
CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

1

CTG Audio Technical Document

CTG Audio Technical Document ... 1
Components .. 2

GameSound and cSoundPlayer... 2
Triggering sounds ... 2
Killing sounds ... 3
View and Hour Changes ... 3

Data Files .. 3
Track types.. 4

Buffer management... 4
Objects and tracks – the instance map .. 4

Computing volume and pan.. 4
View changes and Pan Positions .. 5

Receivers – Radios and TV Stations... 5
Initialization .. 5
Controlling repetition and variety... 5
Commercials ... 6

Music Modes... 6
List of music modes.. 6

Options.. 6
MP3 Support ... 6

Building the graph and playing the file .. 7
Notifications.. 7
Shutdown .. 7

Ambience .. 7
EAX .. 7
3D sound support .. 7
Installed Image.. 7

Disk Budgets:.. 7
Data Locations: ... 8

Plug-in tracks and events .. 8
Debugging and Cheats .. 8

Cheat window ... 8
Debug output cheats.. 8

Appendix – Track Examples... 10
Track functionality.. 10

Hit lists .. 10
Branch on object info.. 10
Randomization .. 10
Example 1 – Random chance of playing .. 10
Example 2 – Branch on gender... 11
Example 3 – Piano .. 11
Example 5 – baby crying .. 13

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

2

Components

GameSound and cSoundPlayer

Triggering sounds
GameSound lets the game trigger sound events. Sound events are triggered by name in order to
ease the transition between the old and new systems. Don’t worry about the overhead – it’s trivial

GameSound

Box-X

Freshness Hit System

AudioInfo

(game)

GZSnd

GetObject Position()
Convert to screen coordinates
Get zoomlevel, sim speed, orientation
Get character info, such as gender, age,
skills, personality
Outdoor tile ratio for Freshness

Play sample file

Play/update tracks

Set Volume,
indoor/outdoor %,

EAX level.

PlayObjectSnd(),
PlayUISnd(),

 Set volume options,
Pause, resume,

Notify view/hour
changes

Get game object data fields (i.e. personality)

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

3

compared to what it takes to play a sample. Furthermore, sounds are hardly ever triggered, at least
as far as the computer is concerned.

Triggering a UI sound is easy:
PlayUISnd("UI_Nhood_bdoze_demolish");.

Object sounds require a bit more information, so they have separate calls
PlayObjectSnd("vox_braggee_admire", GetID());

There is also a legacy version of PlayObjectSnd that gets the sound name from the SoundInfo
structure. Don’t use it anymore, okay?

Killing sounds
All sounds for a game object are killed together. If an object is playing 2 sounds there is no way to
kill one without the other:
void cSoundPlayer::QuietBySourceID(Int sourceID);

You can also kill all sounds with
void cSoundPlayer::QuietAll();

View and Hour Changes
void cSoundPlayer::NotifyViewChange();
void cSoundPlayer::NotifyHourChange();

NotifyViewChange() tells the audio system when the view changes. It’s called whenever the user
rotates, zooms, scrolls, or changes screens.

Hour change notifications are used for the ambience. These update Freshness and the night loop in
case the game is sitting idle.

Data Files
See the HIT system documentation for descriptions of file formats.

.HOT files – contain track and event definitions.

.HIT files – contain binary track data

.SYM files – contain symbol tables that allow late binding of track data.

.HDB files – contain debug information. These files are optional. They contain information that
matches track data addresses with source file line numbers. If the .hdb files are provided then any
track that crashes will output an error message file and line numbers that

Sound files are of types .WAV, .XA, and .MP3.

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

4

Track types
Tracks are typed according to how they use these their arguments. Look in the [track] section of
the .HIT files to see how these types are used.
• kArgsNormal – There is no automatic use of arguments. The arguments can be interpreted by

the track or not at all. Stings, UI sounds, and tracks that control other tracks fall under this
category.

• kArgsVolPan – The first 2 arguments are volume and pan. Only receivers (see below) use this
track type.

• kArgsIdVolPan – The first 3 arguments are object id, volume and pan. All object sounds are of
this type.

