
VitaBoy Documentation
By Don Hopkins, Maxis.

This document describes VitaBoy, the skeletal character animation system in The Sims,
written by Don Hopkins at Maxis.

VitaBoy combines several different types of data together to render the animated
characters in the game, including skeletons, skills, suits and texture maps.

Artists create the skeletons, skills and suits in 3D Studio Max, and the texture maps in
Photoshop.

The CMX Exporter is a 3D Studio Max plug-in and MaxScript user interface, which
allows artists to export skeletons, skills and suits from Max files into CMX files that the
game can read.

Character Studio is another 3D Studio Max plug-in, that allows artists to animated a
Biped skeleton, and to attach deformable mesh suits to it with Physique. The CMX
Exporter knows how to support Character Studio Biped and Physique, but it can be used
with other kinds of skeletons and suits as well.

The way the CMX Exporter knows what to export from a Max file, is by looking for note
tracks on the bones, for keys containing tags that control the exporter. The artist inserts
note track keys into the Max file, to mark up the skeletons, suits, skills and events. The
tags in the note track keys tell the exporter what to export from the Max file.

The Access database tells the exporter which skeletons, skills and suits are defined,
which Max files contain them, and where to export them. The artist can select the name
of a skeleton, skill or suit from a scrolling list, and automatically load, validate and export
the correct Max file to the correct destination. The exporter can also check the exported
files out from and into SourceSafe. The artist can use the exporter manually without the
database, but the database is extremely useful for avoiding accidents when there is a lot
of content to manage.

• Installing the CMX Exporter.
o The "official" distribution site of the CMX exporter is

\\Elmo\ctgr\pub\DIST\MaxScript CMX Exporter.
o The CMX Exporter is implemented as a MaxScript plug-in (maxiscrp.dlx)

and a MaxScript startup script (maxis-maxscript.ms). It’s not a normal 3D
Studio Max “exporter” plug-in, so you will not find it on the File/Export
menu, instead it has its own user interface utility panel.

o To install the CMX exporter, first quit Max, then copy the plug-in
maxiscrp.dlx to your 3dsmax\Plugins directory, and copy the script maxis-
maxscript.ms to your 3dsmax\Scripts\Startup directory.

o Finally, restart Max.

• Updating the Database Cache.

o The old CMX Exporter used to dynamically download the database from
Access via OLE Automation, but that had problems and was slow, so we
switched to a simpler more reliable approach of generating a text file from
Access that MaxScript can read quickly, instead using OLE.

o In order to use the CMX Exporter with the Access objects database, you
must open up the objects database in Access, which lives at [???
TODO…], and run a macro called [??? TODO…].

o This macro that exports a cache of the interesting parts of the database as
MaxScript code that reads in very quickly.

o You must run it every time part of the database that matters to you
changes, and then you must quit and re-start Max in order to read the
updated database cache. (Dynamically reloading the cache would be an
easy feature to add, though.)

o After running the macro, you can quit Access if you want to be polite.

• Running the CMX Exporter.

o To use the CMX exporter, first you open up Max's "Utilities" panel, then
select the "MaxScript" utility.

o MaxScript will initialize and automatically load in the scripts in the
Startup directory.

o Next, select the "CMX Exporter" item from the Utilities menu in the
MaxScript panel.

o Then, the “Load CMX Exporter” panel will open up below.
o The “Load CMX Exporter” panel has a button called “Load CMX

Exporter Cache”, that loads the animation database from cache files,
which an Access database macro wrote out into the local temporary file
directory.

 In order to use animation database, you must first open up the
Objects database in Access, and execute the macro called [TODO:
???], which updates the cache from the database.

 After it loads the database cache, the “CMX Exporter Turbo-
Deluxe” utility window will open up, with a scrolling list that lets
you select any animation or suit in the database.

o If you don’t need to use the database, and want to run the exporter
manually, press the button called “Open CMX Exporter”.

 The “CMX Exporter Turbo-Deluxe” utility window will open up,
but the scrolling list will not have any items in it. You can still
operate the exporter manually, with the other buttons in the
window.

o Now you can close the Utilities, MaxScript and “Load CMX Exporter”
panels to leave more room for the CMX exporter.

