approach preserve certain aspects of the dynamics 
of a real physical system that are lost with the heat bath approach. "Because 
the temperature of the system is internally determined, heat flow and thermal 
conductivity can be studied numerically. It is not clear that these concepts 
have any meaning in a conventional Monte Carlo simulation." [13] 

Figure 17.5: (a) Typical spin configuration in the canonical model, near the critical 
temperature. (b) Time-exposure in the same conditions; no spins remain stuck 
indefinitely. 

17.6 Displaying the energy 

So far, energy in the Ising model has played the role of a rather abstract 
quantity-a relation between objects (the spins) rather than an object itself. 11 

As a preliminary to constructing models in which energy is treated as a 
state variable on its own account, it will be useful to give it a more material 
existence by directly displaying it on the screen. 

Let's go back to the ''spins only" model of Section 17.3, where the only 
energy involved is that of the inter-spin bonds. This energy sits, so to speak, 

10To minimize correlations in the random-number generator-and thus achieve results 
that could be directly compared with those in the literature-this experiment used the 
technique mentioned at the end of Section 15.6. 

11 In the lattice gas models considered before, the energy is purely kinetic and accompa
nies the particles in a one-to-one correspondence, so that this distinction does not arise. 



17.6. Displaying the energy 201 

+1 .---=---------~ 

:, 
·•.-:, 

.. :? 

l 
•' -~-

-1 '---=---..,_.. _____ ...J 

o e-2 Vtr 11z 

Figure 17 .6: Magnetization µ in the canonical-ensemble model, versus the Monte 
Carlo acceptance probability. Note the sharp transition at the critical temperature 
Tcrit· 

on the edges between adjacent cells, and these edges are twice as many as 
the cells, so that we cannot devote a whole pixel to each energy token. A 
simple solution is to associate with each pixel the total bond energy of the 
corresponding spin, and represent the five possible values, 0 through 4 , by 
five colors or five levels of gray. Note that each bond will give a contribution to 
two adjacent pixels, since it 1'belongs11 to two spins, and thus will be somewhat 
smeared in the picture. We can get a sharper picture if we associate with each 
pixel only the two bonds to the north and to the west of it, so that each bond 
appears only in one place on the screen. Let's use this second approach, 
and choose to represent the three energy levels for a pixel, O, 1, and 2, 
respectively by white, gray, and black. 

Naturally, we would like to display the energy while the simulation is 
running, so that we can directly view its evolution; therefore we need two 
look-up tables-one to compute the next state of a cell and send it to the 
bit-planes (transition function), and one to compute the cell's bond energy 
and send it to the monitor (output function); both of these tables must see 
the whole neighborhood. As explained in Section 7.7, computing an output 
function is one of the intended uses for the auxiliary tables. 

The energy of the north and west bonds is computed by the auxiliary 
table programmed as follows 

NORTH CENTER XOR >AUXO 
WEST CENTER XOR >AUXl 

MAKE-TABLE ENERGY-DISPLAY 

ENERGY-DISPLAY 
\ north bond 
\ west bond 

The command SHOW-FUNCTION instructs the color map to take its input data 



202 Chapter 17. Collective phenomena 

from this table rather than directly from the planes. 

If we run the experiment of Figure 17.3a in this fashion, we'll see energy 
''ropes" wiggling about the screen, as in Figure 17. 7; a good deal of the energy 
is concentrated on the boundaries between spin-up and spin-down domains, 
while the rest surrounds isolated spins. Not only is energy conserved, but 
it is conserved on a local basis: it cannot increase here and decrease there 
without passing through the points in between. In other words, it obeys the 
continuity equation, and on the screen one can observe it smoothly flow from 
place to place. 

. :~ . __ ...... _ 

· . .: ::_ ,:,. .. ~_.:. 
. ·.: . :. :: :: .:~:. ·: ·.' ...... / 

Figure 17.7: (a) A typical spin configuration; {b) the same configuration, but dis
playing the energy rather than the spins. 

Assume, for a moment, that we were displaying on the screen each indi
vidual bond, rather than bunching them two per pixel.12 The energy picture 
on the screen would still contain less information than the spin plane; that 
is, knowing the state of the spins one can always calculate the bond energy, 
but knowing this energy one is left with some uncertainty as to the state of 
the spins. For example, if you see a sharp energy line here you know that the 
spins on the two sides of it are pointing in opposite directions; but you can't 
tell on which side the "up" spins are. 

On the other hand, the motions through which the energy goes on the 
screen seem to have a definite logic of their own. The question we are going 
to ask is, "From a given energy configuration, do we have enough information 
to determine the next energy connguration? Can we give a dynamics for the 
energy alone?" 

12 We could color the north bond red and the west one green, so that yellow would indicate 
the presence of both. 



17. 7. Bonds only 203 

More formally, if T is the dynamics of the spins and v the energy function, 
as in the following diagram 

energy energy energy 
state state state 

T 

tv 
T 

1v Iv 
s~m s~m T s~m T -- sate ---+ sate -- sate --

(17.12) 

can we construct a dynamics r' directly for the energy, obeying the following 
commutative diagram? 

energy r ' energy energy r' energy 
state - state state ----+ state 

tv tv {17.13) 
sgn T s~in s~in T s~m 
sate ----+ sate sate ----+ sate 

17.7 Bonds only 

For the spins-only model, the answer to the previous question is, Yes! The 
best way to convince ourselves of this is to make a cellular-automaton model 
of a spin system in which the energy bonds themselves, rather than the spins , 
play the role of state-variables. 

In this model the contents of each cell corresponds to the state of a bond. 
In the following diagram the squares represent cells, just as in Figure 12.1, 
and the spins (which are not explicitly represented in the model) must be 
imagined sitting at the intersections of two thick lines or two thin lines, in 
the positions indicated by the small black boxes. 

-
. 

. 

The following diagram illustrates a typical configuration of spin values 
and bond values in the new layout 

[!] 11] [I] [I) 

0 0 1 0 1 1 
[!] II] 11] 

1 0 1 0 1 0 
II] 11] [I] !II 

Note that, with respect to the previous model (cf. diagram (17.6)), the axes 
of the spin lattice have been rotated by 45 ° and the scale magnified by v'2. 



204 Chapter 17. Collective phenomena 

The area corresponding to a given portion of the system is now twice as 
large-which is not surprising since there are twice as many bonds as spins. 

In this diagram, assuming that it's the turn of the middle row's spins to 
be updated , after one step the situation will have changed to 

0 

1 

0 

0 

[f) 

[f) 

0 

0 

1 

1 

1 

1 

1 

0 

Only the spin at the center of the picture has flipped, since according to the 
SPINS-ONLY rule a spin flips when its bond energy equals 2. 

Note that when this happens, all four bonds surrounding the spin are 
affected; thus, for the evolution of the bonds we'll need a block rule with 
four cells to a block. Moreover, the spins on the thick lines are updated in 
alternation with those on the thin lines (since SPINS-ONLY uses alternating 
checkerboard sublattices); therefore the alternating block-partitions of the 
Margolus neighborhood will suit us perfectly . 

Denoting a unit of energy by a "particle," the bond-updating rule corre
sponding to the spin-updating rule SPINS-ONLY 1s 

(17.14) 

all other entries being "no change." This rule, which we'll call BONDS-ONLY, 
is illustrated in Plate 14. Besides the scale factor, the structure is of the same 
kind as that of 17.7b. 

By comparing the new model with the old we can gain some insight into 
the dynamics of an Ising system. 

To begin with, if the energy picture is an incomplete one, in the sense that 
it lacks some of the information, how can it so faithfully track the evolution 
of the spin picture? How much information is actually missing? 

Consider the spin model, and flip all the spins: the energy does not 
change, but neither does the evolution change-the only difference is that 
black areas are now white and vice versa: the dynamics is invariant under 
complementation. 13 The decision to interpret the state of a cell as ''spin up" 
or ''spin down'' is a single binary choice; once that choice is made, the inter
pretation for all the other cells is completely determined by the values of the 

13 1n the physical counterpart of an Ising system, this symmetry would be broken by the 
presence an external magnetic field. The interaction of spins in a field requires, of course, 
a more complex model. 



17.8. Spin glasses 205 

bonds. The bit corresponding to that choice is the only piece of information 
that is missing from the energy picture-and its value does not change in 
time: why bother to carry it along all the way through the simulation? This 
is precisely what the energy model manages to avoid. 

In conclusion, the dynamics of the spin system can be "factored" into 
two components. One consists of a single bit, which is constant; the other 
component is indistinguishable from the dynamics of the bond-energy system. 

Having gained this insight, we may now ask, "If the new model manages 
to shirk carrying the burden of a 'dead' bit, how come it ends up using twice 
as much storage as the old model? What is all that extra information doing 
anyhow?" 

Let us consider a configuration of bonds like that of ( 17 .15a), and try to 
reconstruct a compatible configuration for the surrounding spins. 

(a) 0 
0 

0 

D 

0 

0 

1 
D (b) 

0 

0 

0 

1 
(17.15) 

If we choose [I) for the spin at the top of the diagram, as in ( 17 .15b), the 
two spins adjacent to it must have the same orientation as it, since the cor
responding bonds have zero energy; however, the orientation of the last spin 
(marked CT]) cannot be assigned in a way that is consistent with the remaining 
two bonds-one of which suggests 00 and the other[!] for it. 

Thus, many of the possible bond configurations are not compatible with 
any spin configuration, 14 and in this sense are meaningless as initial states 
for the energy model: in creating an initial configuration for this model, for 
every ten bonds that we can freely specify there will be ten whose assignment 
is forced. 

In view of this redundancy, does the energy model have any redeeming 
features? Can we put this redundancy to some good use? 

17.8 Spin glasses 

Let us retrace our steps back to Section 17.2, where we had considered a row 
of spins connected by elastic bonds. If two adjacent spins were parallel, the 

14To see what configurations are not legitimate, consider the two 2x2-block partitions 
(out of the four possible) that are not used by the Margolus neighborhood. The parity 
of the energy of any of these blocks ( that is, whether the value of the energy is even or 
odd) remains unchanged when a spin--or, for that matter, any number of spins-is flipped. 
In the energy configuration consisting of all zero's, which is certainly legitimate because 
it corresponds to all spins parallel, all these blocks have even parity; thus, the legitimate 
energy configurations are those where all these blocks have an even parity. 



206 Chapter 17. Collective phenomena 

bond between them was "relaxed;" if they were anti-parallel, the bond was 
"excited." A bond of this kind is called ferromagnetic. 

In different physical situations the coupling between spins is better de
scribed by anti-ferromagnetic bonds, which have the opposite properties
i.e., are relaxed when the spins are anti-parallel. The behavior of anti
ferromagnetic spin systems is of course different from that of the ferromag
netic ones. However, in the absence of an external magnetic field the differ
ence between the two systems is trivial: if every other spin of a ferromagnetic 
system is "read" as if it had the opposite orientation, then its dynamics is 
identical to that of an anti-ferromagnetic one. With this proviso, the same 
model will do double duty (cf. the symmetry between parallel phases at low 
temperatures and anti-parallel phases at high temperatures mentioned at the 
end of Section 17.4). 

There are also systems, called spin glasses, that are best modeled assuming 
that a random fraction of the bonds are of a ferromagnetic nature and the 
remainder anti-ferromagnetic. Thus, in a spin-glass model the nature of each 
bond must be explicitly specified, as in the following diagram-where '=' 
denotes a ferromagnetic bond and '=/a' an antiferromagnetic one. 

[I] 1= [!] 0# [II 1# [I] 

0= 0= 1# 1= 
[I] 1= [!] l= [I] 0= [.ti 

' 
(17.16) 

0= 0# 1= 1= 
[I] 1# [I] 1= l!I 1= [I] 

The energy of a bond is now a function not only of the orientation of the 
spins it connects, but also of the type (ferromagnetic or anti-ferromagnetic) 
of the bond itself. 

Spin glasses represent an important paradigm for the study of order and 
disorder in matter[41] , as well as for certain recent approaches to optimiza
tion[30,49]. In most simple physical systems the equilibrium state at low 
temperature, or ground state, is essentially unique. Certain Ising systems 
display two distinct ground states, as we have seen in the previous sections, 
and that is unusual enough to make them interesting. Spin glasses display a 
multitude of ground states-a property which allows for the nontrivial storage 
and processing of information. 

Since the total number of bonds is twice that of spins, if we want to model 
a spin-glass system by a cellular automaton in which the state variables cor
respond to the spins, as in Section 17.3, we'll need three bits of information 
per site; that is, the state of the spin and, for instance, the type of the north 
bond and that of the west bond (cf. beginning of Section 17.6). The informa
tion about the bonds can be stored in two extra bit-planes; 15 note that these 

15 1n CAM, one could use planes 2 and 3 for this purpose, and use a custom neighborhood 
in order to allow CAM-A to see more than just &!CENTERS. 



17.8. Spin glasses 207 

bit-planes would not have to be updated, since the type of an individual bond 
is a fixed parameter of the model rather than a state variable . We shall not 
bother the reader with implementation details, except for remarking that the 
two lattices ( one for the spins and one for the bonds) have a slightly different 
structure and are offset with respect to one another; from an implementation 
viewpoint this constitutes a minor nuisance. 