Buffer management
Box-X allows only 16 tracks to play simultaneously. In practice this limit is rarely reached. Tracks
are assigned priorities. When a track is started it checks to see if there are too many tracks already
playing. If there are, Box-X either kills an existing track, or refuses to let the current track play.

This functionality is encapsulated in cBoxX::CheckPriority.

Only 1 copy of a track is allowed to play at once (see “Game objects and tracks”). This obviously
helps to limit the number of tracks playing at once.

Objects and tracks – the instance map
This section describes the functional relationship between game objects and tracks.

Only 1 copy of a track is allowed to play at once. If 2 people are “saying” the same track, only one
of them will be heard. This was done in order to prevent the echoing and flanging effects
associated with allowing multiple copies of the same sound.

The instance map represents the many-to-one mapping between tracks and the objects that are
currently playing them (many objects to one track).

The following Box-X functions implement the instance map.
• bool IsInInstanceMap(Sint32 lSndobId, Sint32 lInstanceId);
• void AddToInstanceMap(Sint32 lSndobId, Sint32 lInstanceId);
• void RemoveFromInstanceMap(Sint32 lSndobId, Sint32 lInstanceId);

If there are a man and a woman “saying” the same track, you will only hear one and not the other.
This artifact (i.e., bug) was left alone, because it had the desirable effects of limiting buffer use,
improving conversations (it stopped people from talking over each other). It also provided a
natural way of limiting clutter that would otherwise had to have been implemented at the
application level.

Computing volume and pan
The station computes a weighted average volume and pan position across objects playing that
station. Objects closer to the center of the screen are given more influence over pan position. The
result is that if there are TV’s to the left and right of the screen the sound will emanate from the

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

5

center. If you scroll toward the right, then pan position will move to the right as the TV on the left
moves off the screen and the TV to the right takes over. Try it and you’ll see what I mean.

View changes and Pan Positions
When the view changes (by navigating, panning, rotating, etc) the pan positions are updated.

When you zoom out the volumes are attenuated. All objects except stereos fade to silence as you
scroll them off of the screen. There is a “full volume” area, inside which all objects are at full
volume.

Screen

Full volume area

The objects begin to fade out when they leave the full volume area. They become silent a certain
distance off the screen.

Stereos are always audible no matter how far off screen.

Receivers – Radios and TV Stations
Radios and TV’s tuned to the same station must sound play the same sounds at the same time. If
each radio had its own track then 2 radios tuned to the same station would play different music.

Here is some unfortunate terminology. A receiver is actually the station. Sorry ‘bout that. Let’s
just call them cReceiver objects “stations”.

Each station has a track. When a radio or TV turns on a track it is added to the stations list of
objects that are turned on. We use this list to compute volume and pan.

Initialization
Receivers are given directories at init time. All sound files in the directory are put into a hit list.
All subdirectories are put into their own hit lists, including the directory that is up one level (this is
where you put commercials – see below). All of these hit lists are put into another hit list. The
track then repeatedly picks a sound out of each list and plays it.

Controlling repetition and variety
HIT lists are used to all randomness without repetition. Some stations require a bit more structure
however, especially TV stations. For example, in an action station we alternate dialog and chase
scenes. We do this by putting the dialog and chase scenes in their own subdirectories of the action
station directory.

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

6

Commercials
Commercials go in the directory that contains the station directory. This means that all stations in
the same directory share the same commercials. Since radio and TV stations are in different
directories, they have different commercials. Yay.

Music Modes
We use receivers for the front-end music as well, but only for the hit list and drop-in capability.
There are hit lists for buy, build and neighborhood mode. We completely ignore the station
objects. A specially designed track uses the hit lists created by the buy, build, and neighborhood
stations.

Buy and Build music don’t cut each other off. If you switch between these modes the current song
will finish and then the next song will be chosen from the list corresponding to buy or build modes
(whichever mode you are in). Also, if you jump out of these modes and back in the music will fade
back up instead of starting a new song.

Radio stations provide the music in "live" mode. Radio music is streamed from hard disk. The user
can add their own music files by dropping them into a radio station's data directory.