• Using the CMX Exporter.

o The scrolling list in the CMX exporter contains the names of all skeletons,
suits, and skills in the database that are checked for export.

o Select the name of a skill or suit or skeleton from the list.
o The Max file name and the status are shown in text fields below the list.
o Press "Load This Max File" to load the max file containing the currently

selected database entry.
o Press "Load And Export This Max File" to both load and export the

selected database entry.
o The CMX directory and file name are shown below the buttons.
o There is a "Write Enable" check box that you can uncheck to prevent the

exporter from writing any files.
o Good for a dry-run before the output files are checked out, to see which

files will be exported.
o The Check In and Check Out buttons attempt the check the output files in

and out of SourceSafe.
o They don't check in or out the Max source file, however -- you have to do

that yourself.
o The "Export Current Max File Here" button exports the currently loaded

max file to the location as specified by the selected database entry.
o Make sure the right database entry is selected.
o If the max file name and the cmx file name are different, you are warned

and given a chance to abort.
o The max file name and the cmx file name should always be the same

(except for their extensions),
o and there is no reason to make them different, so usually something's

wrong if you get that warning
o (like a different entry selected than max file loaded).
o The "Export Current Max File To..." will prompt you for the cmx file and

directory to export the currently loaded max file, ignoring the selected
database entry. This button will work even if the database is not loaded.

o The "Export Max Files in List" button lets you list the names of a bunch of
max files to export in a text file.

o It will load and export each of those files (the names can be absolute or
relative to the directory containing the text file of names).

o The "Filter" field allows you to specify a database "Keywords" filter.

o The 3DRT and Animation databases have a "Keywords" field that is for
exporter filtering keywords.

o If you type a string into "Filter", the exporter will only export database
entries that have that string in their Keywords field.

o Look at the databases to see the keywords that have been defined.
o If you need to repeatedly export a group of animations or suits, you can

make keywords to describe them, and enter them into the database,
o so it's easy to use the exporter to batch export just the subset you're

interested in (like all suits and animations associated with a named
character, would use the name as a keyword).

o The "Export Files In Database" button loads and exports all max files in
the database (subject to the filter), including skeletons, suits, and skills.

o It prints out a summary report of the successful exports and failed exports
with error messages.

o The "Load Files In Database" button just loads all max files in the
database, to make sure they're there and valid.

o It prints out a summary report of the successfully and unsucessfully loaded
file names.

o TODO: Describe how to batch export all the Max files in the database in
chunks, to work around 3D Studio Max corruption.

• Marking Up Note Tracks and Tags

o Max allows you to attach a note track to any object in the scene, and place
keys on the note track in time, whose string value you can edit in a little
text editor window.

o Note track keys attached to bones at certain times allow you to control the
exporter, and insert user definable events into animations.

o The CMX exporter parses the note tracks as a TimeProps. Each note track
key exists at a particular time, and contains a multi-line text field.

o The text field is parsed as a Props, each line in the format “tag=value”.
o The format “tag” (without an = sign) is a shorthand for “tag=”, which

defines the tag to be a zero length string. You can use certain shorthand
tags like “moving”, “absolute” and “relative”.

o Be careful not to include any blank lines in the multi text editor, or the
CMX text file reader might get confused (this is a bug that should be
fixed).

o Skeletons

 The “skeleton=name” tag marks the root of a skeleton, used for
exporting suits or skills. A normal skeleton is not exported like a
masterskeleton. You have to tag the skeleton, so the exporter
knows where to look for Skills and Suits.

 The “masterskeleton=name” tag marks the root of the master
skeleton, which is actually exported. There should only be one
master skeleton of each name (currently “adult” and “child” in The
Sims).

 The “cantranslate=value” tag marks a bone as having its translation
animated, which is false for all bones by default. For Biped, this
includes the root and the pelvis. The value should be 1 or 0. The
CMX exporter sets this automatically for Biped skeletons, but if
you make your own skeleton you might need to use it.

 The “canrotate=value” tag marks a bone as having its rotation
animated, which is true for all bones by default. The value should
be 1 or 0.

 The “canblend=value” tag marks a bone as being blended, which is
true for all bones by default. The value should be 1 or 0.

 The “wiggle=canWiggle wigglePower” tag sets the canWiggle flag
(1 or 0) and wigglePower value (a floating point number) of the
bone. The format is “int float”. This adds Quaternion Perlin noise
to the bone rotation. This is not currently used.

 The CMX exporter has special support for Biped skeletons. Put the
“skeleton=name” tag on the biped root (usually called “Bip01”).
The “Bip01” root is renamed “ROOT” in the export process, and
all the bones are stripped of their “Bip01 ” prefix and
canonicalized. Dummy and Footstep nodes are ignored.

