
Some notes on programming objects
 in

 The Sims™

Kenneth D. Forbus
Qualitative Reasoning Group

Northwestern University

Will Wright
Maxis/Electronic Arts

Acknowledgements: Maxis/Electronic Arts is in no way responsible for this material,
nor do they distribute or support the Edith object editor.

 Version of 5/31/01 i

1 Introduction... 1
2 The Sims: A look under the hood ... 1
3 The Edith object editing and debugging environment.. 3

3.1 Installing Edith.. 3
3.2 Starting up Edith ... 3
3.3 The Object Browser .. 4
3.4 Edit Tree Table Dialog ... 4
3.5 Tweaking your Sims ... 5
3.6 Edith tips, tricks, and traps.. 6

4 Designing new objects .. 6
4.1 The Joy Booth... 7
4.2 Exercise: The Mood Adjuster ... 12
4.3 Some object suggestions ... 13

 Version of 5/31/01 1

1 Introduction

The purpose of this document is to help you get started creating objects in The Sims. It
consists of three parts:

1. An under-the-hood look at The Sims. Understanding the basics of how this
simulated environment is structured is essential for understanding how to create
the routines and marshal the resources necessary to create new objects.

2. A guide to the Edith object editor and debugger. The interpreted nature of the
simulation environment greatly simplifies the debugging process, and is what
makes it possible to drastically extend the simulation by adding new objects.
Edith lets you watch what is going on inside objects and people while the
simulation is running, as well as providing facilities for creating and editing
routines using the visual programming language of the underlying virtual
machine.

3. Some examples of object creation. We start with creating a Joy Booth. A more
complex exercise, a Mood Adjuster, is described. Some yet more complex
exercises are suggested.

2 The Sims: A look under the hood

The Sims’ world is created on top of Edith, which provides a virtual machine plus an
development environment for that virtual machine. Shipping versions of The Sims have
the virtual machine but not the development environment.

A simulation in Edith consists of a set of objects. The simulation is evolved by running
each of these objects in turn. Each object has its own (Edith-level) thread and local
variables. The Edith VM uses cooperative (i.e., non-preemptive) multitasking, so it is
important to include explicit global checks in your code to avoid blocking.

Every object has a set of local data and a set of behaviors. The local data provides the
parameters of an object, including pointers (indexes really) to other objects it is related to.
The set of behaviors consist of a procedure that implements it (more on this below), a
procedure that checks to see whether or not it is possible, and a set of advertisements that
describe its properties in terms of what need(s) of a Sim it will satisfy. Sims (not under
direct player control) choose what to do by selecting, from all of the possible behaviors in
all of the objects, the behavior that maximizes their current happiness. Once they choose
a behavior, the procedure for that behavior (which is part of the object) is then run in the
thread of the Sim itself, so that it has access to that Sim’s parameters in addition to those
of its defining environment (the object the behavior is from). All interactions between
objects occur in this way. Sims themselves are just a somewhat more elaborate object.

Sometimes there are a number of intermediate objects to implement behaviors. For
instance, Social Interaction is an object that is created and used when two Sims interact.

 Version of 5/31/01 2

Each Sim contains behavior calls for each of the possible social interactions (flirt, kiss,
etc). When SimSam decides to run the kiss behavior (which is in SimMary) an invisible
social interaction object is created. The execution of SimSam’s thread is then passed into
this object (as is SimMary’s if she’s not busy). (Access to the parameters of the chosen
Sim is provided through a pointer in the Social Interaction object.). Eating is another
example of a behavior that involves a large number of intermediate objects, basically one
per step. Notice that this means objects can be dynamically created and destroyed during
the execution of a behavior.

Although the object updates happen in a single (underlying processor) thread, animations
and sounds are executed in another thread, asynchronously with Edith-level operations.
That is what provides the illusion of simultaneous activity in the simulated world. This is
also why there is a fair amount of setup that must be done when entering a routine that
uses animation, and careful checking on exit. There are a number of subtleties with
animations. For instance, when a Sim is taking a shower, it doesn’t actually enter the
shower. Instead, it is added to a “routing slot” of the shower, which offsets the location
of the animation so that it seems that the Sim is in the shower. (Try executing another
behavior when the Sim is in the shower, by editing the Shower Core procedure, and
you’ll see teleportation in action. Implementing a realistic simulated world is far from
easy!)