List of music modes
• Load – plays a load loop. It should not skip or contain static. It should not overlap any other

music.
• Neighborhood – Plays music, ambience (daytime sounds), and river loop. It’s always daytime

in this screen.
• Live – no music (except stereo object)
• Buy, build – music
• Options – no music
• Web page publishing – no music.
• Edit family – like neighborhood but without the stream or ambience
• Credits – same as family

Options
• FX – controls all sound effects, including TV
• Music - controls all music except the load loop, including radios and stings
• VOX – controls all voice

It’s a common mistake for a sound to be controlled by the wrong option because this option is
entered manually.

MP3 Support
GZSnd provides MP3 support through DirectShow, which is part of DirectX Media 6.0. Since 6.0
doesn’t support MP3 properly we include a Beta version of Windows Media Player. The advantage
of DirectShow is that it takes care of some knotty licensing issues and allows hardware
acceleration. The latter of these can prove to be a disadvantage because the 3rd party support for
this new functionality is quite buggy.

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

7

Take a look at GZSnd.cpp and GZSndSys.cpp for the implementation.

Building the graph and playing the file
To build the graph, we create a GraphBuilder object and call cGraphBuilder::RenderFile with
the file to be played. This is the simplest way to build the graph, and hopefully the most robust.

To play the file we get a MediaControl interface from the GraphBuilder and “run” the graph.

We control volume and pan through the IAMDirectSound interface, which we get by calling
QueryInterface on all of the filters in the graph until we find one that will return the interface.

Notifications
DirectShow sends messages when the files reach the end. These messages unfortunately need to be
passed all the way from the app, through Box-X, and to GZSnd.

Shutdown
We ran into some tricky thread problems in the shutdown code. If we shut down a file and deleted
it just as it ended there could be a message still coming down the pipe. To avoid this race condition
we send a message to ourselves after stopping the file. This ensures that the message we send will
always come after any messages being sent by DirectShow. Once we receive our own message we
know it is safe to shut down the GZSnd.

Ambience
The ambience consists of a Freshness score and a night loop.

The Freshness score contains birds, dogs, cars driving by, planes, etc.

The night loop (crickets) plays from 6 in the evening until 6 in the morning. Take a look at
cBoxX::UpdateNiteLoop() if you don’t believe me.

Freshness score

EAX
EAX is applied to the Freshness score when the active character walks in a small room.

3D sound support
Only the Freshness score is in 3D. The rest of the sounds are 2D. Stereo pan position (left/right
balance) is set according to their position on the screen.

Installed Image
Disk Budgets:
Hard Disk - 100 MB

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

8

CD - 300 MB

Data Locations:
The installer copies all data to the hard disk except for music. The directory structure on the hard
disk shadows that of the CD. The only difference is that the

The music player will supports shortcuts. This means the user doesn't have to copy their MP3's to
hard disk.

Music is in mp3 format, streamed from hard disk or CD. Streaming from hard disk allows the user
to add their own mp3 files.

Plug-in tracks and events
Box-X assembles a list of data directories. It loads all of the data in these directories.

GameSound::AddDownloadDirectory adds a directory of data files. If called before Box-
X is initialized then the directory is added to a list that is processed at init time. Otherwise the
directory is loaded immediately. Load order is last-in, so you can overwrite old tracks and events.

Debugging and Cheats
Cheat window
Pressing ctrl-alt-c opens the cheat window. You can trigger sound events from this window using
the soundevent cheat, or its abbreviation sev.

Example:
soundevent ui_moneyback

or
sev ui_moneyback

Most sound events trigger sounds that emanate from a character on the screen. Since the cheat has
no character, we use the character being controlled by the user. Note that the character must take a
step before the cheat will work for that character. There is no other easy way for the debugging
code to know which character the user is controlling.

Example:
sev flamingo_approve_vox

Debug output cheats
The following Box-X events control debug information that is written to the trace window in Dev
Studio:
• kDebugEventsOn – start echoing event names as they are triggered
• kDebugEventsOff – stop
• kDebugSamplesOn – start echoing sample filenames as they are played

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

9

• kDebugSamplesOff - stop
• kDebugTracksOn – start echoing track names as they are started
• kDebugTracksOff – stop

You can trigger these cheats like this:

You can also trigger these cheats from the debug window like so:

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

10

Appendix – Track Examples

Track functionality
This section describes the track functionality most fundamental to the audio design and provides
some examples of their use.