 The CMX exporter also supports Bones or other 3D Objects as
skeletons. The trick is to name the bones using the same
conventions as the Biped bones: the root should be tagged with
“skeleton” or “masterskeleton”, and be named “Bip01” (or
anything else, as long as you’re consistent), and all the bones under
that are named “Bip01 BoneName” (don’t forget the space). The
exporter recognizes the bones under the root by their prefix (the
name of the root followed by space), and assumes anything that
doesn’t have that prefix is a skin (a mesh to be rendered, instead of
a bone of the skeleton). So every bone of the skeleton should have
the prefix of the root (plus a space), so the prefixes are stripped off,
and the root is renamed “ROOT”. Kind of weird, but that’s how
Biped does it.

o Suits

 To export a suit, attach a “suit=name” tag to the root of the
skeleton, at the time you want it to export.

 You can animate objects over time and export several suits on the
same skeleton at different times, which snapshot its different states
at the times of the suit tags.

 Rigid Meshes
• Rigid 3D meshes can be attached to parent bones, or other

rigid meshes descendent from a bone. All rigid meshes
descendent from a bone are exported in the bone’s
coordinate system, and move with the bone.

 Deformable Meshes

• Deformable meshes can straddle more than one bone of the
skeleton, so they bend smoothly with the skeletal
animation.

• Different vertices of the same mesh are attached to
different bones, so the mesh moves with the skeleton.

• Some vertices may be attached to two bones at once, with a
different weight for each bone, so that the seam between
bones deforms smoothly.

• The CMX exporter supports using Physique to bind
deformable meshes to Biped skeletons, and knows how to
read out the vertex to bone bindings and their weights. It
does not support the fancy vertex binding types (bulges and
tendons, etc), just the rigid weighted style, attached to no
more than two bones.

 The “type=value” tag controls the suit type, defaulting to 0. The
normal type 0 Suit has faces, and the type 1 Suit just transforms
vertices, and is used by censorship for bounding box calculation.

 The “flags=value” tag on a skin sets the skin flags, which make it
possible to filter out a set of skins when dressing a suit, and is used
by censorship to select which bounding boxes of a type 1 suit to
censor.

 The CMX Exporter writes out the texture map coordinates of the
vertices, and the name of the texture map, which should be
installed separately or bundled with an the object.

 Put the texture map into a bitmap file (.BMP). Name the material
that refers to the bitmap the same as the bitmap file, without the
.BMP suffix. That’s the name the exporter will write out, so it had
better be the same.

 The CMX exporter handles smoothing groups, when calculating
vertex normals. Just create smoothing groups as you usually do,
and it will do the right thing.

 It optimizes shared vertex usage, by collapsing vertices that are at
the same 3d position with the same texture map coordinate and
normal.

o Skills

 A skill has a beginning and an end in time, and applies to one or
more bones of the skeleton.

 The beginning of a skill is marked by a “beginskill=name” tag on a
bone of the skeleton at a certain time, and the end of the skill is
marked by an “endskill=name” tag on the same bone at a later
time. The names of the beginskill and endskill must match.

 Full Body skills are attached to the root of the skeleton, and record
the animation of the root and all bones below it, unless overridden.

 Partial Body skills can be attached to a lower bone of the skeleton,
and affect that bone and all bones below it, unless overridden.

 In the same note track key as the “beginskill=name”, you can
specify other parameters for the skill.

 You can override the bones animated by a skill, by listing
“includebone=name” and “excludebone=name” tags with the
parameters to the beginskill. You can list as many includebone or
exclude bone tags as you need, each with different bone names, to
specify the bones you want to animate. If you use includebone, the
children are not automatically included, so you have to list each
one you want. If you use excludebone, the children are
automatically included, except for the ones you list. Don’t use
includebone and excludebone at the same time, or it might get
confused.

 The “xorigin=value”, “yorigin=value” and “zorigin=value” and
“spin=value” tags control the position and orientation of the
animation’s coordinate system.

 The “absolute”, “relative” and “moving” tags mark an animation as
being in an absolute coordinate system, a relative coordinate
system (starting at the origin), or a moving animation (walking,
running or swimming).

 Events can be delivered to any bone in a skill, at any time between
its beginskill and an endskill (inclusive). Events are simply tags
that the exporter doesn’t recognize. It removes the tags that it
recognizes, inserting the leftover events into the skills to be
delivered to the game at run time. Unknown events are simply
ignored by the game. See the description of SAnimator to learn
about all the different events that are supported.