Behaviors are implemented in terms of procedures, called trees because of the visual
programming language that Edith uses. The intent of the visual programming language is
to make it easier for content developers to create objects, and perhaps someday support
end-user programming.1

Statements in this visual language are represented by boxes. Here is a very simple
behavior, the behavior for turning on the Lava Lamp:

1 Imagine an introductory programming course where your examples were in terms of Sims objects and
behaviors, rather than writing simple address books or matrix multiplication routines. This is still a great
idea, but it will take a lot of good curriculum design work to make it happen, in addition to more
bulletproofing.

 Version of 5/31/01 3

The entry point of any procedure is highlighted in green. Holding the control-key and
left-clicking on any procedure will make it the entry point for that tree. A statement is
either a primitive or a procedure call. The Private: indicates that the procedure is local
to the object, Global: indicates that the procedure is global. The small T/F boxes
indicate places where control is returned from the procedure, with success or failure
respectively. Arrows indicate flow of control. Notice that the statement in this procedure
has two tabs, one T and one F, each representing a branch to take depending on whether
or not the statement succeeded or not. This is how conditionals are implemented in this
language. If a statement doesn’t have a conditional outcome, then only a single tab, with
the label T, appears at the bottom. Iteration is done via loops in the branching structure,
with special primitives (e.g., Set To Next) acting as generators.

Primitive expressions enable the Edith programmer to test, set, and mutate parameters, to
run animations and play sounds, and do various other things. Integer id’s are used to
refer to objects.

3 The Edith object editing and debugging environment

The visible portion of Edith is the object editing and debugging environment. This
section provides enough information to get you started, but for the rest, you’re on your
own.

3.1 Installing Edith
Copy SimE.exe into the directory containing your legally obtained installation of The
Sims. Please note: This version of Edith is not the latest version, and will only work with
The Sims, not any of the expansion packs. Also, add the objects that are on the class CD
to the GameData\Objects directory, and change their properties so that they are no longer
read-only. Otherwise, you will not be able to edit them.

3.2 Starting up Edith
It is important to note that Edith requires your display color depth to be set to 16 bits.
Moreover, you can only run Edith in windowed (as opposed to full screen) mode. To do
this, set up a shortcut which executes SimE.exe, but with –w as a command line
parameter. When you execute your shortcut, you’ll see The Sims starting almost as
usual, albeit in a window rather than taking up your entire screen. Choose a family to
work with, and then type “e” to bring up the Edith window.

When Edith starts up, you’ll see a scenario editor window. This lists information about
the objects involved in the scenario you are currently running, i.e., the house and family
you have chosen to look in on. Here’s an example of what you might see:

 Version of 5/31/01 4

Most of the buttons are standard, but the really useful stuff is under the Sims menu and
the third button from the right, which starts the Object Browser.

3.3 The Object Browser
The object browser provides tools for programming objects. Click on an object to select
it, then choose what you want to do with it. The key buttons to know about are:

• Edit Tree Table brings up the dialog for editing
• Edit Behavior brings up the dialog for editing routines associated with an object.

3.4 Edit Tree Table Dialog

You’ll notice that there is no cancel button on this dialog. Any changes you make will
not be actually recorded until you click on Save. You have been warned…

The Interactions panel describes the interactions that an object makes available. The
index indicates what order something shows up in the menu. The Check Tree is a piece

 Version of 5/31/01 5

of code that indicates whether or not that interaction should be available, given the state
of the object. If this code exits false then that behavior will not appear on the pie menu
and also will not be available for autonomous selection by the Sims. The Action tree is
the action that is executed when that interaction is executed. The set of interactions can
be edited with the buttons in this panel. Most of them are obvious (New adds a new
interaction, Delete removes the selected interaction, Set/Clear Check/Action buttons
change those aspects of the interactions. The combo boxes are used to select actions,
pulling them from the pool of procedures (aka trees). Private trees are stored with an
object. Global trees are available to every object. Semi-global procedures appear to be
unused.

