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Preface 

This book is an introduction to NeWS: the Networked, Extensible, 
Window System from Sun Microsystems. It is oriented towards people 
who have a basic knowledge of programming and window systems who 
would like to understand more about window systems in general and NeWS 
in particular. A significant portion of the book is devoted to an overview 
and history of window systems. While there is enough detail here to allow 
readers to write simple NeWS applications, the NeWS Reference Manual 
[SUN87a] should be consulted for a more complete treatment. 

This book was written to refer to the NeWS 1.1 product, available 
from Sun and also (ivailable from several non-Sun suppliers. Shortly after 
this book is published, Sun will be releasing the next version of NeWS -
the Xll/NeWS merged window system. Chapter 10 is dedicated to an 
overview of that product, but XII/NeWS deserves a book of its own. All 
the code examples in this book have been tested on both NeWS and the 
Xll/NeWS merge. Should there be another edition of this book, we will 
discuss some of the new development being done in the user interface tool­
kit area on NeWS. Significantly, the NeWS Development Environment 
(NDE) is now being developed at Sun; NDE promises to eclipse existing 
user interface toolkit designs and window programming environments. 

Before giving input on the many contributors to NeWS, the authors 
wish to give special thanks to John Warnock and Chuck Geschke of Adobe 
Systems. Without their design and implementation of the PostScript lan­
guage, NeWS would not have been possible. The PostScript language is the 
future of printers and screens everywhere, and Adobe deserves the credit for 
teaching computer users the value of quality imaging in the everyday world. 

Many people deserve the credit for this book, and for making NeWS 
a product. In the Sun window systems and user interface groups, the list of 
contributors is long. Credit is due to Tony Hoeber for the excellent NeWS 
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Technical Overview [SUN87b], to which this book owes much. Robin Schau­
fler's Xll/NeWS paper[SCHA88], is the basis for all of Chapter 10. Craig 
Taylor built the first version of the NeWS interpreter with James; Jerry 
Farrell designed and implemented NeWS input handling; Owen Densmore 
single-handedly invented object-oriented, interactive programming in the 
PostScript language. Steve Evans and his windows platform team are the 
developers who have made NeWS and Xll/NeWS a reality. We also 
acknowledge the Portable Windows Group, led by Steve Isaac, Amy 
Christen, and Steve Drach, as key contributors to the NeWS program and 
success. Warren Teitelman, Eric Schmidt, and Jim Davis provided critical 
management support and encouragement. 

Our particular thanks go to our external contributors for Chapter 9. 
Martin Levy and Marty Picco from Parallax are the authors of the Parallax 
section. Mark Callow authored the Silicon Graphics contribution, and 
returned excellent feedback as a reviewer of several drafts. Mark and Sili­
con Graphics, as our first portable NeWS customer, returned extremely 
valuable feedback, which has improved the quality and design of today's 
product. Maurice Balick was responsible for the section on the NeWS OS/2 
port done by Architech. Colleagues from SGI who contributed to Mark's 
paper were Peter Broadwell, Kipp Hickmann, Allen Leinwand, Rob Myers, 
Michael Toy and Glen Williams. Maurice was ably aided by Anthony 
Flynn, Marie B. Raimbault, Eddie Currie, and Sun's Portable NeWS group. 

Our patient reviewers deserve high acclaim for wading through pages 
of code and syntax. S. Page deserves limitless credit for his tireless and 
incomparable editing skills, as well as his knowledge of NeWS. Henry 
McGilton gave us the benefit of his experience in writing and editing by his 
detailed notes and commentary. Brian Raymor, Martha Zimet, Steve Evans, 
Don Hopkins, Raphael Bracho, Sue Abu-Hakim, John Gilmore, Francesca 
Freedman and Tim Niblett all spent time and energy giving us comments 
and support. 

Finally, we are grateful to Mark Hall and Gerhard Rossbach for 
making the book happen. 

NeWS has been, and continues to be, a lot of fun. The interest and 
enthusiasm of the many NeWS supporters and developers has made it all 
worthwhile: our last thanks to you. 
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1 
Introduction 

" If you ask the computer to help fix your broken lawnmower in the 
language that comes naturally to you, by typing in, My lawnmower 
won't start. Can you help me fix it?, the computer will respond with 
the same error message it would use if you had asked it to help you 
create a good recipe for sweet-and-sour pork: WHAT?" 

The Cognitive Computer 

1.1 The Computer as a Means, not an End 

Imagine that you are a university student, viewing a chemistry textbook 
in a window on a computer screen. There is an explanation of a certain 
molecule, with an accompanying picture. Using the mouse, you point at the 
molecule and rotate it slightly, then expand it, for a better view. Now you 
open up another window, containing your physics text. There is a descrip­
tion of an experiment with a ball being dropped from a tower, with an 
illustration. You push a button on the screen with your mouse, and the 
experiment is depicted on the screen. Push another button and you see a con­
trol panel that allows you to alter various parameters of the experiment, 
changing the gravity, height of the tower, density of the ball, and so on. 

You are working on an inexpensive workstation in your dorm room, and 
the programs implementing these interactive textbooks are actually running 
on supercomputers located across campus, across the country, or even across 
the world. 

In another scenario, you are collaborating with a Japanese colleague to 
develop a seminar series. She calls. Her video image appears in a window on 
your screen. She sends you a copy of the invitation being designed for the 
seminar: a window opens on your screen, displaying the invitation as you 
speak. The invitation appears, changes its user interface style and fonts. It 
adjusts for input devices from the original vertical text layout, Kanji, and 
Kanji tablet, to a horizontal layout, Roman, and three-button mouse. You 
insert your changes - sketching in alterations, changing words - and they 
appear dynamically on your colleague's screen (in the appropriate language 
and user interface style) as you discuss them. 
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Figure: 1.1. Colleagues communicating between Japanese and English environ­
ments with the aid of video and graphic windows. 

These two examples illustrate the changing role of the computer as a 
tool. Today's window systems and user interfaces combine graphics, video, 
and highly dynamic interaction to enhance the presentation and understand­
ing of physical phenomena and to extend the capabilities of typical human 
interaction. In the first scenario, the computer is acting as a window onto a 
simulated natural world. Laws of interaction, representation, and reaction 
are shown in three dimensions; light and color are represented realistically, 
and in real time. Rather than extrapolating reality from a simulation, the 
user sees "artificial reality" projected through the medium of his computer. 
The second example shows the computer as an intelligent communicator, 
transcending distance and culture and enhancing human interaction. Informa­
tion flows through a computer "filter" and is transformed for the 
destination environment and user. Both examples assume the constant pres­
ence of an unseen, powerful computer network. 

In many ways, the examples above are glimpses of the functions of com­
puters today. The computer workstation, with its high-resolution screen, 
windows, and graphical capabilities, can realize these scenarios when 
coupled with high-bandwidth networks. The decreasing price of computer 
power and memory is making the power of a computer workstation accessi­
ble to the everyday business user and the university student, as well as to 
technical professionals in every discipline. This power continues to increase 
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rapidly, while the costs to the computer user remain constant or decline. 
Although the hardware capability is there, the software capability is lag­

ging. The process of building software that enhances productivity without 
introducing complexity continues to be ill-understood, especially when 
coupled with the variety and breadth of existing computer environments. 
Computer networks complicate the problem. Networking is now the rule, 
rather than the exception, yet the development of high-performance, dis­
tributed applications across varied networks is still an art, not a science. 

Our use of computers has changed dramatically since their inception. We 
have made the transition from machine language, paper tape, and computer­
research facilities, to the world of the video game, home computer, and con­
sumer goods based on the embedded microchip. Fourteen million personal 
computers were bought worldwide in 1987; ten million in the United 
States alone. 1 This proliferation of computers has taken place not only 
because of technological advances in speed, size, and manufacturing of the 
components, but also because our assumptions about interacting with com­
puters have fundamentally changed. Prospective computer users in the past 
took it for granted that they would spend years learning specialized skills. 
Access to computers was limited to a dedicated few. Today, application 
developers and end-users are demanding that the computer learn to under­
stand them, even to the point of being able to think and react like a human 
being. Computers are a means to attain an end, not as an end in themselves. 

The typical computer user is no longer a computer expert, but the 
"naive" common person. This type of user demands an intuitive, consistent, 
and simple user interface. Increasingly powerful applications are required, 
forcing application developers to construct software capable of adapting to 
user preferences, languages, -interface devices, and machine capabilities. Ease 
of use for the end-user, and ease of development for the application 
designer, are now expected system capabilities. 

Here lies the domain of the window system. 

1.2 Window Systems 

Window systems have brought significant advances in mapping computer 
interaction to a model of human thought processes. Windowed displays 
show multiple applications at the same time, which fits with the human 
capability of thinking about several things at once. Visual user interfaces, 
with their menus, icons, and other graphical objects, are easier for users to 
learn, use, and remember. Window systems are a young technology: the 
trade-offs between simplicity and flexibility, the ability to make efficient 
use of computer networks, the integration of text and realistic graphics, and 
the minimization of the application development effort continue to be 
major design issues. 

1. International Data Corporation, January 1989. 
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1.2.1 Simplicity versus Flexibility 

There is a natural conflict between simplicity and flexibility in window 
system design. Everyone wants it simple. But simplicity for one person may 
be inordinately complex for another. The relative nature of simplicity puts 
the burden on flexibility. How flexible should the window system be? 

How does flexibility impact the individual end-user? Scrollbars on the 
left-hand side, rather than the right, may be more convenient for a left­
handed end-user. Near-sighted users want large default fonts. CAD users 
prefer a cross-hair cursor to a moving arrow. Some may want their screen to 
look like the factory floor machine it operates, others may want it to 
mimic the board at the stock exchange; standard menus and toggles will not 
serve their needs. 

How does flexibility impact the application developer? Special window 
system primitives may dramatically increase the performance of their appli­
cations. Corporate standards may dictate the "look and feel" of a 
corporation's applications. How can such companies change the appearance 
and behavior of menus, panels, and buttons without decreasing application. 
portability? Internationalized applications require different input devices 
and language support. Can the window system take care of these adaptations 
for the developer? 

The window system framework must be capable of adapting to both antic­
ipated and unanticipated change. Today's new user interface technologies are 
video, sound, gestures and eye tracking. Tomorrow's are unknown, but can 
we plan for their integration? Simplicity and flexibility combine to make 
both user and programmer interfaces more accessible to a larger group of 
people. However, physical, cultural, and application-specific differences, 
and varying preferences between people strongly influence learning and 
interaction techniques. The window system must reconcile these goals. 