 The “skill=name” tag is used to associate the entire note track with
a certain skill, so other overlapping skills don’t pick up those
events. Not generally very useful or often used.

• Technical Notes
o Requirements for setting 3D Studio Max’s Master Scale, Master Unit

Type, Master Unit Scale.
 You need to set 3D Studio Max’s master unit scale to the right

value (feet). Ask Charles for instructions. [TODO…]
o How the CMX Exporter Compiles and optimizes meshes.

 Describe how the exporter reads weighted vertices, handles texture
map coordinate, smoothing groups, computes normal vectors, and
optimizes the meshes. [TODO…]

o Texture mapping.
 Notes related to texture mapping. Where to put the textures, what

format to use, how to name the files, how to set up textured
materials in Max, and other conventions and constraints.
[TODO…]

o Smoothing groups and normals.
 How to use smoothing groups to create creases and edges, and

control the smoothing of polygonal edges. [TODO…]
o Time Scale.

 How to set up the time scale of the animation. Standard values.
[TODO…]

o The CMX Exporter maps new Biped bone names to old bone names. The
new version of Character Studio Biped had more medically correct bone
names, but we needed to regress to the old names since we still had a lot
of old content around. So the CMX Exporter automatically maps new
bone names to old bone names, as follows:

 CALF => LEG1
 THIGH => LEG
 UPPERARM => ARM1
 FOREARM => ARM2
 CLAVICLE => ARM

o Error messages are reported with offending file names. All the code that
could fail reading or writing a file remembers the name of the file in which
the error occurred, so the exporter can report more informative error
messages. Tools should check for errors and report the problem file names
to the user.

o Histogram for tuning compression algorithm.
 Describe low frequency floating point number compression

algorithm. Document how to gather statistics on compression from
batch exports, and how to tune the compression algorithm.
[TODO…]

o Pose analysis.
 Document how to gather pose statistics from batch exported

animations, and analyze the animation pose statistics, to find
glitches and misaligned animations. [TODO…]

o The CMX Exporter write enable flag disables the exporter writing files
when false, so you can test a dry run and see what will happen. The

exporter uses this internally to generate a list of files that will be modified,
to check them out and in to SourceSafe.

o Access Database.
 Describe how the exporter uses the Access database. Document

which fields it depends on, and how they are used. [TODO…]
o Source Safe.

 Describe how the exporter uses SourceSafe. Document the
configuration variables. [TODO…]

• Animation Compiler

o The Animation Compiler reads in batches of un-indexed text animation
files, and writes out one FAR file full of indexed binary animations.

 Describe what the animation compiler does, and how it’s used in
the build process. [TODO…]

• File Formats

o CMX files (text vitaboy files)
 Should phase out vitaboy text files, because of other languages that

use comma as a floating point decimal symbol. FaceLift currently
writes out text files, as does the exporter. The Animation Compiler
translates the text files to binary, and compiles them into a FAR
file. FaceLift should use libraries that read and write binary files,
and the exporter should write out binary files by default. TODO…

o BCF files (binary vitaboy files)
 Documented in “SimsFileFormat.txt”.

o SKN files (text DeformableMesh files)
 Should phase out text files. See note above.

o BMF files (binary DeformableMesh files)
 Documented in “SimsFileFormat.txt”.

o BIN files (binary uncompressed floating point)
 Raw binary floating point numbers in Windows format.

o CFP files (binary compressed floating point)
 Document floating point compression algorithm and file format.

[TODO…]
o NDX files (binary vitaboy index file)

 Index to all CMX files in a FAR file, for pre-loading the cache.
Document binary file format, that only appears in FAR files.
[TODO…]

o FAR files (archive directories)
 Archive of files and directories. Document FAR file format.

[TODO…]

• Libraries

o Skeleton.cpp
 Props

• A reference counted property list, containing key/value
pairs that are strings.

• PropsAssociation is used internally by Props.
• PropsIterator is an iterator for looping over Props.

 TimeProps
• A reference counted timeline of Property lists, containing

key/value pairs, the keys of which are integers (time), and
the values of which are Props (property lists).

• TimePropsAssociation is used internally by TimeProps.
• TimePropsIterator is an iterator for looping over

TimeProps.
 Skeleton

• A reference counted Skeleton keeps track of a list of Bones,
threading them into a tree.

• It also manages a vector of Practices that bind Skills to it,
and a list of Dressings that bind Suits to it.

• It has a name by which it is known, and a cmxFileName
from which it was loaded.