When we turn our attention to a cellular-automaton model in which cells 
represent bond states rather than spin states, as was the case in the previous 
section for Ising systems, we are in for a pleasant surprise. The simple BONDS

ONLY rule of (17.14), which we repeat here 

(17.17) 

is perfectly adequate for modeling the new system, and the redundancy 
that we had noted there-the extra burden of information we were carry
ing along-is just enough to allow us to represent the effect of bonds of two 
different types . The problem of (17.15a)-to find an assignment of spins com
patible with a given assignment of bonds-always has a solution now that the 
unknowns are not only spins but also bond types; here is a possible solution 

(a) D 
0 

0 

D 

D 

0 

1 
D (b) 

0= 

0= 

0= 

(17.18) 
Indeed, there is a multiplicity of solutions-but all of them lead to the same 
dynamics for the energy. As before, the energy model "factors out" some 
information that is irrelevant to the dynamics; in this case, however, this 
information is much more than just one bit: it's actually one bit per site. By 
shedding this burden, the ''energy" model manages to capture the dynamics 
of a spin-glass system by using only two bits per site (rather than three as in 
the "spin" model) .16 

The notation ( 17 .17) clearly shows that in this model energy is treated 
as an indestructible material particle that can move about subject to certain 
constraints; energy conservation and reversibility are made obvious. 

In conclusion, a certain kind of system may have come to our attention 
because of its theoretical relevance, and we may be tempted to look upon 

16 A transformation that can be applied to a system without affecting its dynamics is 
called ... gauge transformation; here, a single "energy" system models a whole class of 
"spin" systems that are equivalent up to a gauge transformation. 



208 Chapter 17. Collective phenomena 

issues of how to concretely model it as being of marginal conceptual impor
tance. However, a careful analysis of implementation methods and trade-offs 
may lead not only to models that are more compact and efficient, but also to 
models that provide a better insight into the system itself. 



 

Chapter 18 

Ballistic computation 

What kind of building blocks must one have available in order to build com
puters? 

Arguments developed by mathematical logic and computer science in the 
last few decades show that if the issue is just one of feasibility-rather than 
speed or efficiency-extremely simple hardware, when available in a suffi
ciently large· amount, is capable of performing the most complex computing 
task that can be performed by any hardware at all (cf. Section 5.5). In prin
ciple, evolution, life, and intelligence can take place within a world governed 
by a very simple cellular-automaton rule. 

The arguments mentioned above do not worry about whether the primi
tive mechanisms used in the construction are reversible, and in fact today's 
computers are based on noninvertible logic elements. For example, the AND 

gate, defined by the following input/output table 

IP q Ip AND q I 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

yields an irreversible computation step: when the output is O you can't tell 
for sure what the input was; assuming that the four input combinations occur 
with equal probabilities, the AND operation erases about 1.19 bits of infor
mation. 

However, the microscopic mechanisms of physics are ( as far as we know) 
strictly reversible; how do people manage, then, to build and operate com
puters containing irreversible logic elements such as the AND gate? What is 



210 Chapter 18. . Ballistic computation 

actually done is the following. The irreversible behavior of a logic element 
is simulated by a rather large and complex (by microscopic standards) piece 
of reversible machinery. The information that the logical element seems to 
be erasing is not destroyed after all ( this can't happen in physics )-it is just 
turned into heat and carried elsewhere by an air conditioner; at the same 
time, a fresh supply of signals is provided by a power supply. All of this 
is unavoidable as long as we insist on building computers out of irreversible 
logic (cf. Landauer's seminal paper[32].) 

Can one design a computer based on reversible logical elements?(4] Can 
such elements be implemented directly at the level of microscopic physics? 1 

The model of computation presented here is based on reversible mech
anisms of the kind considered by classical mechanics ( which is not actual 
physics yet, but a useful idealization of it). We'll also implement this model 
as a cellular automaton. In this way we'll make two points: (a) that cellular 
automata can easily model certain aspects of physics, and (b) that, even when 
requested to obey the constraint of microscopic reversibility, these models are 
powerful enough to be capable of displaying arbitrarily complex behavior. 

18.1 The billiard-ball model of computation 

In the course of research concerned with the ultimate physical bases of com
putation, Edward Fredkin of MIT devised a model of digital computation[l 7] 
which explicitly reflects some basic properties of physics-in particular, the 
reversibility of microscopic processes. 

In this two-dimensional model, identical balls of finite diameter travel at 
constant speed and collide elastically with one another and with flat mirrors. 
The computation is encoded in the initial condition of the system and per
formed by the ordinary dynamics of the collisions. A bit of information is 
represented by the presence or the absence of a ball at a given time and place; 
wires are represented by the possible ball paths, routed as needed by mirrors; 
and logic operations are performed where two balls may collide (the presence 
or absence of a ball on a given path may influence, via a collision, whether a 
ball will be present or absent on another path). 

The "billiard-ball" model of computation is based on an idealized descrip
tion of a gas which is essentially identical to the model that physicists took 
historically as the basis of the kinetic theory. A gas is conceived of as a 
swarm of spheres of finite diameter which collide elastically between them
selves and with the container's walls; the mechanics of collisions is governed 
by short-range repulsive forces. The novelty of the billiard-ball model consists 
in directing one's attention to the detailed evolution in time of an individual 

1 Even if reversibility is no longer an issue, there could be difficulties of some other 
nature. 



18.1. The billiard-ball model of computation 211 

microscopic state, rather than of some macroscopic quantities defined on a 
statistical distribution of states. 

This kinetic model is a classical-mechanical system and obeys a continuous 
dynamics-positions and times, velocities and masses are all real variables. 
In order to make it perform digital computation, we make use of the fact 
that integers are just a special case of real numbers: by suitably restricting 
the system's initial conditions we can make a continuous dynamics perform 
a digital process. More specifically, we shall (a) assign to the balls (which 
correspond to gas molecules) very special initial conditions, (b) give to the col
lection of mirrors (which corresponds to the container's walls) a very special 
spatial arrangement, and ( c) only look at the system at discrete, regularly 
spaced time intervals. The result is a reversible mechanical system having 
computation-universal capabilities. 

The interested reader may refer to [17,35] for a thorough exposition of the 
subject. The following brief notes will be sufficient for our present purposes. 

Cartesian grid. Each ball will start at a grid point of a two-dimensional 
Cartesian lattice, moving "along" the grid in one of four directions. All balls 
travel at the same speed, moving from one grid point to the next in one time 
unit. The grid spacing is chosen so that balls collide while at grid points. 
All collisions take place at right-angles, so that one time-step after a collision 
balls are still on the grid. Fixed mirrors are positioned so that balls hit them 
while at grid points, and so stay on the grid. 

Balls as signals. The presence or the absence of a ball at any grid point 
can be interpreted as a binary variable associated with that point, taking 
on a value of 1 or O (for "ball" and 'no ball," respectively) at integer times. 
The correlations between such variables reflect the movements of the balls 
themselves. In particular, one may speak of binary "signals" traveling in 
space and interacting with one another. 

Collisions as gates. In the billiard-ball model, every place where a colli
sion might occur may be viewed as a Boolean logic gate. With reference to 
Figure 18.1, let p, q denote the presence or the absence, at a given instant, of 
balls having the indicated position and direction. The variables p and q will 
be thought of as input signals for a gate residing at the intersection of the two 
paths; similarly, the variables associated at an appropriate later time (four 
steps later in the figure) with the indicated four points on the outgoing paths 
will represent output signals. It is clear that the output variables will have, 
in the order shown in the figure, the values pq,pq,pq, and pq again. In other 
words, if there are balls present at both inputs, these two balls will collide 
and follow the outer output paths; if only one input ball is present, this ball 
will go straight and come out on an inner output path. Of course, with no 
balls at the inputs there will be no balls at any of the outputs. 



212 Chapter 18. Ballistic computation 

Since the interaction gate of Figure 18.1 can realize the AND function and, 
if one of the inputs is kept constant (a constant stream of balls), also the NOT 

function, this gate is a universal logic element. 

pq 
pq 

Figure 18.1: The "interaction gate" -a way of performing a logic function by means 
of ball collisions. 

Mirrors as routers. To make circuitry out of gates, one must establish 
the appropriate interconnections, that is, route balls from one collision locus 
to another with proper timing. In particular, since we are considering a two
dimensional system, one must provide a way to perform signal crossover. All 
these requirements are met by introducing mirrors. As shown in Figure 18.2, 
by letting balls collide with fixed mirrors one can easily deflect the trajectory 
of a ball, shift it sideways, introduce an arbitrary delay, and guarantee correct 
crossover (in Figure18.2d, note that when two balls are present the signals 
cross even though the balls don't). Of course, no active precautions need be 
taken for trivial crossover, where the logic or the timing are such that two 
balls cannot possibly be present at the same moment at the crossover point. 

(a) 

Figure 18.2: Mirrors-indicated by solid dash-can be used (a) to deflect a ball's 
path, (b) to introduce a sideways shift, {c) to introduce a delay, and (d) to realize 
nontrivial crossover. 

In conclusion, with the above machinery one can synthesize any logic 
elements and connect them in any desired way. Since a binary signal is 



18.2. A reversible cellular-automaton computer 213 

encoded in a single ball, and little clearance between ball streams is needed 
for routing purposes, computations can be pipelined so that all stages of the 
circuit are kept constantly busy. 

With the given constraints on initial conditions, a collection of balls that 
are on the same vertical line and have the same horizontal velocity component 
will maintain this alignment as long as they collide only with themselves or 
with horizontal mirrors. This feature allows one to use easy graphical methods 
to arrive at the proper geometry and timing for complex collision patterns 
(cf. Figure 18.3), and makes it easy to maintain the overall synchronization 
required for efficient pipelining. 

C 

.I 

Figure 18.3: A simple realization of the "switch gate " (a two-way demultiplexer) . 

18.2 A reversible cellular-automaton com
puter 

Once we restrict the initial positions of balls and mirrors to a regular grid, 
permit only a finite set of velocities , specify the dynamics so that these con
straints are preserved at all integral times, and observe the system only at 
these times, we obtain a discrete dynamical system that can be translated 
into a cellular automaton. 

In this section we shall discuss such a realization . Certain features de
part even farther from concrete physics than those of the idealized physical 
model of the previous section ( for instance, here balls will have a "diameter " 
only along the direction of motion). On th e other hand , other features are 
more realistic; for example, collisions are not instantaneous: since balls have 
extension in space and no action at a distance is permitted , a collision will 
affect one part of a ball before another. Intuitively speaking , elasticity of an 
extended ball cannot be postulated, but must be "synthesized" out of the 
ball's internal degrees of freedom. 

Since the billiard-ball model is basically a gas model, it will come as no 
surprise that our cellular automaton realization is closely related to the gas 



214 Chapter 18. Ballistic computation 

models we have discussed in previous chapters. 2 We shall pick up our thread 
from the SWAP-ON-DIAG rule of Section 12.2, where particles travel with uni
form motion along the diagonals of the array without interacting. The HPP

GAS rule, described immediately after (Section 12.3), introduced momentum
conserving collisions; these interactions are not adequate by themselves for 
our present purposes because (a) they treat the particles as if they were of 
zero diameter, and (b) they do not provide some "cohesive" effects out of 
which fixed mirrors can be built (in fact, in order to make a container for 
HPP-GAS we have to postulate a second kind of ''matter," supported by an 
extra bit plane, as explained in Section 15.2). 

Here, we shall also employ interactions that do not conserve momentum. 
Note that the "balls'' of the billiard-ball model will not be identified directly 
with the elementary particles of this system; rather, out of these particles we 

shall construct both balls and mirrors as composite objects. 

The BBM rule[35] utilizes the Margolus neighborhood, and is given by the 
table 

(18.1) 

In this table, the first three entries and the last one are identical to those of 
HPP-GAS; the other two entries will require a more detailed discussion. 

Observe that the contents of a block is modified only if there are one or 
two particles present. After defining a separate Forth word to take care of 
the special two-particle case, the BBM rule is easily expressed in CAM Forth 

CENTER OPP= IF 
CW ELSE 

CENTER THEN 

CENTER CW CCW OPP + + + 

{ U OPP 2PART U U} >PLNO 

: 2PART 

BBM 

where U is an abbreviation for "unchanged" (i.e., CENTER) as in Section 5.2. 

Mirrors. We shall now discuss the effect of the fourth entry of table 
(18.1). When two particles (moving diagonally as in HPP-GAS) collide at 
right angles, the direction of each is reversed and the particles "bounce back" 
on their tracks (Figure 18.4). This interaction {which doesn't conserve mo
mentum) allows a group of particles to form a "bound" state. In Figure 18.5a, 

2The Margolus neighborhood was originally developed as a way to "cheat" and produce 
a simple version of the billiard-ball model as a cellular automaton. It was only later that 
we developed other uses for it, such as gas models. 



18.2. A reversible cellular-automaton computer 215 

•••••• Figure 18.4: Right-angle collision of particles: the particles bounce back on their 
tracks. Both here and in the following diagram the first step of the sequence uses 
the blocks of the even grid (thick lines); the second step, the odd grid (thin lines); 
and so on in alternation . 

four particles bounce back-and-forth in a diamond pattern; when this pattern 
is shrunk to the point that the four particles are in contact (Figure 18.5b) 
the particles can be interpreted as reversing direction at each step without 
having a chance to move, and thus are effectively frozen in place. This is the 
most compact form of a fixed mirror ( notice that the four particles forming 
such a frozen group straddle two adjacent blocks). A particle colliding with 
a mirror will also bounce back on its track, as specified by the fifth entry of 
table (18.1). Mirrors can be extended by juxtaposition (as, for instance, in 
Figure 18.7). 