1.2.2 Networking 

Networking and window systems are not generally related in users 
minds. As more computers are connected via low or high bandwidth net­
works, applications begin to share resources across a network. Window 
systems must support the development of these distributed applications. 
Simulations running on a supercomputer can display graphic output on, and 
receive user input from, a PC or workstation connected through a network. 
Co-workers may be updating the same diagram on their separate computer 
screens, while the software maintaining that diagram is resident on a third 
computer. Group development means that throughput, interactive response, 
data compression, and the ability to support different computer, software, 
and network architectures in such interconnected computers are important 
factors in the success of a window system in a networked environment. 
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Figure: 1.2. Mathematica is a networked windowed applications that can be 
distributed between NeWS workstations and supercomputers. 

1.2.3 Sophisticated Graphics 

Integration of text and high quality graphics has been a familiar problem 
to graphic artists, but an unfamiliar concept to many computer applications. 
In the past, most applications were limited to the OUtpllt of simple text, 
displayed on character-based terminals. Graphics, if any, were composed of 
dashes, stars, or similar symbolic characters in a glowing gryen. The ASCII 
encoding convention, which assigns a standard code to each of a limited set 
of symbols, was (and still'is) used to send character codes to the terminal, 
which translated them directly into the pixels of the fixed character shapes 
displayed on the screen. ' 

Today, applications demand the equivalent output of the graphic artist's 
brush: continuous, complex curves, color, shading, and dimension. Text 
must have the same flexibility as graphics: rotated, shaded, multiple styles, 
and multi-dimensional. Scanned images bring photographs and printed 
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matter to the screen; these imported images should be manipulated as easily 
as computer-generated graphics. Equivalently, computer-generated graphics 
should "look as good as the technology allows" wherever it is displayed, 

I k 

!PageNumber: ,1 

Figure: 1.3. Sophisticated graphic design represented in PostScript and viewed in 
a NeWS window. 
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on screen or on paper. Computer-generated forms should be accurately trans­
formed to the printed page while taking also advantage of the superior 
resolution, shading, or color capabilities of the printed media. 

1.2.4 Application Portability 

Application developers are often faced with the problem of delivering a 
product on computer systems supplied by more than one vendor. The soft­
ware development effort to support several computer platforms varies 
directly with the level of independence from the vendor that the developer 
can maintain. Application developers suffer because the window systems 
and operating systems supplied on these varying platforms differ. Window 
systems can also depend on hardware, such as the type of graphics device 
being used, or even the CPU architecture, which in turn further decreases 
the portability of the application from one computer system to another. The 
drive to minimize engineering development time has encouraged application 
developers to demand standard, device-independent, window systems on 
multiple platforms. 

1.2.5 What is Needed? 

Today, window-based applications lack the power and capability ex­
hibited in the scenarios described at the opening of this chapter. New 
paradigms and techniques are needed. One of the elements required is a high­
level graphics model or imaging model capable of representing text, 
graphical shapes, and images in a uniform, realistic, and device-independent 
way. Such an imaging model is only one part of the picture - it must be 
integrated with a window system capable of taking advantage of a heterogen­
eous computer network. The window system must be the medium for the 
molding of computer functions to user needs: applications must be able to 
adjust their appearance and interaction styles dynamically to conform to the 
special needs of the user, and the computer capabilities available. And, until 
the time when printers become obsolete through world-wide computer con­
nectivity, an application should be able to display graphics on a printed page 
or within a window in exactly the same way, but not by adapting to the 
lowest common denominators of these and other mediums. Finally, the 
resulting technology should decrease the cost of developing software, and 
increase the the developer's ability to compete. 

1.3 New Paradigms in Windows and Graphics 

In the 1970s, researchers at Xerox Palo Alto Research Center developed a 
powerful new model for describing images. In 1982, two of these 
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researchers, Charles Geschke and John Warnock, formed Adobe Systems and 
developed a page-description language based on this model. The language 
was introduced in 1984 under the name PostScript. The PostScript language 
is a high level programming language with powerful graphics primitives. 

At the same time, researchers at Stanford, Carnegie-Mellon, and MIT 
began investigating a new approach to window systems: the window server, 
also referred to as a network-based window system. Window servers allow 
application programs running on one machine to use windows on another 
machine's display. Two window servers were built, the Andrew window 
system at Carnegie-Mellon, and the X window system at MIT, demonstrat­
ing the feasibility of window servers. 

In October 1986, Sun Microsystems announced NeWS 
(Network/extensible Window System), a synthesis of the window server 
and page-description language technologies. NeWS makes the device­
independent, powerful imaging model of the PostScript language available 
in a distributed window system. A key innovation is the use of the 
PostScript language, together with NeWS extensions, as a window system 
extension language, which makes possible a new level of interactive perfor­
mance and flexibility. NeWS provides a platform, independent of hardware 
and operating system, on which highly diverse window applications and user 
interfaces can be built. NeWS applications attain an unprecedented level of 
visual quality, and exploit a coherency of network design new to window­
based applications. 

1.4 Book Outline 

In keeping with .the philosophy of NeWS, the chapter sequence of the 
NeWS Book is only intended to be a suggestion for reading order. Experi­
enced developers may choose to avoid the preliminary chapters in which the 
basics of NeWS, window systems terminology and comparisons, and the 
PostScript language are discussed. Less knowledgeable readers may find the 
chapters discussing NeWS internals too detailed. The porting chapter should 
be of interest to all readers; outside contributors from Silicon Graphics, 
Architech, and Parallax describe interesting NeWS-based products. For 
detailed programming information, the NeWS Manual [SUN87a] should be 
consulted. 

Chapter 2 gives some background and motivation to the development of 
NeWS, and describes its basic design. 

Chapter 3 outlines what a window system actually is, and how its layers 
interact. This description will be useful not only to readers who have little 
experience with these systems, but also to experienced developers, who 
want to understand the terminology used throughout the book. In addition, 
the chapter examines several historically important window systems. 
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Chapter 4 offers an overview of the PostScript language, as defined by 
Adobe Systems, with an emphasis on the areas that are of particular impor­
tance to NeWS. 

The additional NeWS facilities created specifically for an interactive win­
dow system environment are described in Chapter 5. These elevate NeWS as 
a PostScript language interpreter for the screen above PostScript language 
interpreters for printers. Input events, multiple overlapping drawing sur­
faces (or canvases), and lightweight processes are among the NeWS 
facilities available to the window system programmer. 

Chapter 6 gives guidelines for programming the NeWS server by provid­
ing examples of functions and facilities which have been implemented inside 
the server. NeWS provides mechanisms to encourage object-oriented, class­
based programming. The "Lite" toolkit is a user interface toolkit based on 
these concepts. It has been used as the basis for several applications on 
NeWS, and is described in detaiL 

Chapter 7 gives an overview of NeWS as a programming environment for 
developing distributed window-based applications. The chapter describes the 
responsibilities of a NeWS application and the NeWS server separated by a 
network, concentrating on applications written in the C language. 

Chapter 8 gives a tour through a NeWS application, and outlines some of 
the techniques used to achieve good application performance 

Chapter 9 briefly describes the steps that must be taken to port NeWS to 
different hardware, framebuffer, and operating system architectures. This 
chapter is mainly composed of three case histories of innovative NeWS 
ports by NeWS licensees. Parallax Graphics, Inc, has ported NeWS to a dis­
play board which has the capability to display live video. Silicon Graphics, 
Inc., did an early port of NeWS to a high-powered graphics workstation. 
Architech Corporation has recently released a port of NeWS to the OS/2 
operating system environment. 

Chapter 10 introduces the Xl1/NeWS merged window system. It 
describes the design of this merged window system, and explores some of 
the architectural issues that emerged during its design and implementation. 
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2 
NeWS Overview 

"Afloor so cunningly laid that no matter where you stood it was 
always under your feet. " 

Spike Milligan and Eric Sykes 

2.1 History 

NeWS originated as a research project in 1984 at Sun Microsystems by 
James Gosling, later joined by David Rosenthal: the authors of the Andrew 
window system at Carnegie-Mellon University. NeWS, or SunDEW (Sun 
Distributed Extensible Windows), as it was originally called, arose out of 
an effort to examine some of the window system issues that both Andrew 
and the newly emerging X Window System explored, without product 
development constraints. What started as speCUlative research eventually 
developed into a product, and all of the normal constraints emerged, but 
not too early for NeWS to become an example of revolutionary window 
system design. 

2.2 The Design 

NeWS runs on a machine with one or more bitmapped displays. NeWS is 
designed to be portable between different computer systems and operating 
systems. It runs on machines ranging from a low-cost machine, such as an 
Atari or Amiga, to workstations based on powerful RISC architectures 
incorporating specialized graphics processors such as those from Sun and 
Silicon Graphics. NeWS acts as a window server, managing input and output 
on its host machine. Application programs - called clients - send 
messages causing NeWS to render images on the display. The clients may 
reside anywhere on the network. Server-based window systems are often 
called distributed window systems or network window systems because the 
server and its clients may be distributed over the network. Figure 2.1 shows 
one possible scenario in which the NeWS server, running on a workstation, 
serves a remote client running on a specialized machine. Window servers are 
often contrasted with kernel-based window systems, which are closely inte­
grated into the operating system on a specific computer system. ("Kernel" 
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is frequently used as a synonym for the core of the UNIX operating 
system). Kernel-based window systems do not allow the distribution of 
window-based clients across the network; they have been the most common 
window system architecture until only recently. Chapter 3 discusses the 
evolution of window servers from the kernel-based window architecture. 

The term window server is appropriate, but may have misleading connota­
tions. When people hear the word server they tend to think of a piece of 
hardware in an air-conditioned room that supplies files or high-speed compu­
tation. Users of these resources are at other machines that are connected to 
the server via a network. In contrast, a window server supplies access to the 
display and the window system on its machine to other, connected machines 
across the network. However, the location of the window server with 
respect to the user is reversed: the server runs on the user's machine, and the 
clients run either locally or on remote (display-bearing or non display­
bearing) machines. 

NeWS is based on a novel type of interprocess communication. Interpro­
cess communication is usually accomplished by sending messages from one 
process to another via some communication medium. Messages are usually a 
stream of commands and parameters. One can view these streams of com­
mands as a program in a very simple language. NeWS extends this to be a 
general-purpose programming language. Programs then communicate by 
sending programs that are interpreted by the receiver. This process has pro­
found effects on data compression, performance, and flexibility. 

The PostScript programming language, as defined by Warnock and 
Geschke at Adobe Systems, is used in this way as a communication mechan­
ism for printers. The PostScript language was conceived as a way to 
communicate with a printer. Computers transmit PostScript programs to 
the printer; these are then interpreted by a processor in the printer, and this 
interpretation causes an image to appear on the page. The ability to define 
functions allows the user to extend and alter the capabilities of the printer. 