• It has a transform to place it in the world (or group).
• It has a Bone vector, and keeps track of its root Bone. The

Bones have pointers to their parents, siblings and children.
• The practicesChanged flag allows the skeleton to

efficiently figure out which practices it should apply.
• The void data flag is not currently used.
• The bboxesValid flag and bbox are used to keep track of

the bouding box.
 Bone

• A set of Bones are assembled into a skeletal tree, in a
threaded list.

• A Bone represents a translated and rotated coordinate
system.

• It has pointers to other parent, sibling and child Bones,
which represent the hierarchy through which translation
and rotation are inherited.

• Each Bone inherits its parent’s coordinate system, then
adds its translation followed by its rotation, to calculate the
coordinate system in which the skins are rendered, then
passes that transformation on to its children.

• Bones are not reference counted, since the Skeleton
manages them.

• Each Bone has a name, as well as a parent name of the
bone to which it’s attached.

• It has a (possible NULL) pointer to an optional Props, used
to store properties.

• It has a three dimensional vector trans to represent its local
translation, and globalTranslation to represent its global
translation.

• It has a four dimensional quaternion rot to represent its
local rotation, and globalRotation to represent its global
rotation.

• It has a transform and a rotMat to keep figure out its
transformation to world space.

• It has an integer priority that keeps track of the highest
priority opaque practice bound to it, used for optimization.

• It has an extreme flag to control whether it should be used
for skeleton bounding box calculation, as well as a
bboxValid flag and a bbox, used for calculating its
bounding box.

• It has flags canTranslate and canRotate to control whether
it supports translation and/or rotation.

• It has a canBlend flag to control whether motions can be
blended together on that bone.

• It has a canWiggle flag and wigglePower float to control its
Perlin noise QuatNoise wiggler (not currently used).
Animations could have events that set the canWiggle and
wigglePower values of the bones, to automatically add
smooth quaternion Perlin noise to the bones. Needs to be
tuned and adjusted to determine the best values to use.

 Registration
• A Registration has a pointer to a Bone, and a Transform

relative to that bone, and it is used to simplify figuring out
where to register other 3D objects relative to the skeleton.

 Skill
• A Skill represents a reference counted named set of

Motions that can be applied to the Bones of a Skeleton by
creating a Practice.

• It has a name by which it’s called, the fileName of a file
containing compressed floating point numbers, the
cmxFileName from which it was loaded, the errorFileName
to report if something was missing, the resourceSite from
which it was loaded, and a loaded flag.

• It contains a vector of Motions, which are bound to bones
of a Skeleton by a Dressing.

• It holds all the translations and rotations for the Motions it
contains, which are counted in numTranslations and
numRotations and stored in translations and rotations.

• It has a duration (the duration of a Practice played at
normal speed), a distance (the distance a walking loop

should travel forward), an isMoving flag to tell if it’s
moving (like a walking loop), an isTurning flag to tell if it’s
turning, a 3 dimensional offset to tell how much it moves in
3 dimensions, a quaternion turn to tell how much it turns
(not used).

• It keeps track of its activePractices and its lastUnbindTime,
so it can automatically unload when it’s not needed.

 Motion
• A Motion has a Bone name to which it should be bound, as

well as a pointer to the Skill that contains it.
• It refers to a particular number of frames of animation data,

and has hasRotation and hasTranslation flags, and
translationsOffset and rotationsOffset indices into the
Skill’s translations and rotations.

 Practice
• A Practice represents the binding of a Skill to a Skeleton,

that associates the Motions of a Skill with the Bones of a
Skeleton, and makes a TimePropsIterator for each
Motion/Bone binding that has a TimeProps stream of
events, so Practice::Apply can read out and handle the
events.

• Practices are not reference counted, since they’re managed
by a Skeleton.

• A Practice keeps track of the Skeleton and Skills that it
binds, as well as a PracticeAssociation vector (each item
containing a Bone, a Motion, and a TimePropsIterator for
keeping track of events).

• It has a user definable priority that effects the order in
which they are applied to the Skeleton.

• It keeps track of the currentTime, the lastTime and the
count of frames.

• Its time scale controls how fast it plays. 1.0 is normal
speed, 0.5 is half speed, 0.0 is frozen, etc. The duration
depends on the scale times the duration of the skill.

• The propsTime and lastPropsTime are used to keep track of
event delivery.

• The isOver flag turns to true for the last frame of a Practice.
• The repeatMode controls what the Practice does when it

hits the end. Use 0 for hold, 1 for loop, 2 for ping pong, and
3 for fade.