The Interaction Data panel sets up how an interaction of an object affects people.
Recall that objects provide interactions, and these interactions are advertised to the Sims.
Here’s what the parts do:
• Menu name is the name of that interaction displayed on the menu that players see
when they click on the object.
• Attenuation sets how quickly the advertisement fades. A setting of none makes the
strength of the advertisement independent of distance. In addition to the preset values
(high, moderate, low), one can set a custom value.
• Flags indicate to whom this interaction advertises. The “Available to” flags are
obvious. Allow Consecutive means that this interaction can be queued up.
• Joining is something you should just ignore.
• Motives indicate how the appeal of the advertisement is modulated by the properties
of the Sim. Recall that the Sims are constantly seeing interactions that will satisfy their
needs (energy, comfort, hunger, hygiene, bladder, room, social, fun, mood). The motive
settings determine how strong the advertisement will be along different dimensions. For
instance, a toilet advertises to Bladder, in a range from 0 to 70 (set by the Min and Max
boxes). If there is no variation by personality, the Max is used. If it does vary by
personality, then the motive is scaled linearly according to the number of points for that
aspect of the personality. For instance, the aquarium’s Feed Fish interaction provides
between 1 and 11 on Fun, depending on the Playful personality component. You’ll
notice that the personality list actually includes polar opposites for each trait (i.e.,
nice/grouchy, active/lazy, etc.) This is an intuitive way of handling a change of sign, i.e.,
if the personality variation is chosen to be Serious, the more playful points the Sim has,
the closer that dimension will be to the minimum.

3.5 Tweaking your Sims

A good way to learn how a simulator works is to tweak its parameters and see how its
behavior changes. The Sims menu in the scenario window provides several ways to do
this:

• The Simulation Constants menu enables one to reset basic properties of the Sims,
basically the rates at which various parameters change over time.

 Version of 5/31/01 6

• The Simulation Globals menu enables changing fundamental parameters of the
simulation, such as the person selected or whether or not free will is enabled, and
properties of the household, such as the money available.

3.6 Edith tips, tricks, and traps

• Back up your GameData directory frequently when programming with Edith.
Mysterious crashes can happen.
• Although you can do it, it is probably very unwise to edit global procedures
unless you are extremely sure you know what you’re doing. You can break things
very severely if you do. Global:Wait for Notify is one example. Just back
out, and let it do its job.
• Tweaking personality parameters and states of objects is relatively easy to do.
Working with animations is really hard. The animations were made with 3D Studio
Max plus a number of plug-ins that are EA proprietary, and they simply aren’t
available. The animations can include events, which is one reason why they are so
tricky.
• When editing procedures, make sure that you’ve terminated every node with
either a pointer to another node or an exit (T/F box). Otherwise very bad things can
happen. This is the most common mistake when working in Edith.
• Game tuning with new objects is a lot easier if you can gather data without
keeping your eyes glued to the screen. You can create a log file by invoking the cheat
window (Control-shift-C) and typing sim_log begin. Lots of data is dumped
into a .txt file in your Sims directory, until you reenter the cheat window and type
sim_log end. The data is in a format that can be read into a spreadsheet for
further analysis.
• You’ll find other handy abilities in the cheat window as well. For instance, you
can set the hour so that time-based operations can be tested. Help gives you a listing
of commands.
• Right-clicking on a box sets a breakpoint.
• If you find tons of small text label boxes showing up when you look at a lot, one
per object, you probably have redundant objects in your GameData\Objects directory.
Move the extra .iff files somewhere else and this problem will go away.