Figure: 2.1. 

ComputQ·Senler 

Network 

Application running on a compute server, with NeWS running on a 
workstation. 



Figure: 2.2. 

Compute Server 

Printer 

Network 

Application sending a PostScript program to a printer, in order to get 
a document printed. 
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This extension model has powerful implications within the context of 
window systems. It provides a graceful way to make the system more flexi­
ble. It also offers elegant solutions to performance and synchronization 
problem~. For example, in drawing a grid, you do not transmit a large set 
of lines to the window system, you merely send a program containing a 
loop of commands. The client's ability to send a program either locally or 
over the network to execute within the NeWS server is referred to as down­
loading. The client's ability to download programs into the NeWS server 
makes it possible to execute complex tasks simply and quickly. 

NeWS uses the PostScript language as a window system extension 
language. The PostScript language turns out to have been an excellent 
choice. It is a· simple, well-structured language, has a well-designed 
graphics model, and it is compatible with many of today's printers due to 
the wide acceptance of the PostScript page description language as a standard. 

NeWS is structured as a server process that contains many lightweight 
processes (discussed in Chapter 5). These processes execute PostScript pro­
grams. Client programs talk to NeWS through byte streams. Each of these 
streams generally has a lightweight process associated with it. Messages 
pass between client processes (running somewhere on the network) and the 
processes resident within the NeWS server. These processes can perform 
operations on the display and receive events from the keyboard and the 
mouse. They can talk to other processes within NeWS that, say, implement 
menu packages. 

The NeWS server is centered around the PostScript language as an exten­
sion language. NeWS is a set of mechanisms. Policies are implemented as 
replaceable NeWS procedures. For example, NeWS has no window­
placement policy. It has mechanisms for creating windows and placing them 
on the screen, given coordinates for the window. 
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Network Connection Device Access 

Figure: 2.3. The NeWS server contains a number of lightweight PostScript pro­
cesses that send messages amongst themselves and to Unix processes 
and devices. The messages sent from Unix processes (clients) are 
PostScript programs that are executed by the server. 

The choice of those coordinates is up to some PostScript program within 
NeWS. If a user or programmer wishes to modify the behavior of window 
placement behavior, he has only to download a new window placement pro­
gram into the NeWS server. 

In the context of this book, for readability and convenience, when we re­
fer to PostScript programs running within NeWS, these programs and the 
operators they use may include both standard PostScript graphics output 
commands and NeWS interactive features structured on the PostScript 
language model. Where the distinction is important, we will explicitly dif­
ferentiate NeWS functionality and PostScript language functionality. 

2.3 Extensibility· 

Extensibility in the context of a window system bears explanation. There 
is great diversity in the extent of flexibility, or tailoring, permitted by dif­
ferent window systems. At one extreme are systems like Andrew, 
MSWindows, and the Macintosh window system, where little can be 
changed in either the user or programmer interface. In the middle are sys­
tems such as the X Window System, which has provisions for new menu 
packages or new layout managers, but in which adding significant new 
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functionality to the window system (through the addition of new object 
libraries) is difficult to do in a way that is independent of the X server 
implementation. At the far end are open systems like Smalltalk, where it is 
simple for a skilled user to modify any part of the system's behavior. Some 
of these systems will be discussed in more detail in the next chapter. 

To illustrate the differences in window system flexibility, consider what 
must be done to change the background grey pattern on the desktop. On the 
Macintosh this is easy because the designers included this option as a config­
uration choice. On the other hand, changing the behavior of the up/down 
buttons in the scrollbar is impossible. Andrew's background grey is not a 
configuration option; it cannot be changed without editing and re-compiling 
the source code for the window server, an option that is not available to 
ordinary users. Smalltalk makes it fairly easy since the component of the 
window system that deals with the background grey is small and well­
contained, as is the component that deals with scrollbars, and it can be 
replaced incrementally without disturbing surrounding modules. The 
general difficulty is finding out which piece to replace and how it is speci­
fied. Smalltalk systems generally have the full source code available along 
with a powerful browsing facility: this makes the task possible and easy, 
but only for a skilled developer, not the general end-user. 

Ne WS tries to supply an extremely high level of flexibility to both the 
end-user and the programmer. Two main features of NeWS contribute to its 
extensibility. First, the PostScript language is an interpreted programming 
language that permits the definition of new functions. Second, the NeWS 
architecture allows clients to place PostScript code into the window server 
at any time, even while the server is running. Together these features let 
clients program the window server to meet their specific needs. Instead of 
requesting the server to perform functions on their behalf, NeWS clients 
pass the server code to execute. 

2.4 Simplicity of User and Programmer Interface 

Window systems have a wide range of complexity in their user jnter­
faces, such as how menu title bars are drawn, and whether or not the user 
can stretch a window by clicking the left button in the upper right hand 
comer of the window outline. Some, like the Macintosh, or the OPEN 
LOOK user interface, have simple and consistent user interfaces that are easy 
for novices to learn. The Andrew window system has a very simple style 
that is easy to teach, use, and document. But Andrew's simplicity comes at 
the cost of rigidity, or loss of flexibility for the user that wishes to change 
the user interface. In some window systems, experienced users find the help 
and menu interaction cumbersome, while window systems tuned to expert 
needs are often too complex for novices. However, systems are rarely 
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rigidly fixed at one of these extremes. They usually have accelerators for 
expert users aqd simple menu interfaces for novices. 

NeWS makes no commitment to a particular user interface. It supplies 
general and powerful mechanisms that allow the builder of a user-interface 
toolkit or of an individual application to make the appropriate user­
interface trade-offs. A window manager and user-interface toolkit is 
supplied with NeWS (described in Chapter 6); several window managers 
and user interface toolkits are available for X l1/NeWS. Each of the NeWS­
based window managers or toolkits can be modified or completely replaced 
by implementing appropriate procedures in the PostScript language. 

Figure 2.4 illustrates how NeWS can support multiple user interfaces for 
an application, without any change being made to the application. Several 
copies of the application are started one after another. A new user interface 
package (a PostScript program, downloaded into the NeWS interpreter) re­
places the existing user interface package. between successive copies of the 
application. The look and feel of each copy varies - but the application is 
unchanged. In addition to supporting multiple user interface styles, NeWS 
can impose a global user interface on applications while the applications are 
running. This flexibility could allow end-users to determine the kind of 
user interface they prefer and apply that to all of the applications they pur­
chase, without forcing the application developer to supply multiple user 
interfaces. Corporations can impose a corporate-wide user interface stan­
dard, or they may have their administrators use an MSWindows-style 
interface, while their engineers use an OPEN LOOK interface, and still per­
mit them to interchange the same applications and the same set of hardware. 

Trade-offs of simplicity and complexity are also found in the program­
mer interfaces to window systems. Simple interfaces often make unusual 
operations difficult. In the Andrew system, direct program manipulation of 
bitmaps is almost impossible, while in the Sun Windows system it is impos­
sible to avoid. Powerful programming interfaces tend to be complex, and 
can contain so much functionality that they are hard to learn and use, as 
well as to implement efficiently. This complexity is partly an inherent 
problem, and partly due to the tendency of systems to accrete features as 
they mature. The best compromise is an programming interface that can be 
learned and used incrementally. The developer can begin simply, and 
gradually progress to understand and use more complex functionality. 

Because NeWS is based on an existing programming language and model, 
the issue of the programmer interface specification was to some extent 
avoided. The PostScript language has a simple, easy-to-understand design, in 
part because of the constraints of the original target environment (printers). 
The facilities NeWS adds for interaction and windows have been carefully 
specified to give a superset of PostScript language functionality, rather than 
conflict with the existing PostScript language constructs. 



Figure: 2.4. 

2 1412 6 
9 13 3 
7 4 
1011 5 

Several different window styles. These are implemented by packages 
dynamically downloaded into NeWS between instantiations of the 
programs. 
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Programming directly to NeWS (as opposed to programming to higher­
level toolkit or application interfaces) involves writing and understanding 
PostScript programs. This is covered in Chapters 4-8. 

2.5 Device Independence and Graphics Model 

Window systems vary in their level of device independence. Many win­
dow systems are originally intended for a particular technological base, and 
the assumptions built into that base often creep into the higher levels of the 
design. When faced later with different technology, these assumptions can 
cause serious problems. A common one is the use of the RasterOp or bitblt 
graphics model (discussed in more detail in Chapter 3), which involves 
direct manipulation of blocks of individual pixels on the screen. While bit­
bIt works well with monochrome displays, it does not extend cleanly to 
color. Boolean combination functions between color pixel values do not 
make much sense. For instance, one often draws transient rubber band lines 
by XOR-ing them with the image. XOR-ing colormap indices 8 to 24 bits 
deep can lead to some pyrotechnic effects since the results have little logi­
cal meaning. Avoiding thes~ effects requires careful control of pixel and 
colormap values. 
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Many window systems are initially built for a particular piece of hard­
ware. Decisions tend to be made less in favor of what is "right" and more 
in favor of what fits in with the hardware at hand. A good example of this 
is the XIO window system, which began as a window system for VAXes 
with VSIOO displays. The communication protocol between the XIO server 
and client programs is based on C structures, whose internal representation 
is very VAX-specific. VAX C structures do not map well to other 
machines: byte ordering, size, and field alignment differ from machine to 
machine. X I 0 has an imaging model that was determined by the microcode 
in the VSIOO, and it uses the VSIOO font format. Unfortunately, the 
VSIOO font format has some technical idiosyncrasies: for example, it isn't 
possible to draw a text string where adjacent characters overlap. This can be 
necessary, for example, when using an italic font. The "i" and ''j'' in the 
italic pair "i}" overlap. The keyboard support in XIO was entirely deter­
mined by the DEC LK201 keyboard, so that porting XIO to a machine with 
a different keyboard required emulation of the LK201. The next version of 
the X window system, XII, fixed all of these problems. 

Andrew is a good example of a window system that was designed with­
out a specific piece of hardware in mind. This result was an accident of the 
political situation during development: its intended hardware did not exist, 
had not even been designed and was conceived in relative isolation from the 
design of Andrew. Andrew emerged as a design for a black box. All that 
was known about the eventual system was that it would run Unix and that 
it would have a bitmap display. At the time, these constraints created a 
painful situation, but in retrospect they were a great blessing since they 
resulted in an extremely hardware-independent, portable window system. 