~iaiE~~~~ (··- - fflf (b)--
Figure 18.5: Bound states : (a) Four particles bounce back-and -forth in a diamond 
pattern. (b) In their most closely packed arrangement, the four balls stick togeth er 
and form a fixed mirror. 

Balls. The "balls" of the billiard-ball model are, like mirrors, compos
ite objects, and consist of two particles traveling in the same direction on 
the same track and separated by a fixed distance. The right -angle collision 
between two balls (Figure 18.6) involves multiple collisions between the indi
vidual particles that make up the balls, utilizing at one time or another all 
of the first four entries of table (18.1). Note that, as far as the (composite) 
balls are concerned, such collisions are momentum-conserving. 

If one observes the trajectories of two balls whose paths intersect, and 
compare s the case when the balls appro ach the intersection at th e same tim e 
(and so will collide) with the case when they approach it at different times 
( and so will cross it at different moments without colliding), one will notice 



216 Chapter 18. Ballistic computation 

•••••• 
Figure 18.6: Ball-to-ball collision, starting on the odd grid (thin lines). 

that the geometry and the timing of the outgoing paths have different char
acteristics. After a collision, the outgoing paths are not straight-line continu
ations of the incoming paths (cf. Figure 18.1); moreover, the balls have been 
delayed by the collision. This is what one would expect from "soft" - though 
elastic-balls. 

Analogous considerations apply to the collisions of balls with mirrors (Fig
ure 18. 7). Note that the mirrors act as if they had infinite mass, and with this 
interpretation the collisions between balls and mirrors are also momentum
conserving . 

•••••• 
Figure 18.7: Ball-to-mirror collision, starting on the even grid (thick lines). 

In conclusion, we have constructed a structure that at the finest level can 
be interpreted as a gas of pointlike particles with interactions which don't 
always conserve momentum. At a higher level, and as long as certain con
straints in the initial conditions are met, the same structure can be interpreted 
as a system of finite-diameter balls and fixed mirrors with a dynamics which 
is surprisingly realistic from a physical viewpoint and is perfectly adequate as 
a realization of the billiard-ball model of computation. Figure 18.8 represents 
a digital circuit of a certain complexity, realized with the BBM rule . 3 

3 Since in this realization collisions are ''soft," delays have been introduced in certain 
signal paths to make free-traveling balls keep in step with with balls that have been retarded 
by a collision. One can get the delays right by noting that the number of steps it takes 
for a ball to traverse any signal path is exactly equal to the number of cells visited at least 
once (by a particle) along the path, including extra cells visited during collisions. 



18.3. Some billiard-ball experiments 217 
- - ·--

• 

• . • -.... -'" - • • . .... - - - IL . ,,. . , . ·-• I • -, ,. . , -
I . , 

,,, 

Figure 18.8: BBM-CA circuit: (a) snapshot and (b) time-exposure . 

18.3 Some billiard-ball experiments 

In this section we'll describe two experiments that can be performed using 
the BBM cellular automaton and a machine such as CAM . 

Unlike irreversible rules such as LIFE, not much will happen if we start 
BBM from a random initial state: as a gas, a random configuration is an 
equilibrium system, and no further evolution is expected. However, when 
you run the universe, you can arrange miracles, as in the first experiment. 

When a cellular automaton rule is computation-universal, one rule can 
simulate another. We shouldn't forget that they aren't the same, even if they 
may at first seem to be; this is illustrated in the second experiment. 

18.3.1 A magic gas 

Having a reversible computer in hand, one can amuse oneself and surprise 
one's friends by running it forward and backwards a few times. It would, 
however, be nice to do something really different. In Figure 18.9a we have 
what looks like a gas of particles in a box. Particularly observant individuals 
will note a funny little extrusion at the bottom of the box-ignore it for the 
moment. When we run the gas, we find that it bounces around in the box for 
a while, looking convincingly gas-like, and no particles get out through the 
small hole at the bottom. After running for a minute or so, something very 
strange starts to happen (Figure 18.9b): the gas seems to be organizing itself 
into something! A few more seconds, and the transform ation is complete 
(Figure 18.9c) . A ball has escaped through the door in the bottom of the 
box, and is bouncing around outside of the box. 



218 Chapter 18. Ballistic computation 

Figure 18.9: Magic-gas experiment: (a) A gas; (b) something happening; and (c) 
order out of disorder. 

It will hardly come as a surprise that this bit of "magic" has been accom
plished by running the system backwards. The details, however, may not yet 
be evident . 

The system was actually started in the state pictured in Figure 18.9c, 
with a 'ball' poised outside of the door, waiting to get into the box. The 
circuit inside the box is similar to that shown in figure 18.8, except that it 
has been considerably expanded. This has been done by taking a normal-sized 
BBM-type circuit, and adding space in a uniform manner between all of the 
particles. Due to a scale-invariance property of the rule (shared by HPP-GAS 
and other similar rules) such a transformation results in a new configuration 
which has an isomorphic evolution: at regular intervals, the new system is an 
enlarged version of the evolution of the original system. The mirrors of the 
enlarged system are not unconditionally stable (like those of Figure 18.8). 
Instead, they are dynamical objects whose integrity can be destroyed by a 
misguided collision (compare Figures 18.5a and 18.5b). This of course is 
what we have in mind. 

Our missile is poised outside of the doorway to the box. This is a carefully 
designed doorway which requires exactly the right bounce to get through
only a certain size of ball will make it. Single particles, or even pairs with the 
wrong spacing, will simply be reflected back the way they came. Our missile 
will get through, but once it has disrupted things the chances of anything 
leaking out very soon are rather small . Thus we can let the system run for 
a while, and wait for the circuit to dissolve into a gas of particles before we 
stop the simulation. At this point we reverse the direction of motion of all 
the particles and save the configuration (which is that of Figure 18.9a), ready 
to impress our friends! 



18.3. Some billiard-ball experiments 219 

18.3.2 The end of the world 

As the sorcerer's apprentice learned, magic can get out of hand. Here we 
have an experiment where a miracle causes the end of the world. 

NEW-EXPERIMENT N/MOORE &/HV 
0 CONSTANT TIME 

u 
CENTER 

&HV TIME XOR { EAST SOUTH NORTH WEST} 

&HV TIME XOR { SOUTH WEST EAST NORTH} 

&HV TIME XOR { S.EAST S.WEST N.EAST N.WEST} 

CENTER OPP• IF CW ELSE CENTER THEN 

CENTER CW CCW OPP+++ { U OPP 2RUL U U} 

0 IS TIME BBRUL 
3 IS TIME BBRUL XOR CENTER' XOR >PLNO 

CENTER >PLN1 
MAKE-TABLE EOW 

cw 

ccw 

OPP 

2RUL 

BBRUL 

EOW 

What we have done here is this: we have written the BBM rule as a second
order reversible rule (see Sections 12.5 and 14.2). This is the complete defi
nition of the experiment-notice that this version of the rule operates on the 
N/M00RE neighborhood, and doesn't use an alternating grid at all! How can 
this be? 

Let us call Te the transformation performed on a configuration by the BBM 
rule when using the even grid. At an even step, configuration ct will go into 
ct+i = Tect Since Te coincides with its inverse, we can also write ct = Tect+ 1. 

Analogous considerations apply to the transformation T0 performed by the 
BBM rule when using the odd grid. 

Given three consecutive configurations, ct- 1 , ct, ct+ 1 , the following iden
tity holds independently of whether an even or an odd step is performed 
first 

{the sum of two configurations is here taken to be the configuration obtained 
by adding corresponding sites, mod 2); in other words, by adding the result 
of performing a forward step with that of performing a backward step one 
obtains the future plus the past. 



220 Chapter 18. Ballistic computation 

We can then define a new transformation ; =Te+ To, so that 

or 
(18.2) 

But this is a second-order reversible rule of the form we have seen in Sec
tion 14.2. The alternation of the grid vanishes here , since we have added 
together an even and an odd step. 

If we now run this second-order rule starting from the state of Figure 18. 9a 
(run with ECHO on) we find that the evolution proceeds just as if we were 
using the BBM rule . We can even reverse the system by interchanging the 
present and the past data. 

Now we will introduce a real miracle . We will change the value of a cell 
in the present, without making a corresponding change in the past. This is 
shown in Figures 18.lOa and 18.lOb. The gas, which looked quite random , 
was really still quite organized in comparison to how truly random it could 
get. Most states of this second-order system don't correspond to any state 
of the BBM gas . When we produced our miracle , a tear appeared in the thin 
fabric of our BBM simulation, and the world was torn asunder. 

Figure 18.10: End of the world: (a) The fabric begins to unravel; (b) the end . 



 

Conclusions 

Cellular automata encourage one in the discipline of making complex objects 
out of simple materials. In this sense, they are closer in spirit to the mathe
matical models used in the more abstract branches of theoretical physics than 
to the more business-minded models used in much of computational physics. 

Yet they are much more than useful abstractions. Cellular automata 
possess two truly fundamental virtues that can lead to eminently practical 
computer architectures. 

Firstly, they are inherently parallel. If we associate one processor with 
every N cells, we can multiply the size of our simulation indefinitely without 
increasing the time taken for each complete updating of the space. There is 
no inevitable overhead associated with splitting the problem up among many 
processors, or coordinating the activities of many processors. Thus cellular 
automata models admit massive realizations, limited not by architecture but 
by economics. 

Secondly, cellular automata are inherently local. Due to the speed of light 
constraint, locality of interconnection of simple processing elements can be 
translated into speed of operation. In an ordinary computer, the instruction 
cycle time is limited by the longest signal path, and so fast computers must 
be small. In cellular automata, the length of signal paths is independent of 
the size of the computer, and so the machine can be both very big and very 
fast. 

Both of these characteristics, inherent parallelism and locality, stem from 
the fact that cellular automata are really stylized models of physics, possessing 
a realistic time and space. As such, they can be mapped more directly onto 
physical realizations than other architectures. As such, they are also well 
suited to a variety of physical modeling tasks, as we have discussed in this 
book. 

All of this leads us to believe that cellular automata will be the basis 
of important parallel architectures. The exact form these architectures will 
take depends upon a complicated compromise involving such factors as tech
nological dexterity, relative importance of achieving speed versus simulation 
size, complexity of the operations needed at each site, i/o bandwidth needed 
for examining and changing variables, and incorporation of non-local ( or less 



222 Conclusions 

local) features for added generality. 
It is clear that the invention of useful models that require such machines 

has been and will continue to be an important stimulus to their evolution . 
Conversely, the prospect of such dramatic increases in simulation speed and 
size strongly encourages the further development of models and modeling 
techniques which exploit the strengths of these machines. 



 

Appendix A 

A minimal Forth tutorial 

The main purpose of this tutorial is to give you an overall reading familiarity 
with Forth-enough to follow the CAM programming examples given in this 
book. 

Relatively little knowledge of Forth is needed to compose full-fledged CAM 
experiments : the same few constructs appear over and over with minor vari
ations, while many features of the Forth environment that are prominent in 
other programming contexts are not required at all. 

However, these few constructs must be understood well. In many cases 
an intuitive presentation will be sufficient, but we shall not hesitate to give 
the appropriate amount of technical detail in those few cases where this is 
necessary to insure exact comprehension . 

A.1 The command interpreter 
You may visualize the Forth command interpreter as a competent but not
too-literate technician who sits in the machine room of your computer and has 
access to all the levers and dials . From the deck, you speak to him through 
an "intercom" - i.e., your terminal - issuing orders and receiving reports and 
acknowledgements. For instance, if you say 

BEEP 

(type it at the terminal, followed by a carriage return) the terminal will 
respond with a "beep;" if you say 

0 100 DUMP 

the contents of the first 100 memory locations (starting from location 0) will 
be dumped on the screen. After that, the interpreter will say 



224 Appendix A. A minimal Forth tutorial 

ok 

to tell you it's done and ready for a new command . (From now on, we'll take 
this carriage-return and ok business for granted.) 

The interpreter 's ''ears' ' are conditioned to break up the input character 
stream into tokens, using "blank space" ( one or more consecutive spaces) as 
a token separator. The tokens are passed on one by one to the interpreter 's 
"brain" and the spaces are discarded. Thus , the interpreter hears the above 
command as a sequence of three tokens- 0 , 100 , and DUMP -and would 
hear the same thing if you typed , say, 

0 100 DUMP 

In order to be understood by the interpreter, the two of you must share a 
dictionary of terms and some miscellaneous conventions, which together make 
up the Forth language . The dictionary's contents reflects the range of things 
that the interpreter currently knows about. As you take command, you'll find 
that the Forth interpreter has already gone through ''standard training" -
and possibly some additional, more specialized training {for example, how to 
run a CAM machine) . This standard training , which is documented in any 
good Forth manual, is more extensive than that of many common computer 
languages; in this sense, one speaks of Forth as a programming environment 
rather than just a programming language. 