• It can be faded in and out by automatically adjusting its
weight, which is controlled by the variables fading,
fadeStartTime, fadeDuration, fadeStartWeight and
fadeEndWeight.

• It can be flagged as opaque, so it completely covers up
lower priority practices. The opaque flag is automatically
set when the weight is 1.0.

• The interpolationMode controls how quaternions are
blended. Use 0 to snap to the closest quat. Use 1 to quickly
compute a weighted average then normalize. Use 2 to
SLERP a spherical linear interpolation.

• The skipFrames integer is used to test animations out at
lower temporal resolutions, and should normally be 0.

• The stopWhenFaded flag will automatically stop a practice
and dispose of it when the fade out is finished.

• The interruptable flag tells if it’s allowed to be interrupted,
and can be changed by interruptable events in the event
stream.

• The anchor bone points to the toe bone planted on the
ground, and the anchored flag tells if it should be anchored.

• The mixRootTranslation and mixRootRotation flags are
used to inhibit the mixing of root translations and rotations,
to avoid snapping problems.

• The void data pointer isn’t currently used.
 Suit

• A Suit represents a named set of Skins that can be applied
to the Bones of a Skeleton.

• A Suit is reference counted, and automatically unloaded
when it has not been used recently.

• It has a name, a cmxFileName to keep track of the name of
the CMX file from which it was loaded, an errorFileName
to report errors when something is missing, and a
resourceSite to keep track of where it was loaded from.

• The type controls whether it is normal (0) or a bouding box
(1) not to be drawn but used for censorship.

• It has an optinal Props to associate user defined data.
• It keeps track of its activeDressings and lastUnbindTime,

so it can automatically unload when it’s not needed any
more.

 Skin
• A Skin binds a mesh to a bone. Or at least, it used to, when

all we had were rigid meshes.
• Actually, now that we have deformable meshes, a Skin just

points to a more complicated DeformableMesh, that can
attach to a bunch of different bones on its own. The bone of
a skin doesn’t matter any more (as long as it exists in the
skeleton), because the bone names in the DeformableMesh
are the ones actually used.

• It has a Bone name, which must exist, but is otherwise
ignored. (If it doesn’t exist, the Skin won’t be dressed onto
the Skeleton, but nothing will go wrong).

• It has a name, which is the name of a file containing the
actual DeformableMesh data.

• It has some flags, used to control which Skins of a Suit are
actually dressed on a Skeleton. This is used by censorship
to dress the appropriate subset of the censorship bounding
boxes onto the Skeleton. Each skin is marked with a
different flag (powers of two), and a mask is passed into
Dress to determine which skins should be dressed.

• It has an optional Props, used to store auxiliary
information.

• It has a pointer to the Suit that contains it.
 Dressing

• A Dressing is a reference counted run-time structure
created when you dress a Suit on a particular Skeleton. It
keeps track of the bindings of the shared Suit’s Skins with
the particular Skeleton’s Bones, and indirectly holds other
structures needed to draw the character.

• It has a pointer to the Suit and Skeleton that it binds
together.

• It has a DressingAssociation vector, each item containing a
Skin pointer, a Bone pointer, and a void data pointer (that
points to a SkeletonBinding).

• It has a void data pointer, that isn’t currently used.
 DeformableMesh

• Represents a deformable mesh that can be bound to a
skeleton in the game at run-time. It keeps track of its file
name, its texture name, the skin that it’s associated with, a
vector of bone names, a DeformableFace vector, a
BoneBinding vector, a TextureVertex vector, a BlendData
vector, and a NormalVertex vector.

 TextureVertex
• A two-dimensional texture map location, two floating point

numbers u and v ranging from 0.0 to 1.0.
 NakedVertex

• A three-dimensional vertex, three floating point numbers x,
y and z.

 NormalVertex
• A three-dimensional NakedVertex representing the

position, with a another three-dimensional NakedVertex
representing the normal.

 BlendData
• Used to keep track of a vertex that’s blended between two

bones.

• The weight is an int32 fixed point value (16.16) because of
a historical misunderstanding, and should have been
floating point (but it doesn’t really matter).

• The otherVert is the index of the other vertex that the
BlendedVertex containing this BlendData is to be blended
with.

 DeformableFace
• Represents a triangle, defined by the indices of three

vertices, integers a, b and c.
 BoneBinding

• Keeps track of the binding of rigid and blended
DeformableMesh vertices to a bone.

• It refers to the bones, rigid and blended vertices of the
DeformableMesh that contains them all.