The correct choice of a graphics model is crucial to achieving device inde­
pendence. The more abstract the model, the more room there is for the 
underlying implementation to accommodate different technologies. 
Consider the representation of color. There are three common ways that col­
or is available for display devices: I-bit black and white (constant small set 
of colors); 8-bit color with a colormap (variable small set of colors); and 
24-bit color (all possible colors available everywhere). Integrating these 
three implementations of color is a thorny but important problem. Most 
window systems support this by providing a different application program­
ming interface to set color for every hardware implementation. This makes 
it difficult to write device-independent applications. 

The choice of a graphics model is also critical to the graphics capabilities 
of a window system. Many systems provide only RasterOp, vector drawing, 
and simple text. On the other hand, systems such as the Macintosh, which 
has a much richer graphics model, have a flair for more graphically interest­
ing applications. Richer models, however, are more difficult to implement 
and more difficult to understand, providing the window system developer 
with a difficult balancing act. The Macintosh is able to draw complex 
curves, scale images, and even clip scaled images to regions bounded by 
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complex curves. Andrew, XIO and XlI lack these capabilities, or rather, 
they leave their implementation to the developer. 

The NeWS graphics model is based on the stencil/paint model provided by 
the PostScript language. This graphics, or imaging model, is at a high 
enough level of abstraction to provide device independence along with a rich 
set of graphics capabilities to NeWS-based applications. Applications are 
not written in terms of specific hardware, therefore they need not be con­
cerned about the resolution of the display, or whether the display is 
monochrome or color. Also, NeWS clients can automatically benefit from 
special high-performance graphics hardware, since the imaging model maps 
easily to many graphics accelerators. System vendors can provide accelera- ' 
tion through their NeWS server implementations while keeping the NeWS 
programming and graphics interfaces constant. 

NeWS applications are even isolated from whether the output device is a 
printer or a display. Since NeWS contains a PostScript language interpreter 
similar to the one found in laser printers, a given series of PostScript lan­
guage statements will render the same image whether sent to a NeWS 
window or to a printer containing a PostScript language interpreter. Thus, 
it is easy to preview printer output on the screen, or to send the contents of 
a window to the printer. 

The two images in Figure 2.5 demonstrate the device-independent nature 
of the PostScript language. The image on the left was printed by sending a 
PostScript program directly to the printer; the one on the left is a snapshot 
of the same PostScript program rendered within a NeWS window. 

2.6 Networking 

In a distributed networked environment, accessing windows on another 
machine should be as natural as transparently accessing remote files via 
Sun's Network File System (NFS). Workstations and, increasingly, 
personal computers, are best used as elements in a heterogeneous environ­
ment, communicating over a network with other machines ranging from 
low-cost terminals, through workstations, to supercomputers. NeWS puts 
the resources of such a distributed computing environment on the screen. 
NeWS client programs don't have to run on the computer with the screen; 
they may be distributed in different ways across both client and server 
machines depending upon the resources available and the usage of the net­
work. Experiences with Andrew and X indicate that the flexibility of 
client program location is valuable both for good local performance and an 
efficient use of resources across the global network. 

Real-time response over a network is difficult in a server-based window 
system since the server usually has to pass messages to the client and wait 
for a response from the client whenever input or output occurs requiring 
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Figure: 2.5. 

W""isitno, 
Orutpe/ec 
Anno,a's 
Onep..-fo< 

WhY is it no one ever sent me yet 
One perfect limousine. do you suppose? 
Ah no, it's always just my luck to get 
One pettee/ rose. 

-Dorothy Parker 

The device independence of NeWS lets one image appear as output on 
multiple devices, such as printers and monitors. Notice that because 
the printer has a higher resolution than the display, the image rendered 
by the printer is smoother. 

action from the client. The first window server designs suffered from poor 
performance in interactive applications because of a communications bottle­
neck. Hundreds of messages flowing back and forth in interactive 
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situations, such as dragging a slider, severely impacted performance. 
NeWS eliminates this real-time bottleneck by using the PostScript lan­

guage as its means of communication with clients. Clients, instead of 
making function calls, pass PostScript statements that are interpreted by 
the server. Since PostScript is a general programming language, it allows 
the use of repetitive programming constructs, such as loops, and permits 
client-specific information storage in data structures inside the NeWS 
server. Use of these features results in a denser encoding of client-specific 
information than with a fixed, non-programmatic protocol. More informa­
tion can be passed to the server in a smaller number of messages, making 
better use of network bandwidth. In addition, since the client can pass 
arbitrary PostScript programs, critical functions requiring much updating of 
the display can be programmed into the server, eliminating much of the com­
munication overhead between the client and the server. 

Mouse motion 
+-- and display ~ 

Window Server 

r 
Application 

update messages. 

Messages 
+---- that cross the---' 

network. 

NeWS Server 

Application 

Figure: 2.6. Network traffic when tracking the mouse. In the first scheme, messages 
get sent over the net every time the mouse moves. In the sceond, used 
by NeWS, the application has downloaded a piece of code that 
handles mouse events for it. 
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This gain from the elimination of network traffic overhead must be bal­
anced against the loss inherent in using an interpreter. PostScript programs 
are generally slower than C programs. It is usually a mistake to do exten­
sive calculation or build large elaborate data structures by programming in 
the PostScript language. 

In Figure 2.6, an application is tracking the position of the mouse by 
redrawing a spline curve every time the mouse moves. Monitoring the 
mouse movements and repainting the spline is performed within the server 
by a procedure downloaded by the application. This rubber-band spline is 
not a necessary built-in function for a window system, but in NeWS appli­
cations (as in PostScript printers), an application can define new procedures. 

2.7 Conclusion 

This ubiquitous use of the PostScript language is a key feature of NeWS. 
The PostScript language gives NeWS two things that distinguish it from 
other window systems: an advanced imaging model and extensibility. NeWS 
brings the powerful industry-standard, and device-independent PostScript 
language imaging model to the display. NeWS dramatically expands the 
solution space available to developers. At any time, they can extend the 
capabilities of the server by defining new PostScript procedures. This exten­
sibility of the system is key to NeWS functioning well in a distributed 
environment. Judicious use of this flexibility enhances performance, and 
allows client-specific protocols and data compression on the communication 
channel. The dynamic, interpretive server can act as the central authority for 
system behavior, or, can allow applications to define a unique environment. 
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Window System Architecture: 
History, Terms and Concepts 

/I Architecture, in general, is frozen music." 

Friedrich Von Schellig 

3.1 Introduction 

This chapter defines and explains the terms that commonly describe win­
dow systems. It establishes a general level of understanding for future 
chapters. The four parts of this chapter offer: 

a layered model of window systems; 

a historical survey of window systems, illustrating how a number of 
systems fit into the model; 

a detailed review of the components of the layered model; 

an examination of the relationship between window system architectures 
and their environments. 

3.2 Anatomy of a Window System 

The study of window systems is an emerging discipline, so terminology 
is not well-defined. There is a model of the window system that has six 
layers spanning the application to the hardware. Higher layers are closer to 
the application, and, ultimately the user. Lower layers correspond to primi­
tive functions, finally ending in hardware components. 

We will cover four layers of the model: the User Interface Toolkit, Win­
dow Manager, Base Window System, and Imaging/Graphics library. 

Two confusing terms are Base Window System and Window Manager. 
They are sometimes used interchangeably or are used with a broader scope. 
In this book we use window manager to mean the part of the total window 
architecture that deals with the user interface to windows: the borders 
around them, the user commands to open, close, and move them around. 
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Application 

User Interface Toolkit 

Window Manager 

Base Window System 

Graphics Library 

Hardware 

The terms window system 
and window manager are 
sometimes used to refer to 
some subset of these middle 
four layers. 

Figure: 3.1. Four layers of the window system lie between applications and 
hardware. 

We use base window system to mean the part of die fircliitecture that 
deals with resource allocation, synchronization, commimication between 
graphics and higher levels, and input distribution. We use window system to 
refer to some subset of these four layers. The NeWS window system con­
sists of the bottom two of the four layers; while the MHCintosh window 
system (the "Mac ROM") consists of all four layers 

This layered window system model is useful, but it will break down in 
some areas: today's window systems have often grown "organically" rather 
than in a strictly modular way. However, it does show one reason why com­
parisons between window systems can be confusing; they differ 
dramatically in the number of layers they impleme~t. 

Note that the operating system is not included as a layer in our model; 
this is because there are several ways in which the operating system can 
interact with the window system. NeWS, and most other emerging window 
systems are network- or server-based, which implies that they have the 
status of a user-level process, and are not built into the operating system. 
Until recently, most window systems have been kernel-based, or built into 
the operating system core, or kernel. The following sections discuss several 
examples of both types of window system architectures. 

3.3 A Brief History of Window Systems 

For the moment, you will have to take the model on trust. We wiil 
cover each of the layers in detail later. We now make a brief historical sur­
vey of window systems to see how each fits into the layered model. 
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3.3.1 Smalltalk 

Smalltalk is the common ancestor of all window systems [GOLD83]. It 
was produced at Xerox PARe in the early 1970's. Initially implemented on 
the Alto [THAC88], a small machine with only 64K of memory, there have 
been many subsequent implementations. The first practical one was on the 
Dorado-class machine. 

Smalltalk is a complete universe. It includes an operating system, a lan­
guage, a window system, and a variety of other tools. In the first versions 
of Smalltalk the operating system was indistinguishable from the window 
system. It all fit together in one address space on the bare machine. In later 
implementations Smalltalk was still a complete universe, but it was 
usually layered on top of an operating system. 

Application 

User Interface Toolkit 

Window Manager 

Base Window System 

Graphics Library 

Hardware 

Everything in one address 
space, communicating with 
procedure calls 

Figure: 3.2. The single address space, single process structure of Small talk. 

This single-process, single address space structure leads to the simplest 
window system architecture. There are few operating system problems. One 
process has complete control and total access to the system. It has no need, 
for example, to arbitrate among multiple processes for access to a display 
processor. There is only one monolithic process. 

The simplicity of systems like Smalltalk is their biggest limitation: 

Users want to be able to perform multiple tasks concurrently: read mail, 
work on a document, and use other applications, all at the same time. 
In a single process environment, these different applications have to be 
fused together into one program. In some cases, tricks such as DOS's 
"terminate and stay resident" can be used to stitch together disparate 
applications, but these are only suitable for small desktop accessories. 

Because there is one address space, an application with a bug in it can 
"crash" not just itself, but the entire computer system. 
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These simple systems normally lack virtual memory. Without it, there is a 
fixed limit on how large an application can grow, thereby limiting the 
application functionality. 

The Sma1ltalk language is based on object-oriented programming. It uses 
classes to define the properties of objects that are operated on by methods. 
The computer system is protected from crashes, even though everything is in 
one address space, by linguistic controls that limit the damage that can be 
caused by an errant program. These controls are possible because there is 
only one language. One nice side effect of this makes Smalltalk the ultimate 
in flexible systems. It provides a code browser that gives users access to 
all the code of the entire system. Using the browser, the user can replace 
any part of the system on-the-fly. 