A.2 The compiler 

The entries that make up the Forth dictionary are called, as you might ex
pect, words. To program in Forth, you successively add new words to the 
dictionary -d efining each new word in terms of existing ones. In this way 
you extend the interpreter's knowledge-and at the same time your expres
sive range-with regard to the set of activities you are interested in. At any 
stage of this construction you may say something that uses the new words, 
and check that its actual meaning {i.e., what the interpreter does in response 
to your words) is what you had in mind. 

For example, to make up a new word for 1'beep three times' ' you type 

: 3BEEP BEEP BEEP BEEP ; 

As soon as it sees a colon (' : '), the interpreter summons the aid of another 
technician, called the COLON compiler. This technician takes the token that 
immediately follows, in this case 3BEEP , and starts a new dictionary entry 
under that name. After that, it expects a phrase describing the action of 
the new word; this phrase, namely BEEP BEEP BEEP, is not executed at this 
time, but is compiled in the dictionary as the meaning of 3BEEP . The end of 



A.3. The dictionary 225 

the phrase is marked by a semicolon (';'),which tells the COLON compiler to 
return control to the command interpreter. 

The language understood by the COLON compiler is slightly different ( and 
somewhat richer) than that understood by the command interpreter; Some 
things only work with either the compiler or the interpreter, but not with 
both. Except when noted below, everything we will discuss works well either 
way. 

If you now type 

3BEEP 

the interpreter will look up this word in the dictionary, execute it, and respond 
with the usual ok . If you type, say, 

4BEEP 

the interpreter will look it up but won't find it in the dictionary; it will then 
ask an assistant whether it might possibly be a number (see next section); 
and finally will print 

4BEEP? 

to tell you it can't make sense of the token 4BEEP . 

A.3 The dictionary 

If you type FORTH WORDS , you '11 get a listing of all the words currently con
tained in the main section of Forth 's dictionary, 1 starting with the ones Forth 
has learned most recently. Thus, if you had just had the above conversation 
with the interpreter, the word 3BEEP would he on top of the list. The older 
word BEEP would appear somewhere down the list. 

The following entries 

BEEP HERE + CONSTANT C~ C! O= 

taken at random from the dictionary give you an idea of what typical Forth 
words look like. Any token can be entered in the dictionary as a word. In 
particular, characters that in other languages are used as punctuation marks, 
such as • : ', can appear as part of a Forth word, or even make up a word all by 
themselves; the word 'C.' is very different than the two-word sequence 'C , '. 

A word already present in the dictionary may be redefined by you. For 
instance, if the speaker in your terminal is dead, as a temporary fix you may 
use a version of BEEP that prints on the screen, on a new line, the message 
1Believe it or not. this is a beep!' . This is done by redefining BEEP 
as follows 

1 In addition to this main section, called FORTH, the dictionary may contain some addi
tional specialized sections, as will be explained in a moment. 



226 Appendix A. A minimal Forth tutorial 

: BEEP CR . " Believe it or not, this is a beep" ; 

(the construct . " (text)" is an instruction to print (text) on the screen, and 
can only be used within a COLON definition). If you now define 

: 4BEEP BEEP BEEP BEEP BEEP; 

this word will be compiled using the new version of BEEP , and when executed 
will print 

Believe it or not, this is a beep! 
Believe it or not, this is a beep! 
Believe it or not, this is a beep! 
Believe it or not, this is a beep! 

The old version of BEEP is not deleted from the dictionary, and the previously 
defined word 3BEEP will retain its original meaning-which is tied to the old 
version of BEEP). If you say 3BEEP now, the three beeps will still be routed 
to the (dead) speaker. 

It's all right, and often useful, to redefine a word in terms of its previous 
namesake. For instance, if you discover that beeps in your terminal have such 
a long decay time that tree consecutive beeps sound more like a long one, you 
may redefine BEEP as 

: BEEP BEEP 10 TICKS; 

(where 10 TICKS means "Wait for ten ticks of internal computer clock"), 
and a sequence of beeps will now sound ''staccato" rather than "legato." 

In some English dictionaries, words belonging to certain specialized areas 
of discourse are listed in separate sections (e.g., geographical names, measure
ment units, abbreviations). In Forth, these sections are called "vocabularies;" 
in addition to the main FORTH vocabulary there may be an ASSEMBLER ver 
cabulary containing machine-language op-codes and other assembler-specific 
terms, an EDITOR vocabulary containing editor-specific terms, etc. 

Since word look-up is performed only within the currently "active" ver 
cabularies, the vocabulary structure provides a way to use the same name 
with different meanings in different contexts, or to make a word unavail
able in a certain context. In CAM Forth, certain "neighbor words" (such 
as S . EAST , &CENTER, etc) are segregated in special vocabularies, in order 
to make them available only when the corresponding "neighbor wires" are 
actually connected to the look-up table. 

A.4 Numbers 

If in an ordinary piece of English text you find a phrase such as 'the motion 
was passed with 371 votes in favor', you won't look up '371' in the dictionary
and for that matter you wouldn't find it there if you did. The meaning of 



A.5. The stack 227 

a number derives from its make-up; this makes it possible for any fool to 
produce more numbers than any one would want to list, but at the same 
time makes it unnecessary to list the meaning of individual numbers in a 
dictionary. 

The situation is analogous in Forth: numbers are parsed as they are en
countered and their meaning is reconstructed from their make-up by an
other technician, called NUMBER , summoned by the interpreter as the occasion 
arises. This "meaning" is nothing but an internal representation in binary 
form. For instance, if the interpreter sees the token 100 while operating in 
DECIMAL mode, this token will be recognized as a number and will be inter
nally converted to 0000000001100100 (Forth stores integers in 16-bit cells); 
however, if you have told the interpreter to operate in HEX mode, 2 the same 
token will be given the meaning 0000000100000000. 

Some numbers that for historical or practical reasons deserve explicit men
tion, such as 'three', are listed (in a spelled-out form) in the English dictio
nary. In an analogous way, some common numbers such as O and 1 have been 
entered (in this form, i.e., 0 - not ZERO) as words in the Forth dictionary . 3 

This leads to more efficient execution ( their meaning has been established 
in advance, once and for all, and there is no need to ask for the help of the 
NUMBER technician) and more compact code. 

A.5 The stack 

Forth manages to achieve remarkable expressive power and efficiency; yet 
a Forth system (i.e., the language as implemented on a computer) can be 
amazingly simple and compact. These advantages are bought at the cost of 
ruthless standardization, in particular in the way nearby words in a phrase 
communicate to one another the information that binds them together as a 
syntactical whole. 

For the purpose of this communication, all data ( characters, Boolean vari
ables, numbers, addresses, etc .) are packaged in a standard-size "carton," 
called a cell, having a capacity of 16 bits, and all data exchanges take place-
in a preordained choreography, as we shall see in a moment- through a single 
clearing-house called the stack. This is ju st a pile of cells that grows or shrinks 
according to the traffic. 

Imagine a stage with this stack in the middle. The Forth interpreter is 
the ballet conductor; as he reads off the words that make up your phrase, the 
corresponding actors show up in sequence, do their thing, and disappear. If 
an actoris part tells him to leave behind certain data for lat er actors, he 'll 

21.e., base sixt een rat h er than base ten . In Forth, numbe rs can be read and printed in 

any base you choose. 
3 Words of type CONSTANT; cf. Section A.8. 



228 Appendix A. A minimal Forth tutorial 

walk to the stack and pile these data, cell by cell, on top of it; if his part 
expects data from previous actors, he will walk to the stack and pick them 
up . 

Some data that an actor needs may end up, say, buried two cells deep into 
the stack. The actor won't go fumbling through the stack looking for them 
(the cartons don't carry a label!); rather, his score will explicitly tell him to 
lift just the top two cells, grab the cell that is now on top, and put the first 
two back down. 

With this scheme, there is no need for each piece of data to have an 
absolute address-a permanent mailbox with a distinguished name. Instead, 
all addressing is by position relative to the top of the stack. If a new, self
contained piece of choreography is inserted in the old score, at the moment 
of executing it one will find the stack already built up to a certain height; 
during execution of this piece one will see the stack grow more, shrink a bit, 
etc., and by the end of the inserted piece return to its original height. The 
rest of the score will then resume, finding its own data where they had been 
left. 

A.6 Expressions 

The stack discipline is well suited to the communication needs of a hierar
chically built program. It allows one to use a particularly simple scoring 
notation-called reverse Polish notation-by which arithmetical and logical 
expressions of arbitrary depth can be written without making recourse to 
parentheses or other place markers. 

When you type a number to the command interpreter, this number is 
packaged in one cell and put on top of the stack. The one-character word ' .. ' 
("dot") picks up the top cell of the stack and prints its contents as a number 
on the screen. Thus, if you type 

366 

( where the "dot" is part of what you type) the screen will respond with 

356 

(In a more conventional programming language, the equivalent of '356 
would be something like 'print(356) '.) Note that the stack went up one level 
with 356 , down one level with ' . ', and is now the same height as before. 

The word'+' ("plus") gobbles up the top two cells of the stack, adds them 
together, and places the result-consisting of one cell-on top of the stack; 
thus, it leaves the stack one level lower than it found it. For example, the 
expression 

2 3 + 



A. 7. Editing and loading 229 

will leave the result 5 on the stack (from where you can move it to the screen 
with '. '). If you want to see how much 1 + 2 + 4 is, you type 

1 2 + 4 + . 

We can picture the evolution of the stack as follows 

STACK INPUT OUTPUT 
1 

1 2 
1 2 + 

3 4 
34 + 
7 7 

where each row displays (a) the current state of the stack (with the top 
element on the right), (b) the text to be interpreted, and (c) what is printed on 
the screen. The dots on the left indicate the part of the stack that we haven't 
touched; this indication will be dropped in the following stack examples. 

Note that once 3 has been placed on the stack, it does not matter how it 
got there; from a functional viewpoint, the expression 1 2 + is interchange
able with, say, 3, or 1 1 + 1 +, or anything that eventually bows out having 
left just a 3 on top of whatever else the stack contained before. Note also 
that the two different expressions 

1 1 + 1 + 1 + and 1 1 1 1 + + + 

produce the same end result even though the second one temporarily builds 
up the stack to a higher level: 

STACK INPUT STACK INPUT 

1 1 
1 1 1 1 
1 1 + 1 1 1 

2 1 1 1 1 1 
2 1 + 1 1 1 1 + 

3 1 1 1 2 + 

3 1 + 1 3 + 

4 4 

A.7 Editing and loading 
Once you have given a command to the interpreter, you cannot take it back; 
if something goes wrong, you may not even remember exactly what you said. 
While immediate interaction with the interpreter is very useful, there are 



230 Appendix A. A minimal Forth tutorial 

times where you would like to carefully think out in advance a whole se
quence of commands and definitions, review and edit it, and perhaps discuss 
it with somebody else before you give it to the interpreter. You want to be 
in a position to give pre-written orders, and you might have a collection of 
different ''orders of the day" to be handed to the interpreter according to the 
circumstances. 

You can do all of this by first writing your text on a disk file, where it can 
be inspected and modified by means of the Forth screen editor. Then you 
can ask the interpreter to use this file ( or a portion of it) as the input stream, 
instead of what comes from the keyboard; this process is called loading. When 
you load a file, everything works as if you were typing the file's contents from 
the keyboard-except that the interpreter now processes your tokens as they 
come, without waiting for a carriage return. 4 

When you compose your text with the editor for subsequent loading, you 
may choose to format it in a way that facilitates comprehension, and here 
and there add a comment to yourself. 

The formatting scheme used in this book is the following 

BEEP BEEP BEEP 

BEEP 
10 TICKS 

BEEP BEEP BEEP BEEP 

3BEEP 

BEEP 

4BEEP 

where dictionary entries are lined up on the right half of the page and the 
"bodies" of the definitions are segregated on the left half. 

The Forth word ' (' removes from the input stream everything that follows, 
up to and including the matching character')'; thus, you may write a line as 
follows 

BEEP BEEP ( two beeps) BEEP BEEP ( two more) 

and the interpreter will never hear what is "in parentheses." 5 

The word '\' ("backslash") treats as a comment the remainder of the line 
on which it appears 

4 A typical Forth source file does not contain carriage returns at all; the lines that you see 
on the screen when editing are stored one after the other in the file without any intervening 
separation marks. 

50bserve that the following spacing is correct too 
BEEP BEEP ( two beepe)BEEP BEEP ( two more) 

even though there is no intervening space between ')' and BEEP, since the effect of the word 
' (' is precisely to throw away the string 'two beeps)'. On the other hand, the following 
spacing 

BEEP BEEP (two beeps) BEEP BEEP (two more) 
won't do, since it will make the interpreter think that '(two' is a token to be processed. 



A.8. "Constants" and 11variables" 231 

BEEP \ New version! 
BEEP \ plain beep 

10 TICKS \ insert delay 

A.8 "Constants" and "variables" 

In Section A.2 we said that the interpreter ''executes" the words you type. 
Actually, each word in the Forth dictionary carries a notice saying "I am to 
be executed by technician so-and-so , who knows how to handle me," and the 
interpreter will just pass the buck to this technician. For words that have been 
entered in the dictionary by the COLON compiler, the competent technician 
is the COLON interpreter. In general, each type of word has its own compiler 
and a corresponding interpreter. The buck stops with words that have been 
compiled by the ASSEMBLER; this technician produces code written directly 
in machine language (i.e., your microprocessor's native language), and at this 
point the hardware takes over. 