• It contains the index of the bone to which it binds, the
index of the first rigid vertex, the rigid vertex count, the
index of the first blended vertex, and the blended vertex
count.

 SkeletonBinding
• Used in the game at run-time, to attach a DeformableMesh

to a RenderMesh and an actual skeleton. One
SkeletonBinding is created for every Skin of a Suit when
you dress a suit on a skeleton, and the Dressing keeps track
of it indirectly. It keeps track of a vector of Bones, as well
as the bounding box of the mesh on the skeleton.

 UsedVertex
• Only used by the exporter.
• Keeps track of each time a vertex is used by a face, so it

can handle smoothing groups and optimize texture
coordinates.

 BoundVertex
• Only used by the exporter.
• Holds some extra information needed for the sorting and

compilation phase, and a UsedVertex vector to keep track
of the different faces using this vertex.

 BlendedVertex
• Only used by the exporter.
• A subclass of BoundVertex that also has a BlendData to

keep track of blended vertices.
 PerlinNoise

• A 1-dimensional Perlin noise generator.
• Used by QuaternionNoise.

 QuaternionNoise
• A 4-dimensional quaternion Perlin noise generator.

o VitaBoy.cpp
 Envelope Template

• Used as a wrapper to automatically index, load and unload
Skeletons, Skills and Suits, so they can be sorted into a set
for fast lookup.

 VitaRenderGroup
• Subclass of RenderGroup that overrides some of the

automatic behavior of IsBoundingBoxDirty, since we’re
taking care of that stuff ourselves.

 VBAnimMgr
• Keeps track of the shared VitaBoy animation data,

including Skeletons, Skills, and Suits.
• It uses maps of Envelope templates around all the

Skeletons, Suits and Skills.
• It keeps track of the Device3D and the

RenderObjectFactory.
• It can load and save animations and indices from text and

binary files and streams.
 VitaBoy

• Wrapper around Skeleton, that knows about device specific
stuff, like how to render the Skins with the 3D library.

• Keeps track of the VBAnimMgr, the Device3D, the
Skeleton and the RenderGroup.

• Has a realTime flag that’s not used.
• Has a void data pointer that’s used to point to the next

higher level of abstraction (SAnimator).
• Has a name, that’s not used.
• Has a rootTransform and rootScale that’s used to place its

RenderGroup in the world.
• Has a ghost flag that’s used to draw it transparently.

o SAnimator.cpp
 DressingRecord

• Used by SAnimator to keep track of Dressings with suit
and texture names.

 HandleVitaBoyAnimEvent
• Event handler that sends events back to the SAnimator

buried under several levels of void pointers.
 SAnimator

• Higher level animation controller, below Person but above
VitaBoy.

• Handles mixing and sequencing several parallel layers of
animations, dressing suits on the skeleton, walking, and lots
of other stuff.

• Sets up search paths for loading animation data.
• Manages strings used to name Skeleton, Suits, etc.
• Resolves Suit and Skill names.
• Has a reference to the containing Person, and to the

contained VitaBoy.
• It can start and stop the VitaBoy, and save and restore all

the animation state, so it’s possible to stop all the VitaBoys,
close down all the animation files, reload them, and start all
the VitaBoys back up again.

• Keeps track of Suits for body, head, hands and accessories.
• Keeps track of Outfits

o Normal, Naked, Swim Suit, Job, Formal, Sleep,
Skeleton, SkeletonNeg.

• Saves and restores state of Practices and Dressings.
• Keeps track of the location and direction of the person on

the grid.
• Plays object and personal animations, and handles and

distributes events to tree code.
• Supports walking, running and swimming, with a hairy

complex state machine.
• Follows a path created by the router, by sequencing

walking and turning animations.
• Handles footstep sound effects.
• Adjusts walking and animation speed according to person’s

mood and user’s cursor interactions.
• Handles reaching, carrying, object, personal, background

and foreground animations.
• Handles animation events.

o xevt event sends numeric argument to animate
primitive false branch.

o interruptable and interruptible events set practice
interruptable flag.

o anchor event on bone anchors that bone.

o dress event dresses named suit on skeleton.
o undress event undresses named suit from skeleton.
o lefthand event sets left hand to integer argument.
o righthand event sets right hand to integer argument.
o censor event sets censorship mask.
o sound event plays named sound.
o selectedsound event plays named sound if character

is selected.
o delselectedsound event plays named sound if

character is not selected.
o footstep event plays footstep, integer argument tells

if left or right, but is ignored.
o discontinuity event tells us to expect a snap in root

location or rotation, so kill the last practice and
don’t blend.