The Smalltalk graphics model is not very sophisticated. It was designed 
for monochrome bitmap displays and was intended for text/terminal applica­
tions and not for graphics. Everything was centered around the RasterOp 
graphics model: Smalltalk dealt strictly with lines, rectangles and text. 
Since early versions only implemented rectangular clipping, they could only 
draw in the uppermost window. The language was the focus, graphics was a 
relatively minor consideration and portability was not a design goal. 

The base window system in Smalltalk was very simple. It was imple­
mented using Smalltalk's class mechanism. Because there was only one 
address space and only one process, there were no synchronization or commu­
nication problems. The window manager was structurally intertwined with 
the base window system. 

The Smalltalk user interface broke a lot of new ground, introducing win­
dows, scrolling, pop-up menus, and the virtual desktop. 

The toolkit level included a modeless editor that used cut-and-paste and 
pop-up scrollbars. It introduced the ModelNiew/Controller (MVC) 
paradigm, breaking up the user interface implementation into three compo­
nents. This division is still used by most modern toolkits. These are: 

the model, which describes an application data structure, like a text file 
or a drawing. 

the view, which describes how that data structure maps onto the 
display surface. 

the controller, which describes how input events alter the model and view. 

The MVC paradigm is used in the example program of Chapter 8. 
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3.3.2 DLisp 

DLisp was a version of Lisp developed in 1977 at PARCo PARC engi­
neers had a problem. They had small and underpowered Altos which could 
do graphics, and they had a big PDP-10 that could run Lisp. So they built 
Display Lisp, or DLisp, which used a Lisp system on the PDP-10 that was 
extended to communicate over the Ethernet to an Alto. This was the first 
network window system. Like Smalltalk, DLisp was a one language, one 
address space window system, although it did break new ground in develop­
ing network communications. In time DLisp was superseded by Interlisp-D. 
It disappeared and is generally unknown. 

The DLisp "graphics server" ran on the Alto (it was the only thing run­
ning on the Alto). The server depended upon a very low-level graphics 
model that was essentially identical to Smalltalk's. It supported only 
RasterOp, lines and text. One big advance over Small talk , s graphics model 
was that it implemented complicated clipping, allowing graphics operations 
to be performed on windows other than the one on top. It also supported 
the use of multiple fonts, which didn't come until later in Smalltalk. 

Ethernet 

Application 
PDP-10 

User Interface Toolkit r-- (MAXC) 

Window Manager MAXC 
running Lisp 

Base Window System 

Graphics Library 

Hardware Alto 
Alto running 

r-- display support 
software 

Figure: 3.3. DLisp carne in two parts; the lower levels on the Alto and the higher 
levels on the PDP-IO. 

The rest of the DLisp system ran on the PDP-10 and contained most of 
the window system, the user interface toolkit and the application. The PDP-
10 communicated across the Ethernet with the Alto using a custom proto­
col. Like Smalltalk, it was an experimental testbed: graphics were a minor 
consideration. 
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The DLisp user interface was implemented on the PDP-IO; the Alto 
merely performed graphics. The entire DLisp system was limited by commu­
nication performance constraints. Network round-trip times made changing 
cursor shape and dragging images too slow, so these operations were not 
supported by the base window system on the PDP-IO. The user interface had 
a multiple desktop scheme that was eventually abandoned, after the develop­
ers decided that icons were a much better idea. DLisp introduced another 
interesting, but aborted, concept: windows "faded away" if not used by the 
user for a period of time. 

DLisp placed the window system in a user-level process. This structure 
eases window system development and protects the computer system against 
accidental or malicious destruction of internal data. The window system is 
much easier to maintain and enhance as a user-level process, rather than as 
part of the operating system kernel. 

3.3.3 The Mesa Systems 

After DLisp, Xerox P ARC developed a number of window systems sup­
porting multiple processes in a single address space[LAMP88]. These were all 
implemented in the Mesa programming language. 

'----'-_A_P_p_lic_a_ti_on_---'" Application 

Procedure Calls 

User Interface Toolkit 

Window Manager 

Base Window System 

Graphics Library 

Hardware 

Figure: 3.4. Mesa supported multiple processes in a single address space. 

When a single address space environment has multiple processes, concur­
rent applications like the two in figure 3.4 become possible. Multiple 
concurrent applications introduce two problems: synchronization and 
protection: 



The synchronization problem arises when client processes, running in 
parallel, invoke the window system to manipulate windows and perform 
graphic operations in them. As an example, the user sitting at the work­
station performs an operation that causes a window to move, and the 
movement takes place while the client processes draw in their windows. 
A process whose window becomes partially obscured can find itself 
halfway through drawing a line with a window that is no longer in the 
same place, or into a window that is not the same shape as when the 
process was started. Drawing the line and moving the window must be 
synchronized to avoid collisions of this type. 

The protection problem is common to both the single-address-space, 
multiple-process and the single-address-space, single-process model 
described earlier. One misbehaving program can bring down the computer 
system by manipulating the window system's structures. In a multi­
process system, one program can also destroy all of the programs, as 
well as the window system, unless there is some protection mechanism 
or set of conventions that all programs follow. This can lead to a very 
fragile system, where one bug in one program can drag everything down. 
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At P ARC, both the synchronization and protection problems were solved 
using the facilities of the Mesa and Cedar/Mesa languages and the Pilot 
operating system. They have very good synchronization facilities, and guar­
antee that programs do not randomly destroy memory belonging to other 
programs. This guarantee can be made because Mesa and Pilot check array 
bounds and restrict the operations allowed on pointers. Many Lisp machines 
deal with the protection problem in the same way. 

Some linguistically protected systems, such as Smalltalk, go further and 
do not support pointers at all. However, the urge to avoid protection is 
such that these implementations typically have loopholes to allow program­
mers to get around the language protection and manipulate pointers directly. 

3.3.3.1 Tajo 

Tajo (1977), another Mesa window system, was one of the first window 
systems to deal with multiple processes in a single address space, and it was 
the system that introduced icons. Tajo was also the first notification-based 
system. The "inner event dispatch loop" wasn't in the application, it was in 
the window system. An application didn't implement a main loop, it 
simply registered procedures to be called when events occurred. The win­
dow system was in control, simplifying the system, but confusing many 
programmers who were used to being in control. 
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3.3.3.2 Docs 

Docs (1980) was another multiple processes, one address space window 
system implemented in Mesa under the Pilot operating system. One of its 
real innovations was that it supported an advanced imaging model based on a 
library known as "Cedar Graphics." It supported scaling and rotation, 
curves, images, and retained windows. The Cedar Graphics model evolved 
and eventually became the basis for both Interpress and PostScript, which 
are both languages for communicating with printers. 

Like Smalltalk, Docs had an object-oriented toolkit based on the model! 
view Icon troller paradigm. But it went a step further and attempted to inte­
grate documents into the toolkit. It defined a set of classes to implement 
documents. Documents had methods for presenting themselves in windows 
and they could contain subviews on other documents. There were many good 
ideas in Docs, but it was too slow to be useful. Not until the Andrew win­
dow system was an integrated document model implemented as a part of a 
toolkit that performed well enough to be generally used. 

3.3.3.3 Star 

Star (1981) was Xerox's attempt to transfer the technology developed at 
PARC to the market[LIPK82]. It retained the underlying window system 
technology, but introduced a number of concepts to the user interface. 
Among these were a consistent office model, with icons representing files 
(documents) and directories (file cabinets), a consistent selection paradigm 
for all visible objects, a consistent mechanism for altering the attributes of 
visible objects through property sheets, and an omni-present editor. Editing 
was not part of individual applications, it was a system-provided service. 

3.3.3.4 Viewers 

Viewers (1981) took a step backwards from Docs to regain the perfor­
mance that Docs lost. Initially, it backed out of the Cedar Graphics model 
as being too expensive, but it was eventually reintroduced. From the Star 
system it picked up the notion of tiling windows on the screen. Windows 
could not overlap, but were laid out much like tiles on a wall. 

3.3.4 NU 

In 1981 at MIT, the advent of the Motorola 68000 led to an attempt to 
build a workstation and its software environment called NU. Jack Test 
built a simple window system entirely inside the UNIX kernel. It support­
ed overlapping windows, each of which behaved like a conventional terminal. 

The kernel is often a convenient place to put device support and a central­
ized synchronization point in the interests of performance. But there are 
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problems placing anything into the operating system. The debugging tools 
are usually poor, and any bug that does escape detection threatens the 
integrity of the entire system. Development cannot proceed in parallel with 
other uses of the system. A large body of code is placed in memory, which 
makes that memory unusable by other processes, since the kernel is 
typically not paged (it is "wired-down"). 

Application 

User I nterface Toolkit 

Window Manager 

Base Window System 
UNIX Kernel 

Graphics Library 

Hardware 

Figure: 3.5. The NU window system was built in the UNIX operating system. 

The limits on the code that can be installed in the operating system meant 
that the NU window system was too simple to be really successful. Its 
capabilities were limited to terminal emulation, and simple graphics. Its 
performance was limited by the fact that every window system operation 
was a system call. 

3.3.5 SunWindows 

In 1983 Steve Evans of Sun Microsystems produced SunWindows[sUN85]. 
It was the first widely used UNIX window system. As such, it was one of 
the first window systems to deal with the problems of mUltiple processes 
and mUltiple address spaces. Providing good performance for simple win­
dow operations, rather than fancy graphics, was the goal of the design. It is 
now a mature and stable system, but it is showing its age. 

Like NU, its implementation was entwined with the UNIX kernel. But 
unlike NU, only a small part of the system resided there. The window hier­
archy database was kept in the kernel, along with system calls to 
manipulate it and synchronization facilities to manage concurrent access. 
Each application had the graphics device mapped into its address space and 
accessed it directly - the actual device drivers were not in the kernel, they 
were in the applications. 
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Figure: 3.6. SunWindows is a multi-process, multi address-space system with syn­
chronization in the UNIX kernel. 

With each client having direct access to the display hardware, one would 
expect excellent performance. When performance is worse than expected, 
there are several possible reasons, including synchronization, and paging 
overheads: 

Clients that directly access the display hardware must synchronize among 
themselves. It is usually impossible for two processes to be accessing the 
device registers in parallel. For example, before drawing a line a client 
must make sure that no other client is drawing lines and only when the 
hardware is idle can it finally draw the line. Checking and locking can be 
expensive, sometimes as expensive as a kernel call, and can dominate 
the expense of drawing the line. The per-operation locking cost can be 
reduced by increasing the granularity; instead of locking on every line, 
lock before drawing a group of lines, and unlock afterwards. Unfor­
tunately, putting the burden of choosing a suitable locking granularity on 
the application programmer increases the chance for error. 