All of this works much more simply than it sounds. Suppose you are 
writing a telescope-driving program that needs to know your town's latitude, 
say, 43°. It is good programming practice to give this number a name-say, 
LATITUDE-so that whenever this name appears in your program it will have 
the same effect as if you had typed '43' . To do this, in Forth you say 

43 CONSTANT LATITUDE 

The word LATITUDE will be entered in the dictionary as a constant, and when 
executed it will place the number 43 on the stack. 

What happens is that as soon as it sees the word CONSTANT the command 
interpreter summons the aid of the CONSTANT compiler, who gobbles up the 
next token-namely LATITUDE-and starts a new dictionary entry under 
that name. The entry will consist of two parts: the first ( code field) contains 
a notice saying "I am to be executed by the CONSTANT interpreter;" the 
second ( data cell) is reserved for the value of the constant . At this point the 
CONSTANT compiler talces the top cell of the stack-with the 43 you had just 
put there-and moves it to the data cell in the dictionary . At execution time, 
the CONSTANT interpreter will look at the data cell and place a copy of it on 
the stack. 

With the above definition of LATITUDE, the command 

LATITUDE 7 + . 

will print 50 on the screen. 

The term 'CONSTANT' is somewhat of a misnomer (though it is retained 
for historical reasons), since the contents of the data cell may be altered at 
will; in the present implementation of Forth, to change the value of LATITUDE 
to 45° you say 



232 Appendix A. A minimal Forth tutorial 

45 IS LATITUDE 

The most relevant aspect of a Forth constant is that it returns the value of 
its data cell, rather than a pointer to it (cf. VARIABLE) below). 

In CAM, "neighbor words" such as NORTH, SOUTH, etc. act like constants 
insofar as they return a value; this value will change very many times during 
the construction of a rule table. 6 

Forth provides another mechanism for accessing a piece of data, namely 
by its address7 rather than by its value. The VARIABLE compiler, used in a 
construct such as 

VARIABLE TIME 

is analogous to the CONSTANT compiler insofar as it constructs a dictionary 
entry, namely TIME, with a data cell in it. However, 

• This data cell is not initialized to a particular value (and therefore the 
defining word VARIABLE, unlike CONSTANT, does not expect a value on 
the stack). 

• When TIME is executed, the VARIABLE interpreter puts on the stack 
the address of the data cell, rather than its contents. 

Thus, if we type 

TIME 

what will be placed on the stack is not the current value of TIME (which may 
change several times during execution of the program), but its address ( which 
is always the same). 

To get the value of TIME you use the word '<O' (pronounced "fetch"), as 
m 

TIME <II (data) 

(i.e., '©' expects an address on the stack, and replaces it with the data at that 
address), and to set it you use the word ' ! ' ("store"), as in 

6You write a CAM rule in the form of a Forth word (say, LIFE) whose defining phrase 
will of course use some neighbor words; when MAKE-TABLE generates the look-up table for 
your rule (cf. Section 4.2) it will execute the word LIFE once for each entry of the look-up 
table, and the neighbor words will be called into action. These words differ from ordinary 
constants in that they all share a single data cell. During the construction of the n-th entry 
of the table the "entry number" n is stored in this cell; when a neighbor word is called, it 
looks at the entry number and returns the appropriate neighbor value for that entry. If for 
some perverse reason you decided to tamper with the contents of the "entry number" cell 
during table construction, the values returned by all neighbor words would be affected. 

71n an ordinary computer, memory locations are sequentially numbered; the address of 
a piece of data is the number of its location. 



A.9. Iteration 233 

(data) TIME 

(i.e., '!' expects a piece of data and an address, and ships the data to that 
address). For example, to increment time by one unit you write 

TIME~ 1 + TIME ! 

Supposing that the TIME data cell is at location 1000 and its initial contents 
is 5, the evolution of the relevant data is the following 

TIME's contents STACK INPUT 
5 TIME 
5 1000 © 
5 5 1 
5 5 1 + 
5 6 TIME 
5 61000 
6 

From the viewpoint of CAM's user, Forth VARIABLE's need be used 
seldom-if ever. In this book, the term 'variable' always has the usual mean
ing of 'a generic quantity to which we may assign an arbitrary value' rather 
the the more technical Forth meaning. 

A.9 Iteration 

Once you've stored a program in the computer's memory, portions of it can 
be executed over and over, perhaps with some variations . 

For instance, you can define 

BEGIN 
BEEP 
AGAIN 

BEEP-STUCK 

When this word is called, once t.he execution reaches AGAIN it jumps back to 
BEGIN 1 producing an endless series of beeps. Short of turning off the power, 
there is no way you can get out of this loop. 8 

The above BEGIN/ AGAIN pair delimits a phrase somewhat like a pair 
of parentheses: the phrase in between gets iterated forever. Note that for 
readability we vertically aligned the two elements of the pair, flush on the 
right (this is recommended in reverse-Polish-notation style), and indented 
the phrase inside. 

A more flexible pair is DO/ LOOP; the word 

8Unless your computer has a working BREAK key-the equivalent of a "panic button ." 



234 

100 0 DO 
BEEP 

LOOP 

Appendix A. A minimal Forth tutorial 

100BEEPS 

will beep 100 times.9 What happens in detail is that DO gobbles up the top 
two numbers on the stack, 100 (the loop LIMIT) and O (the loop INDEX), and 
saves them for later use. The execution proceeds until LOOP is encountered. 
At this point, INDEX is incremented by one and compared with LIMIT: if 
INDEX=LIMIT the loop is terminated; otherwise, execution jumps back to 
DO _10 

Pairs of "parentheses'' such as BEGIN/ AGAIN and DO/ LOOP can be nested 
as ordinary parentheses, and a lot more bells and whistles are available. You 
can look up the details of these and other flow-control constructs in a Forth 
manual. Here we shall only mention that flow-control constructs can only 
appear inside a COLON definition: you cannot say 

100 0 DO BEEP LOOP 

at the command-interpreter level. 

A.IO Stack comments 

By now, we have encountered many words that expect arguments on the 
stack or leave results on the stack. Since breaches of stack discipline may 
send a computation berserk (if you leave an extra item on the stack everyone 
after you will get his data wrong), it will be convenient to have a notation to 
remind us of just how many items a word takes from the stack or leaves on 
it. 

The following are examples of stack comments: 

DO ( n1 n2 -- ) 
DO ( limit index --) 

BEEP ( -- ) 

LATITIJDE ( -- n) 
TIME ( -- addr) 
+ ( n1 n2 -- n3) 
+ ( m n -- m+n) 
2 ( -- n) 

2 ( -- 2) 

9 Of course if you had typed 990BEEPS you still would have gotten a word that beeps 100 
times . A name is a name is a name ... 

10The loop index is a modulo-2 16 counter . The minimum number of iterations, namely 
1, is achieved when the loop is entered with INDEX just one less than limit; the maximum, 
when the loop is entered with INDEX equal to LIMIT: 0 0 LOOP will cycle 216 times! 



A.10. Stack comments 235 

The general convention is as follows. We put in parentheses a "dash" ( cus
tomarily a double-dash) to indicate the word in question. Before the dash we 
write a list of what the word expects on the stack; after the dash we write a 
list of what the word leaves on it. 

What really counts is the number of items in each list-which corresponds 
to the number of cells taken from or given to the stack; but the items them
selves may be elaborated upon a little, for extra clarity. 

For example, DO takes two items and leaves none. A minimal notation is 

DO ( n1 n2 -- ) 

which just tells us that DO expects two items. A better mnemonic is provided 
by 

DO { limit index--) 

which reminds us that the first item is used as the limit and the second as 
(the initial value of) the index of the loop. 

As a final grand example, let us load the following three definitions from 
a disk file 

100 CONSTANT HUNDRED ( -- n) 

10000 CONSTANT A-LOT-OF ( -- n) 

0 DO 
BEEP LOOP 

BEEPS ( n --) 

and then type the following three commands 

3 BEEPS 
HUNDRED BEEPS 
A-LOT-OF BEEPS 

We have seen above that DO wants two arguments. When we type 3 BEEPS , 
the first argument is left on the stack by the 3 we typed, while the second is 
placed on the stack by the O appearing within the definition of BEEPS : DO 's 
hunger is satisfied. 

Note that if we define words giving a little thought to the ''stack interface" 
( who should supply or consume what and when) and to choosing appropriate 
names, the flow of a Forth phrase can be given a natural-language flavor 
that is hard to achieve in other programming languages. Properly trained 
Forth words can talk to one another under the surface of the phrase, without 
bothering us with their chatter. 

A generally obeyed convention in Forth is to make words "use up" their 
arguments rather than leave them on the stack. If an object on the stack is 
needed as an argument by a given word and also by another word that closely 
follows, a second copy of this object is made-using the word DUP introduced 
below-before the first copy is used up. 



236 Appendix A. A minimal Forth tutorial 

A.11 DUP, DROP, etc. 

The Forth word '*' ("times") takes two numbers and returns their product; 
to compute the square of 3 you have to type 3 twice: 3 3 *. How about a 
word SQR that will take a single argument and multiply it by itself? 

Forth provides 'a number of general-purpose words for manipulating the 
stack; one of these is DUP (pronounced "dupe 11 ), which looks at the cell on 
top of the stack and puts a duplicate copy of it on top of it ; e.g., 

STACK INPUT 

5 DUP 
5 5 

Thus , SQR can be simply 

SQR ( n -- n*n) 
DUP * 

since here '* ' will see two copies of the argument. 
Related to DUP are DROP (which drops the top item from the stack), SWAP 

(which swaps the top two items), OVER (which makes a copy of the next-to
the-top stack item), ROT (which pulls the third item from underneath and 
puts in on top of the first two), and a few more. Words of this kind act 
somewhat like pronouns in English ('this', 'that' , 'one another', etc.), in that 
they allow one to refer by position rather than by name to objects introduced 
in a different part of the sentence. As an exercise, verify that the function 
y( m, n) = ( m + n) ( m - n) is computed by the following Forth expression 

( m n) OVER OVER+ ROT ROT - * ( y) 

(where the comments tell you what's on the stack before and after). 

A.12 Case selection 

A flow-control construct that is extensively used in programm ing CAM is 
the case statement, which allows one to select for execution one of several 
alternative actions. Suppose we have three words called BEEP , HONK , and 
WHISTLE; we can then make up a new word, called SOUND, which will take 
an integer argument from the stack , with value 0, 1, or 2, and respectively 
beep, honk, or whistle: 

SOUND ( n --) 
{ BEEP HONK WHISTLE} 

That is, 0 SOUND will execute BEEP, 1 SOUND will execute HONK, and so 
on. The selection list may consist of any number n of entries, which are to 



A.13. Conditional statements 237 

be thought of as consecutively numbered from O upwards, and is delimited 

by the two "brace" words, namely '{' and'}'. If you attempt to execute the 

case statement with an argument that is less than O or greater than n - 1 you 

get an error message. 

Suppose you want to make up a word that returns the number of days in 

a month. You'd probably try the following 

: DAYS ( month -- days) 
1 -

{ 31 28 31 30 31 30 
31 31 30 31 30 31} 

Assuming that months are numbered 1, 2, .. . , 11, 12, you subtract 1 in 

order to have the numbering 0, 1, ... , 10, 11-better suited to the case 

statement-and then you look up the number of days. The reasoning is 

correct, but there is one minor catch: in CAM Forth the case statement only 

accepts individual dictionary words as items in the selection list; with a few 

exceptions (mentioned in Section A.4) numbers are not in the dictionary. 

There is an easy fix to this problem: before defining DAYS , enter the desired 

numbers in the dictionary as constants 

28 CONSTANT 28 ( -- 28) 
30 CONSTANT 30 ( -- 30) 
31 CONSTANT 31 ( -- 31) 

From this moment the token 28 (for one) will be recognized as a word-one 

that leaves a 28 on the stack just as the number 28 used to do before. The 

case statement will now accept it as a list item. 

A.13 Conditional statements 

The phrase between a BEGIN and AGAIN pair is iterated forever, that between 

DO and LOOP is iterated a number of times as specified by the two arguments 

that DO finds on the stack. A phrase between the words IF and THEN is 

executed only if the argument found on the stack by IF has the logical value 

'true'. 11 

The word 

= { m n -- FIT) 

compares the two arguments m and n and returns a logical "flag'' having the 

value 'true' if they are equal and 'false' if different. Thus, the following word 

will beep only when the top two stack items are equal 

11 How logical values are encoded in i:I, Forth cell doesn't matter at this point , and is 

discussed in the next section. 



238 

IF 
BEEP THEN 

Appendix A. A minimal Forth tutorial 

BEEP-IF-EQUAL ( m n --) 

A richer construct is the IF / ELSE / THEN , used as follows 

: BEEP-OR-WHISTLE ( m n --) 
"' IF 

BEEP ELSE 
WHISTLE THEN 

HONK HONK HONK 

This word will beep if m and n are equal, and whistle if odd; after that, it 
will honk three times. 