4 Designing new objects

Consider balance when creating your objects. Life is full of tradeoffs, and navigating the
constraints that they impose is part of the fun. In the game, objects that confer some
benefit should also have some cost. The most interesting costs are those which are
indirect – unintended consequences of something that looked like a good idea. We’ll see
that in our first object…

 Version of 5/31/01 7

4.1 The Joy Booth
The Joy Booth is based on the Joy Booths in the classic Infocom game, “A Mind Forever
Voyaging” and on the Orgasmatron from Woody Allen’s classic movie “Sleeper”. The
Joy Booth catalog description is shown above. When you instruct a Sim to use the Joy
Booth, it looks something like this:

On the right is a picture of the Joy Booth in operation. As you watch a Sim using it,
you’ll notice that their motions are like taking a shower, albeit with their clothes on. Joy
Booths quickly become popular household items, fun for the whole family and the
neighbors:

 Version of 5/31/01 8

The down side is that it is so popular that the family and the neighbors use it so much that
they socialize much less, thus weakening relationships, and even lose sleep to get another
dose. We’ve created a kind of SimHeroin, if you will, something that the Sims find
altogether too addicting.

 Version of 5/31/01 9

How was the Joy Booth built? It was created in two phases. First, the Transmogrifier
was used to create the Joy Booth visuals and change the catalog entry and price. The
Transmogrifier documentation is excellent, so you can read that to find out how to use it.
The only caveat I would add is to be sure to give your new object a unique ID –
otherwise it will not show up in the catalog. The Joy Booth started as a transmogrified
shower, with new textures. The shower was the appropriate starting point because it is
one of the few objects that Sims actually enter. (Recall that doing new animations
outside Maxis is currently impossible, since they require proprietary tools.) The second
phase is to use the Edith editor to reprogram the routines of the Shower that are copied
over during the transmogrification to make the new object behave like a Joy Booth.

How should a Joy Booth work? For any object in the Sims, we have to consider what
behaviors it should have and how these behaviors should advertise themselves. A Joy
Booth is described as being useful for saving time in avoiding relationship maintenance.
This suggests that taking a dose from the Joy Booth should provide Social and Fun
payoffs. As a bonus, we’ll provide a Mood payoff as well. Here are the values for the
Joy Booth:

You’ll see that we left the internal name of the routine (aka tree) to be Take Shower, but
changed the way it presents to the player as “Take a Dose”. We’ve made it available to
everyone in the family and to visitors. It advertises strongly for Social, Fun, and Mood,

 Version of 5/31/01 10

making it a good payoff for those circumstances where you might otherwise hang out
with family, friends, and neighbors.

How should taking a dose work? It’s useful to think of this in terms of differences from
how the shower works:
• Showers can only be taken in private. We want the Joy Booth to be useable in public.
• Showers require taking off one’s clothes. Since Joy Booths are installed in public
places, we’ll let Sims keep their clothes on when using a Joy Booth.
• A shower increases hygiene. We’re going to increase Social, Fun, and Mood, and
actually decrease hygiene a bit. (How many ways of having that much fun don’t involve
a little sweat?)
Fortunately, these changes for the most part can be done by stripping out parts of the
Take Shower routine, specifically those parts which are concerned with disrobing and
getting dressed again (see) and worrying about privacy (see). The simplified version of
Take Shower (which to the user looks like Take a Dose) looks like this:

You’ll notice that we first try to go to the front of the shower, facing it. If that fails, we
exit. (It can fail because someone else could be in it, or blocking our route to it.) If it
succeeds, we enter the shower and close the door (Private: enter shower and close
door). Some magic with animation ensues, and if the mood is sufficiently high, singing
in the shower is enabled. Private:Shower core runs the animations for actually taking a
shower, and afterwards, some more cleanup occurs. What happens on exit looks like
this:

 Version of 5/31/01 11

You’ll notice that once we exit the shower, we increment Fun, Social, and Mood, and
decrement Hygiene slightly, before doing some cleanup operations on the way out (the
Global set room impact, animation reset, and Standard Exit).

You’ll notice that, viewed locally, the Joy Booth looks like a great object – if your
neighborhood is sparsely populated or a Sim doesn’t have very many friends yet, the Joy
Booth will help them get through a day far more happily than they would be otherwise.
Regrettably, as noted above, it is used at the expense of doing social actions that would
build relationships. And thus in the end it probably isn’t a terribly useful object to have
around.