If the hardware provides little support for graphics operations, as many 
simple frame buffers do, then the graphics library that is replicated in 
each client can become large. If there are many different display devices 
and operations to be supported, the amount of replicated code can become 
enormous. In systems with virtual memory, these large libraries can 
cause substantial paging delays. If a large amount of code is being repli­
cated and its sheer bulk is causing problems, attempting to keep it small 
appears attractive. But this often involves exploiting fewer special cases 
and avoiding other optimizations involving more speed at the cost of 



more space. The effect of this replication is eliminated if the operating 
system supports shared libraries. 
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Aside from these performance issues, putting such a large body of code 
into each client process also introduces logistical problems for operating 
systems that do not support shared libraries: 

It becomes much harder to make changes and fix bugs. Every client must be 
relinked to access the new routines. This applies even more to third-party 
software; it may take some time to get new libraries incorporated. 

In this context, new display devices are, in effect, bugs. Because the device 
drivers are linked into the clients, introducing a new display type has the 
same problem as fixing a bug. Further, since an application has to contain 
drivers for every device it may encounter, it will be bigger than necessary. 

The SunWindows approach also requires that client programs are "well­
behaved." Checking and locking are not enforced by the window system. 
"Well-behaved" clients are expected to operate within the rules and use 
these protection protocols for the benefit of their fellow clients. 

As one might expect, Sun Windows was implemented in stages from the 
bottom up. The first releases provided only the base window system 
(SunWindows) and a window manager (SunTools). The graphics model was 
based on two libraries, Pixrects and Pixwins, implementing the Small talk 
RasterOp model. 

As the technology advanced, Sun Windows had to evolve to match, and 
this sometimes "broke" the low-level RasterOp model. With the introduc­
tion of color the uniform boolean operation model of RasterOp started to 
break down. Colormaps introduced another resource allocation problem. 
High performance accelerators demanded a higher level model that imple­
mented more advanced features like curves, polygons, and 3D. The short 
term answer was to add device specific imaging models, but these caused 
porting problems for applications which needed to support multiple devices. 

Since the SunWindows user interface was all in the application's address 
space, it was theoretically changeable. But in reality, the early system came 
without a toolkit, and the first toolkit was so complex that almost no one 
made any changes. 

Eventually SunView, an object-oriented toolkit, was layered on the exist­
ing system, hiding most of their complexities and making the construction 
and modification of user interfaces much easier. 
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3.3.6 Andrew 

Andrew (1983) was developed by two of the authors (Gosling and 
Rosenthal) at the InfoImation Technology Center, a joint project of IBM 
and Carnegie-Mellon University[MORR86]. The goal of the project was to 
produce a workstation for the masses. In the beginning, the machine did not 
yet exist (it was to be the PC/RT), so Sun workstations were used as test­
bed hardware. The center's goal was to produce applications for an educa­
tional environment. Producing a window system or toolkit was not a 
specific objective, except as needed for these applications. But neither a con­
venient window system or a toolkit was available at that time. These 
factors together led to a unusual set of goals: 

The window system had to be portable and hardware independent. It was 
being written for a machine that was not yet designed. 

It had to be simple and quick to implement so that real application 
development could begin as soon as possible. 

It could not require changes to the UNIX kernel. The Sun operating system 
was distributed in binary form and the target system did not yet exist. 

The solution was to implement the window system as a separate UNIX 
process. Applications communicated to this window server through UNIX 
sockets, using the TCP/IP protocol. 

All window-related client requests are performed by sending messages to 
the server. With this scheme, all of the graphics and window management 
code is placed in one process: the window server. The window layout 
database, clipping regions, and all other relevant information is centralized, 
solving many of the organizational problems of the other window system 
architectures. In particular, the synchronization issue is solved by avoidance. 
The window system has only one thread of control and complete access to 
all information. Synchronization occurs by serializing the messages coming 
into the window system process. 

The TCP/IP network protocol was used because it was the only available 
inter-process communication facility. It was expected to lead to poor per­
formance, since communication between client and window system via 
message-passing can substantially increase the overhead of each operation. 

The primary technique for achieving good network performance was batch­
ing, putting mUltiple client requests in each network packet. To make 
batching more useful, two additional things were done. Wherever possible, 
the requests did not return values, so that a round-trip between client and 
server was not required. Also, if a procedure did not return a value, then 
the call was not sent immediately, but was batched with successive 
requests. With a large enough message size and a protocol specification that 
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Andrew puts everything except the User Interface Toolkit in a user 
level server process. Applications never see the hardware. 
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requires few replies, the per-message setup cost (delay, processing cost of 
constructing a message, network usage) becomes insignificant. 

The other important technique in Andrew was to maintain a low ratio of 
bits passed in messages to bits altered on the screen and thereby reduce the 
cost per pixel of message passing. Designing a protocol that operated at a 
high level of abstraction lowered this critical cost. As an example, it is pos­
sible to design a protocol that allows only bitmaps to be sent to the 
window system from the client. Thus, when a client wants to draw a text 
string, all the bits for all the characters must be sent. In this case, the win­
dow system has a complete, simple model, but it will have poor 
performance. On the other hand, if the protocol includes notions like 
"font" and "string" then text can be shipped down in a very compact form. 
The more that the window system understands at an abstract level, the 
more efficient client-server communication will be. 

Andrew was the first practical UNIX networked window server. It 
demonstrated that server-based systems were possible. It also performed 
well and, unexpectedly, proved that the ability to use window applications 
across the network was very valuable. Furthermore, it was the first win­
dow system to be ported to a significant number of different workstations 
and displays. Andrew was initially developed on a Sun-l monochrome sys­
tem and subsequently ported to a total of three CPU architectures and seven 
display types: Sun-l color and Sun-2 monochrome displays, monochrome 
microVAXes, and PC/RTs with Vikings, APA-8s, and APA-16s. 
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As experience was gained, porting got easier. The fastest port ever was to 
the APA-16 display, which all told took three people less than four hours 
to complete! 

Andrew has a RasterOp based imaging model, like so many other sys­
tems. However, its font model was quite sophisticated. 

The window manager and the toolkit's menu package were in the server to 
provide a unified user interface and to increase performance. They were 
fixed, and it was impossible for an application to change them. Since one 
goal of the workstation was to enforce a consistent user interface, this limi­
tation was acceptable. The window manager implemented a tiling window 
layout policy, which proved efficient and popular, but controversial. 

The window system was designed in tandem with a toolkit supporting a 
high level document model, similar to Docs, which included a fancy WYSI­
WYG text editor. Although the support for text was excellent, many of 
the applications showed the inadequacy of the graphics model. 

In 1988, the Andrew toolkit, the applications, and the user interface 
style it was used to develop have been ported to the XII window system. 

3.3.7 The Macintosh 

The Macintosh (1984) from Apple Computer was designed to be a system 
for the masses, a small machine with a high-quality user interface. It bor­
rowed heavily from the Xerox systems - primarily Smalltalk, Star, and 
Tajo. The Mac was for users, not programmers. It was applauded for being 
easy to use, but it was initially condemned for being hard to program. 
Although it broke almost no new technical ground, it brought to the public 
a new way of dealing with computers and raised their level of expectation. 
It was a landmark in user interface design, proving that graphical interfaces 
were not just a neat idea, they had value in the market. 

In many ways the Mac was a throwback, being a single address-space, 
single process machine with a very limited amount of memory. The various 
layers of the system were all intertwined. Since the market was end-users, 
not programmers, protection against buggy programs was not a large issue. 
Apple assumed that by the time users got the machine there would be no 
bugs. There really is no operating system on the Mac. The application is in 
charge. Everything else is a subroutine library. 

The graphics model is one area where the Mac broke new ground. Quick­
Draw [ESPI87], the graphics library, was based on the RasterOp model, but it 
added fancier fonts, curves, non-rectangular clipping, and regions. It was 
almost the first system that took graphical design seriously. Xerox's Star 
came earlier, but it didn't get the same exposure. As the Mac has evolved, 
it has shown strains of age analogous to Sun Windows. For example, the ini­
tial color model was too simple and as hardware evolved the model had to 
be superseded. 
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Figure: 3.8. The Macintosh is a single process, single address space system, with 
much of the window system in ROM. 
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Tpe problems of the single-address-space/single-process operating system 
can be seen in their evolution - most are acquiring multiprocessing facili­
ties. On the PC, Microsoft Windows and GEM added explicit support for 
multipl~ processes. On the Macintosh, the desk accessory mechanism, the 
Switcher, and the Multifinder are heading in the same direction. Unfortu­
nately, multiprocessing is hard to graft onto a system once it is completed. 
Because it is so important, many applications will include their own 
limited form of multiple processes, and these private implementations will 
interfere with the way the evolving system wants to implement processes. 

3.3.8 The X Window System 

X (1985) began as the W (1982) window system, developed by Paul 
Asente and Brian Reid at Stanford University for the experimental V oper­
ating system. V was a high performance message passing system 
implemented 011 Sun hardware. In 1983 it was ported to V AXes and the 
VSI00 display at the DEC Western Research Labs, but the slower message 
passing of UNIX made W's synchronous communication impractical. In the 
summer of 1984, Bob Schiefler and Jim Gettys at Project Athena, the IBM­
and DEC- funded campus computing project at MIT, started work on a sys­
tem based on asynchronous communication like Andrew, and called it X. 

The first widely available version was XI0[GETT86,SCHE86]. The architec­
ture of )PO was almost identical to Andrew. Its major innovation was that 
the window management user interface was moved outside of the window 
system into a separate UNIX process. 

Un1ik~ Andrew, XI0 made no attempt to impose a user interface. The 
user interface was provided by application libraries and special applications, 
such as the window manager. XI0 gained flexibility at the expense of per­
formance. Fortunately, it turned out that the performance cost was usually 
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small. Like most network -based window systems, animated interactions in 
X10 (menus, rubber band lines) can lead to heavy network traffic when the 
server and application exchange messages each time that the mouse moves. 

Since X10 was developed for V AXen with a VS100 display, the design 
gave little thought to portability. The VS100 was a relatively unsuccessful 
product and, even though MIT made the source code freely available, it is 
likely that X would have remained an obscure University system had it not 
been ported to more widely-available hardware. One of the most important 
of these early "public domain" X10 ports was undertaken over the Christ­
mas 1985 holiday by two of the authors (Rosenthal and Gosling), who took 
the initial MIT source, ported it to the various Sun configurations, and 
returned the results to MIT for distribution. The fact that the system was 
freely available on a popular workstation like the Sun led to a rapid increase 
in interest and a number of other ports. 