There exists also a conditional-iteration statement of the form 'BEGIN ... 
UNTIL ', in which the loop is iterated until the value of a logical flag becomes 
'true', and one of the form 'BEGIN . . . WHILE . . . REPEAT', in which the loop 
is iterated as long as the value of a logical flag remains 'true'. 

A.14 Logical expressions 

In defining a CAM rule, sometimes it is convenient to treat the contents of a 
CAM cell as a logical quantity ('on' or 'off', 'true' or 'false') and sometimes as 
a number (0 or 1-or even 0, 1, 2, or 3 when one is dealing with two bit-planes 
at once). To understand precisely what is passed on the stack by one word to 
another in these cases, it is important to be aware of the coding conventions 
employed in CAM Forth concerning arithmetic and logical expressions. 

This lengthy section is meant as a reference for cases where doubts might 
arise; you may quickly go over it ( or skip it altogether) on first reading. 

We have seen that the contents of a Forth cell consists of a 16-bit pattern. 
The same pattern can have different meanings, depending on agreed-upon 
conventions. For instance, it can be used to encode an integer between 0 and 
65,535 ( "unsigned number"), an integer between -32, 768 and +32768 ( "signed 
number"), one ASCII character ( using only the lower 8 bits), etc. The cell 
does not carry a label telling what kind of encoding was used: it is up to the 
programmer to arrange things so that any "user" of the pattern will know 
what conventions to use in interpreting it. 

For example, suppose that the top cell of the stack contains the pattern 
1000000000101010; the three words '. ', U. , and EMIT will all print on the 
terminal the contents of this cell. However, '.' will treat it as a signed 
number, and print '-32726'; U. will treat it as un unsigned number, and 
print '32810'; and EMIT will treat it as a character, and print '*' (since the 
lower eight bits of the pattern, namely 00101010, make up the ASCII code 
for '*'). 



A.14. Logical expressions 239 

In many cases it is convenient to treat the cell pattern just as a collection 
of separate bits-each one representing an individual binary choice. The 
words 

NOT ( p -- r) 
AND ( p q -- r) 

DR ( p q r) 

XOR ( p q -- r) 

are useful in this context, since they allow one to individually or jointly 
manipulate these bits. For instance, one can "turn off" the upper eight 
bits of a pattern by AND'ing it with an appropriate mask pattern, namely 
0000000011111111, in which the upper eight bits are ''off" and the lower 
eight are "on." 

As a reminder, the logical operations NOT, AND, OR, and XOR are defined 
as follows: 

NOT AND OR XOR 

0 1---+ 1 00 1---+ 0 oo-o 00 1---+ 0 
11---+0, 01 1---+ 0 , 01 1---+ 1 , 01 1---+ 1 

10 1---+ 0 10-1 10 i-. 1 
ll r-1- 1 11 1---+ 1 11 1---+ 0 

In particular, the logical operation NOT complements its one-bit argument, 
and thus the Forth word NOT complements each of the 16 bits of a cell. The 
other three logical operators act on corresponding bits of two input cells to 
produce a 16--bit result. 

To drive a conditional statement along one or the other of two possible 
paths (see previous section) all one needs is a binary "flag"-with values 'true' 
and 'false'. 12 For this purpose, a one-bit token would be sufficient; but Forth 
cells come in a standard size of 16 bits, and one must have an agreement on 
which 16--bit pattern(s) should mean 'true' and which 'false'. 

The Forth-83 standard stipulates that words that return a logical flag 
(such as '=' and similar "compare" words) should never put on the stack 
anything but the patterns 1111111111111111 for 'true' or 0000000000000000 
for 'false'; for convenience, these patterns have been entered in the dictionary, 
as CONSTANT words, under the names TRUE and FALSE .13 On the other 
hand, words that expect a logical flag (such as IF and similar "conditional" 
words) will treat as 'false' the pattern 0000000000000000 and as 'true' any 
other pattern. 

12 When more than two choices present themselves, it is usually more natural to use a 
case statement (cf. Section A.12) rather than many nested IF statements. 

13Note that, when printed as signed numbers, TRUE will yield -1 and FALSE will yield 
0; as an unsigned number, TRUE will yield 66636 ( FFFF in hexadecimal). 



240 Appendix A. A minimal Forth tutorial 

As long as one uses only the TRUE and FALSE patterns for 'true' and 
'false', the bitwise logical operations NOT, AND , etc. can also be used to 
manipulate such logical flags. However, if one tries to take advantage in an 
indiscriminate fashion of the wider ''catching range" of IF 14 some subtle 
problems may arise. We shall give just one example, as a warning to the 
reckless programmer. 

Consider the word 

BEEP-IF-NOT-EQUAL ( m n --) 
= NOT IF 

BEEP THEN 

(cf. previous section), which beeps only when m and n are not equal. This 
word would work the same if one replaced '= NOT' by just '-'; In fact, if m 
and n are equal their difference m - n will be 0, and will be seen as 'false' by 
IF ; on the other hand, if they are different m - n will be a pattern containing 
at least one non-zero bit, and will be seen as 'true' by IF. 

Well, if ' - ' works "the same'' as '= NOT', won't ' - NOT' work the same as 
'=' in BEEP-IF-EQUAL of the previous section? If m = n, their difference 
m - n is O and its complement as given by NOT is the pattern of all l's (the 
TR~ pattern)-which of course is recognized as 'true' by IF, as we intended. 
If m # n, the difference pattern will contain some l's but may also contain 
some O's; thus the complementary pattern returned by NOT may contain some 
l's-in which case it will again be recognized by IF as 'true', which is not 
what we intended. 

Since neighbor words such as CENTER, NORTH, etc. return 1 or O as a 
value, we shall use these values as respectively 'true' and 'false' whenever 
expedient. Logical operations involving such 1-bit flags work well, except for 
NOT (since it complements all 16 bits). The two word sequence '1 XOR' can 
be used to get the 1-bit complement. Alternatively, comparisons such as '=' 
'>' '<' and '<>' (not equal) can be used to convert 1-bit flags into standard 
logical flags. 15 

Finally, it will be useful to remember that words such as >PLNO and 
>AUXO, which take a stack item and write it as an entry of a CAM look
up table, only use the least significant bit of the item: any garbage that 
may have accumulated in the remaining bits as a result of arithmetic/logical 
manipulation tricks will be ignored. ( "Joint" versions of these words, such as 
>PLNA and >AUXA, use the lowest two bits.) 

A.15 Further readings 

Starting FORTH by Leo Brodie[8] is an excellent practical introduction to 

14 As when using arithmetic as a shortcut to logic. 
15 The words 'O•' 'O>' etc. also exist as abbreviations for '0 =' etc. 



A.15. Further readings 241 

Forth, while Thinking FORTH, by the same author[9], discusses the method
ology that inspires this programming language. Inside F83, by C. H. Ting[54] 
is a thorough description of F83's internal structure. 

The periodical FORTH Dimensions, published by the Forth Interest 
Group, P.O. Box 8231, San Jose, CA, is a good source for news, applications, 
programming techniques , literature listings, and software and hardware de
velopments. The Journal of Forth Application and Research, published by 
the Institute for Applied Forth Research, Inc., is a more academically oriented 
publication. 



 

Appendix B 

Basic CAM architecture 

The following considerations apply with some variations both to CAM-6-the 
machine used for the examples of this book-and to CAM-7, a two-thousand 
times larger machine which is at an advanced design stage. 

While the most natural architecture for a cellular automata machine would 
be a fully parallel array of simple processors, this approach presents cer
tain technical difficulties-particularly when one contemplates interconnect
ing enormous numbers of these processors in three dimensions. The CAM 
architecture maintains the basic conceptual approach of a fully-parallel ma
chine, but with certain variants that lead to a more practical and economical 
realization and a better utilization of current technological resources. With 
reference to a fully-parallel approach, this architecture is based on plane
modules, an arbitrary number of which can be connected in parallel; each 
plane-module spans a large number of sites. However, the individual plane
module is a pipelined rather than a parallel processor. 

B.1 The plane-module 

For the sake of the present discussion we shall restrict our attention to two
dimensional cellular automata containing one bit of data at each site. More 
dimensions and larger state-sets are discussed in the following sections. 

The whole array is partitioned into rectangular portions of identical size 
called sectors, and a separate hardware plane-module is assigned to each 
sector. Each plane- module consists of three main sections-state-variable 
storage, data routing, and transition function. 

The storage section contains the state variables of the corresponding sec
tor. In order to perform one updating step on this area, the current values 
of the state variables are read once, sequentially, and injected into the rout-



244 Appendix B. Basic CAM architecture 

ing section. The corresponding new values, determined by table look-up, are 
returned by this section in the same sequential order and written back onto 
the storage section. 

From the above sequential stream of data, the routing section extracts 
with the appropriate timing the nine values corresponding at each moment 
to the nine neighbor positions of a site: 1 the site itself, or Center; its four 
nearest neighbors, North, South, East, and West; and its four next-nearest 
neighbors N.East, N. West, S.East, and S. West. This section also provides 
appropriate buffering to make the updating of sites appear synchronous even 
though realized in a sequential manner, and to achieve correct vertical and 
horizontal wrap-around. 

A desired subset of the above nine signals, possibly augmented by signals 
coming from other plane-modules (cf. Sections B.3, B.4), are submitted in 
parallel as arguments to the transition-function section, which uses a look-up 
table to compute the corresponding new value for the center cell. After a brief 
journey through the routing section, the new value is handed to the storage 
section, where it replaces the current value of that cell. Note that all ancillary 
tasks such as argument gathering are performed by the routing section; thus 
the look-up table, which is the most critical resource in the simulation, is 
exploited to its full bandwidth. Moreover, since each table is shared by a 
large number of cells, it becomes practical to employ a large look-up table 
thus compressing a substantial amount of computation into a single step. 

B.2 Larger arrays: edge gluing 

An arbitrarily large two-dimensional array can be obtained by gluing sectors 
edge-to-edge, i.e., by exchanging between the pipelines of two adjacent sec
tors data about those sites that are contained in one plane-module but are 
neighbors of sites in the other plane-module. The size of a plane-module in 
CAM-6 is 256x256 sites. In a fully-parallel architecture, this would entail a 
plane-module with thousands of external terminations; in the pipelined ar
chitecture, instead, exchange of information at the edges is serial, and four 
bidirectional lines, corresponding to the four adjacent sectors, are sufficient. 2 

By gluing sectors in this way, one obtains an arbitrarily large sheet; typ-

1 In CAM- 7, this part of the function of the routing section will be largely eliminated, 
since partitioning based on relative offsetting of plane origins (see Section 15.6) will form 
the basis of neighbor gathering. 

2This sector-joining technique relies on the fact that the cell memory of the individual 
plane-modules is logically wrapped around-a cell at the physical edge of the sector sees 
cells on both that edge and the far edge as neighbors. Since the scanning pattern for cell 
updates is the same for all plane-modules, all plane -modules have the appropriate edge 
neighbors available simultaneously to be exchanged. By exchanging pipelines rather than 
neighbors, we get the same effect with one connection to each immediately adjacent sector 
independently of the size of the neighborhood. 



B.3. More states per cell: sheet ganging 245 

ically, this sheet will be wrapped-around, i.e., the top edge will be joined 
to the bottom edge and the left to the right; thus, the overall topology of 
a sheet will be that of a torus. The same gluing technique is used both for 
array-expansion purposes and for boundary elimination by wraparound. 

Observe that the gluing of plane-modules is done once at the routing 
stage. In this way, both from a logical and a physical viewpoint the transition
function section is completely decoupled from a number of implementation 
details, namely, (a) the fact that a sheet consists of plane-modules glued 
together, (b) that storage and routing are done on a two-dimensional basis, 
and independently for each bit plane, and ( c) that operations are pipelined. 

B.3 More states per cell: sheet ganging 

Once sheets of the desired size have been assembled, further hardware config
uring of the cellular automata machine is done by selecting suitable signals as 
arguments to the transition-function. In particular, in order to have a larger 
state-set for the automaton's cell it is sufficient to gang a set of sheets, i.e., 
connect as inputs to the look-up table of each sheet a selection of neighbor 
outputs from the other sheets of the group. Such a ganged set will then con
stitute a layer of the cellular automaton, containing a complete cell at each 
site. 

B.4 More dimensions: layer stacking 
Finally, layers can be stacked on top of one another, by connecting as inputs 
to the transition function of each layer a selection of neighbor outputs from 
the layers immediately above and below. This is possible because all plane
modules will be updating corresponding cells at the same time. In this way 
we can configure CAM-type machines into a three-dimensional cellular au
tomaton. This construction can be further iterated in order to obtain cellular 
automata in four or more dimensions. 

B.5 Display and analysis 

Each of the four plane-modules of a CAM-6 machine generates new data at a 
rate of ~6 Mbits/sec. If one had to do any substantial reformatting of this 
information for display purposes, one would need resources of the same order 
of magnitude as those used for producing it. 

In the pipelined architecture, scanning of the array is sequential; with 
an appropriate choice of scanning parameters this information can be made 
to appear in the correct framing format for display on a raster-scan device. 