Hit lists
HitLists are lists of sounds. The tracks picked randomly from the lists. The hit lists were set to
limit repetition in the voice tracks. This allowed the random selections without having the same
sample repeated twice in a row.

Branch on object info
Tracks can get information from the objects and branch on it. AudioInfo.h contains a list of
available fields.

Randomization
Tracks were programmed to wait random amounts of time. This added a natural feel. For example,
Sims would occasionally go silent for random period while reading. Some tracks were random
probabilities of playing. For example, a person with low cooking skill would occasionally say
“ouch” while chopping.

Example 1 – Random chance of playing
This track plays a sound only if a random number between 0 and 1000 is less than 100.

tv_repair_deathwarning
 ; 10% chance of playing
 loadl v1 #1000
 loadb v2 0
 rand v1 v2 v1
 loadl v2 #100
 cmp v1 v2
 iflt @_tv_repair_deathwarning
 end

_tv_repair_deathwarning
 loadl patch #3731
 note_on v1
 wait_samp
 end

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

11

Example 2 – Branch on gender
The track generic_fm_smartlists takes 3 hitlist id’s as arguments.

comeseeme_like_vox
 loadl v1 #1028
 loadl v2 #1029
 loadl v3 #1030
 jump @generic_fm_smartlists
 end

Example 3 – Piano
Repeatedly choose a hit list based on skill level. Piece a piece for that skill level and play it. If the
skill level changes, the next piece will be chosen according to the new skill level.

PlayPiano
 ; get creativity
 loadb v7 5 ;v7 = field ID (5 =
creativity)
 getsrcdatafield v7 arg1 v7 ;arg1 = source ID
 ; divide by 10 to get piano skill level
 loadb v6 10
 div v7 v6
 ; add hitlist if of base level to get hitlist for this level
 loadl v6 #1210
 add v7 v6
 ; set hitlist
 smart_setlist v7
 ; choose patch
 smart_choose v7
 set patch v7
 ; play song
 note_on v7
 wait_samp

 loop

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

12

Example 4 – A complicated vox track

A person can be neat or playful or normal. This was enough complexity to make it very difficult to
test and get right.

med_cab_brush_teeth_vox
 ; branch on neatness
 loadb v7 20 ;v7 = field ID (20 = neatness)
 getsrcdatafield v7 arg1 v7 ;arg1 = source ID
 loadb v6 33
 cmp v7 v6
 iflt @med_cab_brush_teeth_vox_sloppy

 ; branch on playfulness
 loadb v7 18 ;v7 = field ID (18 =
playfulness)
 getsrcdatafield v7 arg1 v7 ;arg1 = source ID
 loadb v6 60
 cmp v7 v6
 ifgt @med_cab_brush_teeth_vox_playful

 ; neither sloppy nor playful
 loadl v1 #684
 loadl v2 #685
 loadl v3 #686
 jump @generic_fm_smartlists
 end

med_cab_brush_teeth_vox_playful
 loadl v1 #681
 loadl v2 #682
 loadl v3 #683
 jump @generic_fm_smartlists
 end

med_cab_brush_teeth_vox_sloppy
 loadl v1 #678
 loadl v2 #679
 loadl v3 #0 ;680
 jump @generic_fm_smartlists
 end

CTG Audio System Design

Printed: 12/20/12 11:42 AM
Last Modified: 12/20/12

13

Example 5 – baby crying
The baby winds up and cries. The baby winds up a random amount of times and then screams over
and over.

vox_baby_cry_windup
 ; Kill this actor's vocals
 seqgroup_kill Instance

 set_loop
 ; Get smartlist
 loadl v1 #92
 smart_setlist v1
 smart_choose v1
 set patch v1
 note_on v1
 wait_samp

 ; 80% chance of looping here, 20% chance of
following thru to scream
 loadl v1 #1000
 loadb v2 0
 rand v1 v2 v1
 loadl v2 #200
 cmp v1 v2
 iflt @_vox_baby_cry_windup_scream ;scream
 loop
 ;don't scream

_vox_baby_cry_windup_scream
 loadl patch #1235
 note_on v1
 wait_samp

 loop
 end