Creating addictive objects is relatively easy – give some object’s behavior high
advertisements along some dimension, and you’ll see that behavior chosen over and over
again to satisfy them2. What is more difficult is to create collections of objects that are
balanced, where Sims interact with them in natural-looking patterns (or at least more
amusingly varied than an obsessive-compulsive exhibits).

2 Although even finding the right level of addition requires some tuning. Early versions of the Joy Booth
were so addictive that Sims would continue using it until they collapsed. Not a very subtle nor very
interesting, past the first time. However, it would be an interesting exercise to modify the Joy Booth so that
(a) different personality types were more likely to find it very addicting and (b) they would build up a
serious addition, by the use of a Relationship object, to it.

 Version of 5/31/01 12

4.2 Exercise: The Mood Adjuster
The idea of a Mood Adjuster is to get everyone in a party mood. As the catalog entry
states:

As you can see, the Mood Adjuster started out as a Transmogrified Lava Lamp.
However, the Turn On behavior has been edited to represent the effects of the nanobots:

It first calls the Private:SubOnOff routine, which handles the Lava Lamp aspect of its
behavior. But before exiting, it also makes two changes to the person doing the
operation: It increments the Outgoing parameter of their personality by 50, and resets
their Logic skills to 0.

 Version of 5/31/01 13

As written, this routine has a couple of problems:

1. It seems a little extreme to make permanent changes to mood. To be sure, that
might be the way nanobots adjusting one’s endocrine system might work out in
practice. But it seems doubtful that such a product would remain on the market
very long. It would be better if the effects were temporary.

2. The effect is advertised in the catalog to be affecting everybody, not just the
person who turned it on.

You might try as an exercise fixing the Mood Adjustor to overcome these problems.
Here are some hints:

• The engine underlying the Sims doesn’t have much in the way of compound data
structures. However, there are a small number of unused parameters in the Person
object that can be used as temporary caches. (This assumes that two object authors
don’t try the same trick at once, obviously.)
• In making the effects of the Mood Adjustor more global, there are two natural
contexts: It affects everyone just in the same room it is in, or affects everyone in the
house. Whichever one you pick, you’ll need to iterate over all of the people in the
room or house. If you look at the tree Global::Privacy – test alone, you’ll see a
method for iterating through people and seeing if they are in the same room.
• Visiting neighbors raise some interesting problems. They might come in after the
Mood Adjustor is turned on, in which case they won’t be affected, but might have
very strange things happen if the Mood Adjustor is turned off while they are there and
their state is “popped”. They might be there when the Mood Adjustor is turned on,
but leave before it is turned off, in which case the changes to them will persist. One
solution is to live with it – nobody said nanotechnology was safe, did they? Another
is to use a flag to indicate when someone has been Adjusted, and only pop values for
those folks who have been Adjusted. (This doesn’t help the neighbor-leaving
problem, however.)

4.3 Some object suggestions
In case you don’t have some ideas you are itching to try, here are some suggestions to get
you started:

• Nanobot Cleaners: Like the roaches, these critters swarm over your house. But they
clean your house, including digesting trash on the floor. While expensive to purchase,
they require no maintenance and even bring in a little income, because the trash that they
digest is sold to the local recycling plant. (Finally, a reason to have an internet
connection in your refrigerator ) However, at some infrequent interval, they will also
swarm over and digest some object (or person?) in the household by mistake.
• Skeptical Sims: Objects advertise, to be sure, but currently Sims have no way of
knowing whether or not the experience was worth it. Relationship objects are used
sparingly in The Sims, but they enable recording information about a Sim’s relationship
to another object. Try storing all of the relevant variables in temporaries in a
Relationship object before executing a behavior, and comparing them afterwards to see if

 Version of 5/31/01 14

the object does indeed perform as advertised. Then use this information to scale the
advertisements when evaluating future interactions appropriately.