246 Appendix B. Basic CAM architecture 

In the CAM plane-module, the number of array rows and columns spanned 
by the plane-module, the scanning sequence, and the timing are such that 
a tap on the pipeline can directly feed a conventional CRT monitor. Of 
course, the outputs from a set of ganged plane-modules (cf. Section B.3), 
which collectively represent the value of a multi-bit state variable, can be 
combined into an RGB signal and displayed on a single color monitor. 3 

The advantages of this set-up are not limited to raw display. On the 
plane-module, all the neighbor information that is potentially available to the 
transition function is conveniently accessible, and can be fed to an additional 
look-up table. In this way, one can compute and send to the display an 
arbitrary output function, instead of just the value of the current center cell. 
This allows one to do on-the-fly a substantial amount of graphic preprocessing 
( this approach reminds us of the ''staining'' techniques used in microscopy for 
enhancing selected features of the tissue under examination). 

Further, the stream of values supplied by such an output function can 
be sorted into a histogram, accumulated and compared with set threshold 
values, and in general used for real-time processing and control of the system's 
dynamics. In particular, one can locate and count occurrences of any specified 
local pattern. 

Finally, since at each updating step all the data on each plane-module are 
streamed through the pipeline, a single bidirectional tap on this pipeline is 
sufficient to provide any external device with read and write access to the 
totality of the data. The collection of these taps, one per plane-module, con
stitutes an extremely high-speed bus (on CAM-7, which is planned to have 
1024 plane-modules of 512x512 sites each, we get an overall word width of 
1024 bits and a synchronous word rate of 40 nsec) through which the entire 
state of the simulated system is continually made accessible to the exper
imenter while the simulation is in progress- and without slowing it down. 
This "flywheel bus" is unique to the CAM architecture. 

In conclusion, a pipeline fed according to a well-chosen sequencing format 
and provided with a few well-placed taps constitutes a general-purpose bus 
on which one can hook up not only the transition function, but also a great 
variety of display, analysis, and control functions ~ without any overhead on 
the simulation process. As in a physical experiment, any portion of the system 
is potentially accessible to on-line stimulation and measurement. 

B.6 Modularity and expandability 

Unlike other current schemes for parallel computation, the CAM architecture 
is truly scale-independent, and a very large cellular automata machine can be 

3When display is not required, CAM's clock could be decoupled from the video rate, 
to allow-for example-more frequent updating of a smaller array, say at a few thousand 
frames per second. 



B.6. Modularity and expandability 247 

built simply by connecting together an appropriate number of plane-modules. 
The limits are set by economic constraints rather than by electrical problems 
or issues of logic design. Since there are no "addresses" in a traditional sense, 
the data space is not limited by the size of an address word. The only timing 
signal that must be distributed to each block of plane-modules is the clock; 
and since signals can be reclocked within each block, the system can cope with 
a timing slack between blocks comparable to the width of the clock pulse. 



 

Bibliography 

[1] ALADYEV, Viktor, "Computability in Homogeneous Structures," Izv. 
Akad. Nauk. Estonian SSR, Fiz.-Mat. 21 (1972), 80-83. 

[2] AMOROSO, Serafino, and Y. N. PATT, "Decision Procedures for Sur

jectivity and Injectivity of Parallel Maps for Tessellation Structures," 
J. Comp. Syst. Sci. 10 (1975), 77-82. 

[3] BANKS, Edwin, "Information Processing and Transmission in Cellular 
Automata," Tech. Rep. MAC TR-81, MIT Project MAC (1971) 

[4] BENNETT, Charles, "Logical Reversibility of Computation," IBM J. 
Res. Develop. 6 (1973), 525-532. 

[5] BENNETT, Charles, and Geoff GRINSTEIN, "Role of Irreversibility in 
Stabilizing Complex and Nonenergodic Behavior in Locally Interacting 
Discrete Systems,'' Phys. Rev. Lett. 55 (1985), 657- 660. 

[6] BERLEKAMP, Elwyn, John CONWAY, and Richard GUY, Winning ways 
for your mathematical plays, vol. 2, Academic Press (1982). 

[7] BRENDER, Ronald, "A Programming System for the Simulation of 
Cellular Spaces," Tech. Rep. 25, CONCOMP, The Univ. of Michigan 

(1970). 

[8] BRODIE, Leo, Starting FORTH, Prentice Hall (1981). 

[9] BRODIE, Leo, Thinking FORTH, Prentice Hall (1984). 

[10] BURKS, Arthur (ed.), Essays on Cellular Automata , Univ . Ill. Press 

(1970). 

[11] CODD, E. F., Cellular Automata, Academic Press (1968). 

[12] Cox, J . Theodore, David GRIFFEATH, "Recent results for the stepping 

stone model," University of Wisconsin Math Department preprint. 

[13] CREUTZ, Michael, "Deterministic Ising Dynamics," Annals of Physics 

167 {1986), 62- 76. 



250 Bibliography 

[14] D'HUMIERES, Dominique, Pierre LALLEMAND, and T. SHIMOMURA, 
"Lattice Gas Cellular Automata, a New Experimental Tool for Hydro
dynamics," Preprint LA-UR-85-4051, Los Alamos National Laboratory 
( 1985). 

[15] FARMER, Doyne, Tommaso TOFFOLI, and Stephen WOLFRAM (eds.), 
Cellular Automata, North-Holland (1984). 

[16] FELLER, William, An Introduction to Probability Theory and Its Ap
plications, vol. I, 3rd ed., Wiley (1968). 

[17] FREDKIN, Edward, and Tommaso TOFFOLI, "Conservative Logic," Int. 
J. Theor. Phys. 21 (1982), 219-253. 

[18] FRISCH, Uriel, Brosl HASSLACHER, and Yves POMEAU, "Lattice-Gas 
Automata for the Navier-Stokes Equation," Phys. Rev. Lett. 56 (1986), 
1505-1508. 

[19] GACS, Peter, and John REIF, Proc. 17-th ACM Symp. Theory of Com
puting (1985), 388-395. 

[20] GARDNER, Martin, "The Fantastic Combinations of John Conway's 
New Solitaire Game 'Life'," Sc. Am. 223:4 (April 1970), 120-123. 

[21) GREENBERG, J., and S. HASTINGS, "Spatial Patterns for Discrete 
Models of Diffusion in Excitable Media," SIAM J. Appl. Math. 34 
(1978), 515. 

[22] HAYES, Brian, "The cellular automaton offers a model of the world and 
a world unto itself," Scientific American 250:3 (1984), 12-21. 

[23] HARDY, J., 0. DE PAZZIS, and Yves POMEAU, "Molecular dynamics 
of a classical lattice gas: Transport properties and time correlation 
functions," Phys. Rev. A13 {1976), 1949-1960. 

[24] HEDLUND, G. A., K. I. APPEL, and L. R. WELCH, "All Onto Func
tions of Span Less Than or Equal To Five,'' Communications Research 
Division, working paper (July 1963). 

[25] HEDLUND, G. A., "Endomorphism and Automorphism of the Shift Dy
namical System," Math. Syst. Theory 3 (1969), 51-59. 

[26] HERRMANN, Hans, "Fast algorithm for the simulation oflsing models," 
Saclay preprint no. 86-060 (1986). 

[27] HOLLAND, John, "Universal Spaces: A Basis for Studies in Adapta
tion," Automata Theory, Academic Press (1966), 218-230. 



Bibliography 251 

[28] KADAN0FF, Leo, "On two levels," Physics Today 39:9 (September 
1986), 7-9 . 

[29] KIMURA, M., G. WEISS, "The stepping stone model of population 
structure and the decrease of genetic correlation with distance," Ge
netics 49 {1964) , 561-576. 

[30] KIRKPATRICK, Scott, C.D. GELATT Jr., M.P. VECCHI, "Optimization 
by Simulated Annealing,' ' Science 220 {1983), 671-680. 

[31] KNUTH, Donald, The Art of Computer Programming, vol. 2, Seminu
merical Algorithms, 2nd ed ., Addison-Wesley (1981) . 

[32] LANDAUER, Rolf, "Irreversibility and heat generation in the computing 
process,'' IBM J . Res. Devel. 5 (1961), 183-191. 

[33] LANDAU, L., E. LIFSHITZ, Mechanics, Pergamon Press (1960). 

[34] MANDELBROT, Benoit, The Fractal Geometry of Nature, W. H. Free
man (1982). 

[35] MARGOLUS, Norman "Physics-like models of computation ," Physica 
10D (1984), 81- 95. 

[36] MARGOLUS, Norman , Tommaso TOFFOLI, and Gerard VICHNIAC, 
"Cellular-Automata Supercomputers for Fluid Dynamics Modeling ," 
Phys . Rev. Lett. 56 (1986) , 1694-1696 . 

[37] MARGOLUS, Norman, "Quantum Computation, " Proceedings of a con
ference on New Ideas and Techniques in Quantum Measurement The
ory (December 1985), to be published in the Annals of the New York 
Academy of Sciences (1986). 

[38] MARGOLUS, Norman , "Partitioning Cellular Automata," in prepara
tion. 

[39] MARUOKA, Akira, and Masayuki KIMURA, "Conditions for lnjectivity 
of Global Maps for Tessellation Automata ," Info. Control 32 (1976), 

158- 162. 

[40] MARUOKA, Akira, and Masayuki KIMURA, "lnjectivity and Surjectiv
ity of Parallel Maps for Cellular Automata," J. Comp. Syst. Sci. 18 
(1979), 47-64. 

[41] MEZARD, M., "On the Statistical Physics of Spin Glasses ," Disordered 
Systems and Biological Organization (E. BIENENSTOCK et al. , ed.), 

Springer-Verlag (1986), 119-132. 



252 Bi bliogra.phy 

[42] ORSZAG, Steven, and Victor YAKHOT, "Reynolds Numbers Scaling 
of Cellular-Automaton Hydrodynamics," Phys. Rev. Lett. 56 (1986), 
1691-1693. 

[43] PACKARD, Norman, and Stephen WOLFRAM, "Two-dimensional cellu
lar automata," J. Stat. Phys. 38 (1985), 901-946. 

[44] PEARSON, Robert, "An Algorithm for Pseudo Random Number Gen
eration Suitable for Large Scale Integration," J. Computat. Phys. 3 
(1983), 478-489. 

[45] POMEAU, Yves, "Invariant in Cellular Automata," J. Phys. Al 7 
(1984), L415-L418. 

[46] PRESTON, Kendall, and Michael DUFF, Modern Cellular Automata, 
Theory and Applications, Plenum Press (1984). 

[47] REITER, Carla, "Life and death on a computer screen," Discover (Au
gust 1984), 81-83. 

[48] RICHARDSON, D., "Tessellation with Local Transformations,'' J. Comp. 
Syst. Sci. 6 (1972), 373-388. 

[49] ROSENBERG, I., "Spin Glass and Pseudo-Boolean Optimization," Dis
ordered Systems and Biological Organization (E. BIENENSTOCK et al., 
ed.), Springer-Verlag (1986), 327-331. 

[50] SALEM, James, and Stephen WOLFRAM, "Thermodynamics and Hy
drodynamics of Cellular Automata," Theory and Applications of Cellu
lar Automata (Stephen WOLFRAM ed.), World Scientific (1986), 362-
366. 

(51] SANDER, Leonard, "Fractal growth processes," Nature 322 (1986) 789-
793. 

[52] SMITH, Alvy, "Cellular Automata Theory," Tech. Rep. 2, Stanford 
Electronic Lab., Stanford Univ. (1969). 

[53] STANLEY, H. Eugene, and Nicole OSTROWSKY, On Growth and Form, 
Martinus Nijhoff (1986). 

[54] TING, C. H., Inside F83, Offete Press, 1306 South B. St., San Mateo, 
CA 94402. 

[55] TOFF0LI, Tommaso, "Cellular Automata Mechanics," Tech. Rep. 208, 
Comp. Comm. Sci. Dept., The Univ. of Michigan (1977). 



Bibliography 253 

[56] TOFFOLI, Tommaso, "Integration of the Phase-Difference Relations 
in Asynchronous Sequential Networks," Automata, Languages, and 
Programming (Giorgio AUSIELLO and Corrado BOHM ed .), Springer
Verlag (1978), 457-463. 

[57] TOFFOLI, Tommaso, "Bicontinuous extension of reversible combinato
rial functions," Maths. Syst . Theory 14 (1981), 13- 23. 

[58] TOFFOLI, Tommaso, "Reversible Computing," Automata, Languages 
and Programming (DE BAKKER and VAN LEEUWEN eds.), Springer
Verlag (1980), 632-644. 

[59) TOFFOLI, Tommaso, "CAM: A high-performance cellular-automaton 
machine," Physica 10D (1984), 195-204 . 

[60] TOFFOLI, Tornmaso, and Norman MARGOLUS, "The CAM-7 Multi
processor: A Cellular Automata Machine ," Tech. Memo LCS-TM-289, 
MIT Lab. for Comp . Sci. (1985). 

[61] TOFFOLI, Tornmaso, "Cellular automata as an alternative to (rather 
than an approximation of) differential equations in modeling physics ," 
Physica 10D (1984), 117-127. 

[62) TOFFOLI, Tornmaso, and Norman MARGOLUS, Invertible Cellular Au
tomata, in preparation. 

[63] TUCKER, Jonathan, "Cellular automata machine: the ultimate parallel 
computer," High Technology 4:6 (1984), 85- 87. 