Figure: 3.9. 
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XIO was structured like Andrew, but the window manager was in a 
separate process. 

XII (1987) arose out of the efforts to fix some of X10's deficiencies. 
X10 had some major limitations, including an imaging model derived 
largely from the VS100's microcode, a font model ill-suited to supporting 
WYSIWYG editors, and several other VAX-specific features. So much in 
X10 needed fixing that compatibility had to be sacrificed. X11[sCHE87, 
SCHE88] was redesigned from a clean slate by a group of interested engineers, 
led by Bob Schiefler and including one of the authors (Rosenthal). One 
interesting aspect of X 11 is that, unlike all the other systems mentioned in 
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this chapter, a specification for it was written and intensively reviewed by 
electronic mail before anything was implemented. A group at DEC imple­
mented a sample server based on this specification, and MIT distributed it 
to selected groups for alpha-testing. During these early phases, a joint 
effort between U. C. Berkeley and Sun made the first port of XlI (to Sun 
hardware), developed a portable color framebuffer driver, and produced a 
porting guide that enabled many other groups to get the sample server 
operational on their hardware. 

Although the overall architecture of XlI is very similar to XIO, the 
details are very different. In particular, portability and extensibility were 
major design goals. 

Portability across displays was provided by defining six generic display 
types; applications are expected to adapt their behavior to whichever one of 
these types they use. 

Extensibility was addressed by reserving a set of protocol op-codes. 
These op-codes can be used by code, linked into the server, implementing 
additional functions. Also, XII provides support for managing the name­
space of extensions, and an interface in the sample server to which exten­
sions must conform to be regarded as portable[FISH87]. 

3.3.9 NeWS 

The history of NeWS (1986) was covered in the previous chap­
ter[GOSL86]. Fitting it into the layered model used in this chapter shows the 
flexibility it gains by having a protocol defined as a full progrmming lan­
guage, which is then interpreted by a dynamic, extensible server. NeWS can 
be regarded as a a programming language environment - applications can 
interface to the system at any suitable level. 

Applications can: 

Be written entirely in PostScript, and reside in the single address-space, 
multiple process world of the NeWS server, seeing an environment 
similar to the Xerox P ARC systems; 

Access the system \Ising raw PostScript imaging operators and NeWS input 
operators, seeing a system that looks much like the XII window system, 
but with a more powerful imaging model; 

Or access the system using a server-resident toolkit, seeing a system like 
Andrew with much higher-level operators, in which the network 
communication is in terms of objects such as menus and scrollbars. 
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Figure: 3.10. NeWS allows applications to access the server at various levels. 

3.4 The Layers of the Window System Model 

We now examine each of the layers of the model in tum, working from 
the application towards the hardware. 

3.4.1 User Interface Toolkit 

User interface toolkits have high-level tools which a window-application 
programmer can use to ease the development of a graphical user interface for 
an application. By encouraging the re-use of user interface components, 
toolkits establish uniformity among application user interfaces. A toolkit 
shields the application developer from having to know the underlying de­
tails of the window system architecture, yet offers the capabilities 
necessary for the design and implementation of a sophisticated user inter­
face. Cursor control, window management, input handling, and clipping of 
graphical output are examples of low-level facilities that the toolkit hides 
from the application developer. 

A toolkit normally provides: 

a core that lays out user interface building blocks (sometimes called 
widgets) such as buttons and sliders, and handles input, routing it to 
the code implementing the appropriate widget. 



a library of pre-defined widgets that can be attached to the core to provide a 
complete user interface. 

user interface prototyping tools, easing the process of attaching widgets to 
the core. 
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The application developer forms the user interface with the prototyping 
tools, selecting and positioning widgets from the library. The toolkit pro­
vides an application with the user interface look and feel determined by the 
designers of the widget library. To change the look and feel, the widgets 
must be changed. NeWS and its Lite toolkit, described in Chapter 6, are 
unusual because they allow an application to dynamically change look and 
feel without altering the implementation of the running application. In 
most toolkits such changes can only be done by programming new widgets, 
adding them to the library, and re-linking the application. 

Most libraries offer widgets representing windows or frames, menus, and 
control items (buttons, sliders, text fields, switches, meters, scrollbars, 
and the like). When an instance of one of these components is attached to 
the core, its location must be specified. Normally, a toolkit will provide 
both for explicit positioning (put the record button at 200,160) and im­
plicit positioning (put the record button left of the stop button.) 

Toolkits differ in the sophistication of the components in their widget 
libraries. Some offer only simple components such as the buttons and slid­
ers in Figure 3.11. Other libraries, like Andrew's in Figure 3.12, contain 
very high-level application components such as text and graphic editors. 
These powerful editors, allowing multiple fonts, formatting, cut-and­
paste, scrolling, and searching, are increasingly replacing character terminal 
emulation as the major means of communication with applications, exploit­
ing the interaction capabilities of the mouse and bitmap display to present 
text in a denser yet highly readable form. A toolkit allowing an application 
developer to use such editors as components has obvious advantages. 

Check Box Text Item 

Record File Itmp/NeWS.journal 

Playback HIe Itmp/NeWS.joumal 

RECORD STOP PLAY 

Figure: 3.11. Toolkit components in a control paneL 

Slider Button 

PAUSE 
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With a mouse, a large display, multiple windows and powerful editors as 
the interface to applications, the ability to cut, copy and paste information 
between windows becomes increasingly important. In this area, the toolkit 
normally provides two things: 

1 A consistent user interface, allowing the user to select part or all of 
the information displayed by a widget, and invoke transfer operations. 

2 A programming interface between the source and destination widgets 
of a transfer operation, and the low-level selection service of the base 
window system, which actually transfers the information. 

Toolkit normally support either the "clipboard" user interface style 
with operations like "Cut" (which moves information from a source wid­
get to the clipboard), "Copy" (which copies information from a source 
widget to the clipboard), and Paste (which moves information from the 
clipboard to a destination widget), or the "selection" user interface style, 
(which transfers information directly between widgets without a clipboard­
style intermediary.) 
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Figure: 3.12. Andrew in action: performance monitors, a terminal emulator, and a 
mail session. 
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The programming interface to the base window system's selection service 
will normally provide only for the transfer of uninterpreted data. It is the 
source widget'S responsibility to convert its internal data representation for 
the selected information into a form that the destination widget can under­
stand in terms of its internal data representation. 

Toolkit-level conventions are needed to make this process work between 
the vast range of possible widgets, so that (for instance) cutting from a 
music editor and pasting into a spreadsheet works as expected. Developing 
suitable data transfer formats is the subject of current research, for example 
in the National Science Foundation's EXPRES project. 

3.4.2 Window Manager 

A window manager is the software and user interface for controlling the 
location and status of windows in a window system. It can also be defined 
as that portion of the user interface devoted to manipulating the presenta­
tion of multiple contexts, or windows, on behalf of the user. The window 
manager generally allows the user to: 

create, destroy, reposition, and resize windows, 

adjust the depth order of windows (move to top: "expose", or move to 
bottom: "hide"), 

change the state of windows (open or closed: "iconic"), 

specify which window is to accept keyboard characters (the "listener" or 
"input focus" window). 

The user interface to these operations normally involves wrapping an 
active border around the application window, which contain controls or 
small icons that the user can dick on or drag to invoke them. 

The window manager will also implement a window layout policy. Two 
common policies are overlapping and tiling: 

An overlapping window manager will normally ask the user to size and 
position a newly created window, perhaps by dragging out a rubber-band 
rectangle. The new window will initially appear on top of the other 
windows, but succeeding windows and user actions may cause it to be 
hidden. This concept of overlapping 2-dimensional surfaces on the screen 
is often called 2 I/2-D. 

A tiling window manager, such as Star and Andrew, will normally assign a 
size and position to newly created windows automatically, and perhaps 
adjust the size or position of others, to ensure that no window overlaps 
another. 
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Figure: 3.13. Example of an OPEN LOOK window with a border that is handled by 
a window manager. The various regions in the border may be manipu­
lated by the user, and the window manager turns these into transfor­
mations on the window. 

Different layout polices are largely a matter of aesthetics, and agreement 
on them has proved hard to come by. As a result, recent window systems 
such as NeWS and Xll are designed to support a wide range of policies, iso­
lating the policies in separate code that the user can easily replace [ROSE89 ]. 

3.4.3 Base Window System 

The base window system has two fundamental purposes: 

1 To provide the upper layers with abstractions of the physical 
resources. For example, a window is an abstraction of the physical 
screen resource. 

2 To assign real physical resources to these abstract objects. For exam-
ple, the window system will assign real pixels to the visible part of 
an abstract window. 

These tasks are analogous to those of an operating system. An operating 
system provides its clients (applications) with abstractions of real resources 
such as CPU and memory. A window system can be thought of as an operat­
ing system that provides the user interface with mUltiprocessing, by 
providing multiple windows on-screen to communicate with multiple appli­
cations, and virtual memory, through multiple overlapping windows that 
can provide more "virtual pixels" than physical pixels. 

The resources which the base window system must manage include: 

the pixels on the screen(s), and any additional memory used to hold 
obscured parts of windows. 



the colonnap(s) that convert pixels to colors during the video refresh 
process. 

the keyboard, mouse, and other input devices. 
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The base window system must assign these resources to multiple clients, 
protect these clients so that one client's use of the real resource does not in­
terfere with another's, and allow clients to operate on the abstract 
resources it gives them. 

3.4.3.1 The Screen 

The user wants multiple applications to share the screen. The goal of the 
window system is to provide each application the illusion that it has sole 
control over its window. To maintain this illusion, the window system pro­
vides mutual protection between windows. Ideally, applications do not 
draw in the coordinate space of the screen, they draw in their own "logical" 
coocdinate space, which should correspond to the needs of the application, 
rather than the hardware characteristics of the target screen. Less advanced 
window systems make applications use pixel ("real") coordinate spaces 
within their windows, which decreases application portability between dif­
ferent display resolutions and sizes. The base window system should allow 
applications to establish their own arbitrary coordinate space. It then maps 
the application's logical coordinate space into the physical device (display) 
space, enforcing appropriate clipping as windows overlap. 
Controlling access to the screen can be compared to the control of virtual 
memory in a multitasking environment. In the case of virtual memory, 
many applications are contending for a physical resource, the physical RAM 
(Random Access Memory) into which the application code and data seg­
ments . are loaded for execution. The sum of the memory requirements for 
the simultaneous execution of all applications on the system may be much 
too large for the amount of physical memory available. Therefore, a large 
logical memory area is mapped into a smaller physical memory area "on 
demand," or as an application takes its tum to execute. 