• Handles head faking, to turn the head towards interesting
objects and other people.

• Handles rendering and bounding box optimizations so it
doesn’t have to draw when off screen.

• Keeps track of Registration Points, used to position held
objects, though balloons, and selected person highlight.

o Right Hand, Head, Balloon.
• Anchors feet to reduce moon walking (currently disabled).
• Handles censorship bounding box calculation and

rendering.
• Makes snapshots of person’s body.
• Logs animation and walking state events for debugging.
• States

o Animating, Sitting, SittingFloor, Standing,
StandingTurn, StandingAdjust, WalkingStart,
WalkingStop, WalkingTurn, Walking, Running,
RunningStart, RunningStop.

• Popup Head Support
o StartPopupHead, StopPopupHead,

StartPopupHeadSubmenu,
StopPopupHeadSubmenu, NodPopupHead,
GetPopupHeadLocation, RenderPopupHead,
SetPopupHeadAttitude.

• Person Picking Support
o PickedPerson, SetPickedPerson, GetPickingPerson,

SetPickingPerson.
• Tweakable Class Variables

o gPrintEvents controls if animation events are
printed out to ctgDump, for debugging.

o gPinPersonToNextDest is not used.

o gFadeMils controls how long it takes to fade
animations out.

o gInterpolationMode controls the interpolation mode
of the practices.

o gDoFading controls whether or not we fade
practices out.

o gWalkingScale controls the scale that walking
animations are played at, by default.

o gWalkingSpeedUp controls how fast walking
speeds up, in response to the user pointing at
characters.

o gWalkingSlowDown controls how fast walking
slows down, in response to the user pointing at
characters.

o gStepDistance is the step distance along the path,
for route following. It if it’s too small, route
following will be inefficient. If it’s too large, route
following will cut corners to abruptly.

o gLookAheadDistance is not used.
o gSmallDistance is used to figure out when to play

an adjust animation.
o gStopWalkingTurn is used to figure out when to

stop walking and turn in place.
o gMaxWalkingTurn is used to limit how much we

will turn while walking.
o gSmallTurn is used to figure out if we need to play

a standing turn animation.
o gStepTurn is not used.
o gCutOff45Turn is used to figure out when to use the

45 degree turn animation.
o gCutOff90Turn is used to figure out when to use the

90 degree turn animation.
o gCutOff180Turn is used to figure out when to use

the 180 degree turn animation.
o gAdjustDistance is not used.
o gMinStopWalkingTime is used to figure out when

and how to stop walking.
o gMinStopWalkingDist is used to figure out how

close and how to stop walking.
o gMinStopRunningDist is used to figure out how

close and how to stop running.
o gMinAdjustWeight is used to limit the weight for

adjusting the walk loop animation to stop walking.
o gAnchorFeet is used to turn on and off the foot

anchoring behavior.

o CMXExporter.cpp
 CMXExporter class interfaces to 3D Studio Max, creates

Skeletons, Skills and Suits, and exports them to files.
 MySceneEntry class wraps a 3D Studio Max object, and connects

it to the VitaBoy objects that created for export.
o Maxis-MaxScript.ms

 Implements the user interface to the exporter and the animation
database.

 Control panel has a list of all skills and suits in the database,
allowing you to select any of them, automatically load the correct
max file fresh from SourceSafe, check the target files out of
SourceSafe, and export it to the right directory, and check the
target files back into SourceSafe. Also lets you filter them by
different criteria, and batch export or verify the things that pass the
filter.

 Animation database is stored in Access. The exporter used to read
the animation database directly out of Access via OLE
Automation. Now it loads faster cached data from text files of
MaxScript code, exported from Access by a macro.

 Loads and saves user environment variables.
• accessCmd
• sourceSafeDir
• sourceSafeProgDir
• sourceSafeServerDir
• tempDir
• blowingChunks
• chunkSize
• skipToRecord
• processRecords

 The verbose flag can be set to false to keep the output terse.
 Batch exports files in chunks to work around Max corruption bug.
 Integrated with SourceSafe, to get fresh Max files, and check

exported files out and back in (or else undo checkout if an error
occurred).

 Compression statistics and histogram analysis and reporting.
 Pose analysis and reporting.
 Old unused code for CSM file bone name mapping and ball

transplanting, an experiment in mapping a motion capture skeleton
to Biped.

 Old unused code for batch renaming skills.