[64) ULAM, Stanislaw, "Random Processes and Transformations,' ' Proc. 
Int. Congr. Mathern. (held in 1950) 2 (1952), 264-275. 

[65] VAN DYKE, Milton, An Album of Fluid Motion, Parabolic Press 
(1982). 

[66] VICHNIAC, Gerard, "Simulating physics with cellular automata," Phys
ica 10D (1984), 96- 115. 

[67] VICHNIAC, Gerard, "Cellular automata mod els of disorder and orga
nization," Disordered Systems and Biological Organization (BIENEN
STOCK et al. eds.), Springer-Verlag (1986) , 1-20. 

[68) VON NEUMANN, John, Theory of Self-Reproducing Automata (edited 
and completed by Arthur BURKS), Univ. of Illinois Press (1966). 

[69] WITTEN, Thomas, and Leonard SANDER, Phys. Rev. Lett . 47 (1981), 
1400. 



254 Bibliography 

[70] WOLFRAM, Stephen, "Statistical mechanics of cellular automata," Rev. 
Mod. Phys. 55 (1983), 601-644. 

[71] WOLFRAM, Stephen, "Universality and Complexity in Cellular Au
tomata," Physica 10D (1984), 1-35. 

[72] WOLFRAM, Stephen, "Computation Theory of Cellular Automata," 
Commun. Math. Phys. 96 (1984), 15-57. 

[73] WOLFRAM, Stephen, "Random-Sequence Generation by Cellular Au
tomata," Adv. Applied Math. 7 (1986), 123-169. 

[74J WOLFRAM, Stephen (ed.), Theory and Applications of Cellular Au
tomata, World Scientific (1986). 

[75] ZAIKIN, A., and A. ZHABOTINSKY, Nature 225 (1970), 535. 

[76] ZUSE, Konrad, Rechnender Raum, Vieweg, Braunschweig (1969); 
translated as "Calculating Space," Tech. Transl. AZT-70-164-GEMIT, 
MIT Project MAC (1970). 



 

Index 

adaptation, 9 
address lines, 57 
alternating sublattices, 149 
annealing, 41, 71 
anti-ferromagnetic bond, 206 
anti-parallel phase, 197 
architecture of CAM, 243 
arithmetic processing, 10 
asynchronous computation, 90, 

134 
autocorrelations, 179 
auxiliary table, 201 

backward deterministic, 146 
ballistic computation, 209 
balls as signals, 211 
billiard ball experiments, 217 
billiard ball model of computation, 

210 
biology, 9 
bit planes, 14 
block parity, 205 
block rules, 119 
bond energy, 195 
Brownian motion, 102 

CAM Forth, 16 
CAM-6, 14 

programmer's model, 14 
canonical names, 33 
canonical system, 199 
Cantor-set topology, 10 
case selection, 236 
case statement, 40, 236 
causal coherence, 91 

caustic, 184 
cellular automata, 5 
cellular automata machines, 8, 11, 

14 
chaos, 11 
checkerboards, 117 
clinamen, 160 
collective phenomena, 11, 185 
collisions, 122 
collisions as gates, 211 
color map, 15, 56, 65, 134 
competitive growth, 40 
computability, 10 
computation universal, 40 
computing circuitry, 43 
computing spaces, 9 
Connection Machine, 173 
conservation, 77 
conservation laws, 53, 145 
conserved quantities, 145, 205 
constrained growth, 39, 49 
construction, 9 
continuity equation, 202 
coroutine, 116 
correlations 

avoiding, 73 
elimination of, 166, 167 
velocity, 180 

coupling energy, 187 
critical parameters, 186 
critical point, 193 
critical temperature, 186, 197 
critical value, 192 
custom neighborhood, 61, 63 



256 

data routing, 243 
delay line, 84 
demons. See energy banks 
detailed balance condition, 198 
differential effects, 80 
diffraction, 182 
diffusion, 84, 106, 155 
diffusion equation, 106 
diffusion limited aggregation, 167 
digital logic, 136 
discrete models, 142 
displaying the energy, 200 
distributed models, 142 
dynamical parameters, 115 

echo of the past, 22 
echoing, 22 
edge gluing , 244 
elastic medium, 172 
end of the world, 219 
energy, 200 

banks, 193 
barriers, 199 
flow, 202 
per site, 191 
picture, 202 
valley, 194 

entropy, 153 
equilibration, 200 
equilibrium, 155 
even grid, 128 
event, 8 
event counter, 56, 65, 80, 180 
evolution, 209 
expansion, 159 
exponential decay, 68 
external hardware, 55 

feedback, 83 
ferromagnetic bond, 206 
FHP gas, 178 
finishing a cycle, 117 
flow tracing, 174 
fluid dynamics, 11, 171 

flywheel bus, 246 
fractal, 11, 39, 132 
fractal dimension, 169 
fully parallel array, 243 

game of life, 10, 19 
glider, 24 

gathering, 98 
gauge transformation, 207 
Gaussian mountain, 164 
genetic drift, 84 
glider gun, 25 
ground state, 206 
guarded context, 149 

half adder, 137 
heat, 197 
heat bath, 189, 197 
heat capacity, 197 
heat equation, 11, 157 
hexagonal lattice, 178 
histogram, 77 
homologous cells, 180 
horizontal phase, 62, 110 
HPP gas, 177 
hydrodynamics, 173 

ideal random walk, 103 
image enhancing, 24 

INDEX 

image processing, 10 
incompressible fluid, 173 
incremental phase control 114 . ' 
mforrnation preserving, 10 
intelligence, 209 
interaction gate, 212 
interference, 182 
invertible cellular automata. See 

reversibility 
invertible logic element, 210 
irreversible computation step 209 
Ising systems, 186 ' 
iterative arrays, 8 
iterative-circuit arrays, 10 

kinetic energy, 197 



INDEX 

lattice gases, 165, 177 
life, 209 
light cone, 39, 158 
linearity, 32 
logical expressions, 238 
logical operator, 239 

magic gas, 217 
magnetization, 192 
major neighborhoods, 63 
Margolus neighborhood. See 

neighborhood 
marked particles, 175 
mask pattern, 239 
mean free path, 162, 166 
microcanonical system, 199 
minor neighborhoods, 63 
miracle, 220 
mirrors as routers, 212 
monotonic growth, 38 
Monte Carlo simulation, 200 
Moore neighborhood. See neigh-

borhood 
motion, 101 

Navier-Stokes equation, 11, 173 
negative temperature, 196 
neighborhood, 16, 63 

custom, 96, 179 
declarations, 59 
expansion, 98 
hexagonal, 179 
major assignment, 59, 60 
Margolus, 60, 119, 126, 128 
minor assignment, 59, 61 
Moore, 60 
User, 61 
von Neumann, 60 

neurons, 47 
new experiment, 113 
noise driven diffusion, 155 
noise generation, 72 
noise generator, 69, 74 
noise source, 165, 166 

noisy neighbor, 67 
non-equilibrium, 192 

257 

non-von Neumann architecture, 8 
nondeterministic rules, 67 
noninvertible logic element, 209 
nonlinear models, 142 
NOW line, 95 
nudeation, 41, 88 

obstacles, 176 
odd grid, 128 
offsetting plane origins, 167, 244 
offsetting spatial origin, 167, 244 
one dimensional cellular automata, 

94 
one-bit complement, 240 
optimization, 9, 206 
ordering, 11 
output function, 201 

paper monitor, 23 
parallel phase, 197 
particle conservation, 77 
partitioning, 150 

state-set, 177 
partitioning cellular automata, 

119, 150 
pattern recognition, 10 
percolation, 41 
phase change, 196 
phase separation, 196 
phase transitions, 186 
phase variable, 91 
phases, 62, 112 
physical bases of computation, 210 
physical modeling, 141 
pipelined processor, 243 
plane module, 243 
pleating, 98 
Poisson cellular automaton, 87 
Poisson process, 86 
Poisson updating, 86 
potential energy, 197 
potential hill, 197 



258 

primeval soup, 21 
probabilistic cellular automata, 73 
probabilistic rules, 67 
pseudo-neighbors, 56, 62, 109 

random number generation, 72 
random number generator, 69, 74, 

156, 167, 197 
for Margolus neighborhood, 

168 
random walk, 102, 164 
randomness, 153 
reflection, 182 
refraction, 182 
reversibility, 10, 50, 54, 145 
reversible logic element, 210 
rule, 15 
rule composition, 61 
rule space, 30 
rule tables, 15 
rules 

l-OUT-OF-8, 39 
lD-RANDOM-WALK, 106 
2D-BROWNIAN, 156 
5MAJ, 71 
ANNEAL, 41 
ASYNC, 93, 135 
BANKS, 43 
BBM, 214 
BORDER/HOLLOW, 113 
BRIAN'S-BRAIN, 48 
CLOCKWISE, 156 
CRITTERS, 133 
DECAY, 68 
DENDRITE, 167 
DIAMONDS, 38 
ENERGY-DISPLAY, 201 
EOW, 219 
FHP-GAS, 178 
FORGET-ME-NOT, 132 
GENE-CIDE, 86 
GENETIC-DRIFT, 86 
GREENBERG, 49 
HGLASS, 29, 45 

INDEX 

HPP-GAS, 123, 125, 165 
LICHENS, 39 
LICHENS-WITH-DEATH, 

40 
LIFE, 20, 40 
LOGIC, 136 
MAJORITY, 41 
MARG-STIR, 156 
ME-NEITHER, 132 
NAIVE-DEVELOP, 89 
NAIVE-DIFFUSION, 84 
NOISE-BOX, 74 
NOR-ME, 132 
ONED-RAND, 96 
PARITY, 31 
PARITY-FLIP, 50, 53 
PARITY-WITH-ECHO, 64 
PLEATED-SCARVES, 98 
Q2R, 189 
RAND, 70 
RAND-ANNEAL, 71 
REFRACT, 183 
ROT-CW /CCW, 130 
SAFE-PASS, 78 
SHIFT-SOUTH, 39, 146 
SOIL, 87 
SOUND-DEVELOP, 89 
SPIN-CANON, 198 
SPINS-BANK, 194 
SPINS-ONLY, 190 
SQUARES, 37 
STIR, 70 
STIR/SAMPLE/DELAY, 

168 
SWAP-ON-DIAG, 121, 125 
TIME-TUNNEL, 52, 53 
TIME-TUNNEL/ A, 80 
TIME-TUNNEL/B, 80 
TM-GAS, 131, 159, 165 
TM-GAS/WALLS, 160 
TRIANGLES, 38 
TRON, 134 
TUBE-WORMS, 82 



INDEX 

run cycle, 115 

sampling procedure, 194 
scooping, 175 
second law of thermodynamics, 

133, 145 
second-order systems, 47, 147 
sectors, 243 
self diffusion, 161 
self-reproducing automata, 9 
self-reproducing structures, 9 
shifting spatial origins, 167, 244 
showing a function, 66 
showing the state, 66 
sinks, 176 
smokestack, 175 
soil erosion, 87 
solitons, 182 
sound waves, 171 
sources, 176 
spatial phases, 110, 117 
speed of light, 39 
spherical aberration, 184 
spin glasses, 205, 206 
spin systems, 186 
spins, 186 
state space, 29 
state variable storage, 243 
step, 15, 117 
streamlines, 175 
stripes, 117 
surface tension, 42 
surjective cellular automata, 10 
symmetry breaking, 11 
systematic naming schemes, 33 

table generation, 31, 64 
table look up, 55 
temperature, 195, 197, 198 
temporal phases, 111 
thermal conductivity, 197 
thermal noise, 70 
thermal reservoir, 199 
thermal substrate, 197 

259 

thermalization, 159 
thermodynamic equilibrium, 160 
three dimensional cellular automa-

ton, 245 
time reversal, 132, 146 
time reversal invariant, 146, 147 
time reversible. See reversibility 
topological dynamics, 8 
tracing, 23 
transition function, 201, 243 
trivial crossover, 212 
tube worms, 82 
turbulence, 11 

unconstrained growth , 37, 38 
universal logic element, 212 
user connector, 56, 177 
User neighborhood . See neighbor

hood 

vertical phase, 62, 110 
viscosity, 173 

anisotropic, 178 
von Neumann neighborhood. See 

neighborhood 
voting rules, 41, 70 

wave equation, 11, 182 
wave optics, 182 
wrap around, 16 

Zhabotinsky reaction, 83 



 

The MIT Press, with Peter Denning, general consulting editor, and 
Brian Randell, European consulting editor, publishes computer sci
ence books in the following series: 

ACM Doctoral Dissertation Award and Distinguished Dissertation Series 

Artificial Intelligence, Patrick Winston and Michael Brady, editors 

Charles Babbage Institute Reprint Series for the History of Computing, 
Martin Campbell-Kelly, editor 

Computer Systems, Herb Schwetman, editor 

Explorations in Logo, E. Pau) Goldenberg, editor 

Foundations of Computing, Michael Garey, editor 

History of Computing, I. Bernard Cohen and William Aspray, editors 

Information Systems, Michael Lesk, editor 

Logic Programming, Ehud Shapiro, editor; Fernando Pereira, Koichi 
Furukawa, and D. H. D. Warren, associate editors 

The MIT Electrical Engineering and Computer Science Series 

Scientific Computation, Dennis Gannon, editor 