The window system provides a roughly similar mapping algorithm. First, 
the window system must provide a logical-to-physical mapping for all visi­
ble applications at all times. Second, the window system needs to have a 
response to applications whose logical resources (such as a coordinate space 
of 3000 by 3000) have no possible one-to-one correspondence with the physi­
cal resources available (e.g., a window partially covering a 1000 by 1000 
pixel screen). The logical screen space required Gan be stretched (or shrunk) 
to fit the physical space available. Docs and NeWS are examples of systems 
with such transfonn capabilities. Otherwise the user or the application has 
to pan the window to cover the one-to-one logical to physical mapping. 
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Figure: 3.14. Partially visible window, A, being uncovered. The shaded area shows 
the portion of the window which was damaged as a result. 

Managing the screen area also includes managing damage repair. Applica­
tions may draw into windows which are completely or partly hidden by 
other windows. If the obscuring window is removed, the pixels in the 
newly revealed area must be changed from showing the image of the old 
window to showing the image of the new window. The pixels are said to be 
damaged. The process of re-painting them to show the new image is called 
damage repair. 

The window system can use various strategies for damage repair: 

It can maintain off-screen memory containing the obscured pixels, and copy 
the damaged area to the screen from this buffer. This technique is called 
"backing store" or "retained windows". 

It can maintain a display list, or other representation of the operations 
needed to paint a window, and re-execute these operations when required 
to paint the damaged area. 

It can signal the appropriate client that damage has occurred and depend on 
it to repaint the damaged area. 

Each strategy has advantages and disadvantages: 

Retaining windows is effective, simple and fast, but can consume large 
amounts of memory. Retaining a 102,4 by 1024 image in 8 bits deep color 
requires a megabyte of memory. And retaining an off-screen image only 
reduces damage. It cannot eliminate damage caused, for example, by 
windows being resized. 

Display lists are often a more compact encoding of the re-created image, but 
may be slower. And some applications may not be able to represent their 
damage repair as a display list. 



Depending on the client to repair the damage can cause problems for 
applications, such as image-processing, which operate directly on the 
pixels without maintaining an internal representation of the image. 
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Since none of the strategies is wholly satisfactory, window systems gen­
erally use a mix of them and allow each window to select the strategy that 
works best for them. NeWS supports all three strategies. Windows can 
optionally be retained, applications can down-load a program that knows 
how to repair damage into the server (emulating a display list), or the appli­
cation can decide to repair the damage itself. If the client decides to repair 
the damage itself, it can find out the exact shape of the damaged area, and 
repaint only that part of the image to save time. In general, retaining win­
dows is the fastest but most expensive method, and direct client repair is 
the simplest. Clients using retained windows will have to implement direct 
repair as well, as a fall-back for cases such as resizing where retaining fails 
to eliminate damage. 

3.4.3.2 The Colormap 

There are additional components of typical graphics devices that the base 
window system is responsible for managing. For example, many color dis­
plays have colormaps that convert the values stored in pixels into colors on 
the screen. A color map is a table of color values that is indexed by a pixel 
value. A typical color map has 256 entries, indexed by pixels that are 8 bits 
deep. Each map entry has red, green, and blue components that determine the 
actual color displayed for the corresponding pixel value. There are a limited 
number of colors that may be displayed at one time, dictated by the number 
of slots in the color map. This limit creates a resource allocation problem 
that has to be managed. 

The base window system will provide the upper layers of the system 
with the abstraction of a number of virtual colormaps, and will implement 
them by either handing out ranges of pixel values to clients, or statically 
determining a set of good colors and restricting applications to using them. 

XII is an example of a system providing clients total control over the 
colormap resource, whereas NeWS manages the resource internally. Chapter 
10 describes how this conflict is resolved in the X11/NeWS merge. 

3.4.3.3 The Input Devices 

The base window system is responsible for converting external events 
into a canonical form. Events include up and down transitions of keys on 
the keyboard or the mouse buttons, movements of the mouse, and perhaps 
system-generated events such as time-outs. After being converted into 
canonical form they are: 
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1 serialized into a single stream in strict time sequence, 

2 formatted into a uniform event report identifying the type of event, 

3 stamped with the time of occurrence, 

4 labeled with the mouse position (and the state of some or all of the 
keys and buttons) at the time of occurrence, 

5 distributed to the appropriate window. 

Strict serialization is required to provide predictable behavior when the 
system lags behind the user. Timestamping is required to support some user 
interface styles, such as double-click selection, and for serialization. Deter­
mining the appropriate window can be a complex process; windows can 
ignore certain classes of events, and can perhaps pre-empt other events even 
if they do not occur within their bounds. The window receiving events is 
often called the input focus. 

In most base window systems, there are actually two input foci. One con­
trols the distribution of mouse (and normally menu) events, and the other 
controls the distribution of keystrokes. Typically there are two ways of 
managing these foci: 

1 Both foci are tied together and all events are distributed to the 
window under the mouse. This is often called the Focus-Follows­
Cursor policy. 

2 Mouse events go to the window under the mouse, but keystrokes go 
to some window that has been designated as the current input focus. 
This is often called Click -to-Type, since the user usually clicks on a 
window to transfer focus to it. 

CalifomiaBMW 
966-1183 

Event handler for Event handler for 
application A. application A. 

Figure: 3.15. General input distribution: input events being generated and select­
ively passed to applications. One of the applications has nominated its 
own input handling routine by expressing interest in certain events. 
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The window system provides the input focus, one of these mechanIsms, 
transparently to the toolkit. Applications are also generally unaware of the 
mechanism by which the input focus is specified, though they must be able 
to respond to the input focus being transferred to the application. 

Many client applications allow the user to select objects. For example, 
an editor allows users to select regions of text in their documents. Window 
systems normally provide a mechanism help clients manage selections and 
to rendezvous and transfer data among themselves. They normally support 
several named selections, including the Primary and Secondary selections, 
and clients can assert ownership of a selection by name. Clients that want 
to retrieve the contents of a selection use the name to rendezvous with the 
owner of the selection and ask it to supply the data. 

3.4.4 Graphics Library 

The lowest level in the window system is the graphics library. It pro­
vides the upper layers with an imaging model, a set of operations that can 
be used to paint on the screen, and implements them in terms of the opera­
tions available from the display hardware. The operations available from 
the graphics library must be powerful enough to support a wide range of 
applications. However, implementing a powerful imaging model across a 
wide range of different display hardware with good performance can be hard. 

The three basic features of an imaging model are: 
• the coordinate system(s) it uses, 
• the drawing operations it provides, 
• and the font capabilities it supports. 

The simplest imaging models are the ones based on the RasterOp (Raster 
Operation), also known as bitblt (bit block transfer) primitive. This model 
operates in the hardware pixel coordinate system, performing a boolean com­
bination of the pixels in a source and a destination rectangle. Typical 
operations are copying a rectangle of pixels from one place to another and 
filling a rectangle with a color. 

Early systems based on this imaging model, like the Alto, provided only 
lines and RasterOp as drawing operations. Text was drawn using RasterOp. 
Later systems, like the Macintosh, made the construction of graphically 
interesting interfaces easier by enhancing the imaging model. The Quick­
Draw graphics library, though RasterOp based, supports curves and non­
rectangular operations. As a result, QuickDraw provides the ability to con­
struct more interesting interfaces at the cost of a somewhat more complex 
application programmer interface. 

Imaging models capable of dealing with curves and transformations can 
render much more interesting images than those that just deal with straight 
lines in pixel coordinates. The PostScript language graphics model provides 
high-level graphics primitives, which give NeWS the ability to deal with 
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curves, regions that have strange shapes, images, and arbitrary 
transformations of them. In addition, this model operates in user-defined co­
ordinates (hiding the existence of pixels) and can efficiently span a wide 
variety of devices. 

A good example is the drawing of a rose in Figure 3.16. Without the abil­
ity to draw curves, an application would have to draw such an image using a 
lot of small line segments. Besides being a performance problem, it is often 
the case that if each individual application is left the task of supporting 
curves on their own, most will do a poor job. 

IPageNumber: .' 

w.y is itno one €v"- sentlne yet 

~h ~~,{.~!;:;~~ ~ l::C'ksif::t"'? 
One p.,-jf?l;trose. 

-DCII'aftLyParbr 

Figure: 3.16. PostScript 2D graphics illustrating curves and scaling. 
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Although PostScript provides the most advanced 2D graphics model avail­
able to date, it has no features for 3D. There are no window systems (yet) 
that have well integrated 3D models, although some have extensions that 
support some fonn of 3D. 

The third important aspect of the window system's imaging model is its 
treatment of text and fonts. At a minimum, window systems provide facili­
ties for the definition of new fonts, opening and closing font libraries, and 
writing character strings. More advanced systems provide altered spacing in 
specified fonts, kerning, arbitrary baseline directions, and the ability to 
handle extremely large fonts. Typically, window systems define fonts 
based on collections of bitmap images, supporting only a limited set of 
sizes and orientations. One of the interesting features that NeWS inherits 
from PostScript is the ability to dynamically scan-convert outline font rep­
resentations into bitmaps, creating characters at arbitrary sizes and rotations. 

3.5 Summary 

The most important factors influencing window system architecture are 
the addressing and multiprocessing structure. Operating systems can be cate­
gorized into three classes: 

1 Single address space, single process. 

2 Single address space, multiple processes. 

3 Multiple address spaces, multiple processes. 

The first class - single address space, single process - corresponds to 
simple operating systems, such as those on personal computers. They are 
simple and small, and are often just subroutine libraries. MS/DOS and the 
Macintosh operating system fall under this category. 

The second class - single address space, multiple processes - is often 
found in dedicated language environments. Lisp machines, such as the Sym­
bolies computer, and the systems from Xerox PARe are good examples. 
The NeWS server itself, when thought of as an "operating system," is 
another example of a system built under this principle. 

The third class - multiple address spaces - corresponds to the operating 
systems derived from or developed for multi-user machines. VM, VMS, 
Multics, OS/2, and UNIX are all examples. 

The first two classes share the advantage that every part of the system 
can access every piece of memory. Data structures can be shared or accessed 
merely by passing pointers. For instance, if an application builds a display 
list of graphics commands, no data copying is necessary when the window 
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systems renders it. The window system can access the display list directly. 
The last two classes, multiple processes, share the disadvantage that they 

have to cope with synchronization. There are shared resources that must be 
accessed by the multiple processes and these accesses must be arbitrated. 

In a multiple-address-space environment, window systems can be parti­
tioned by placing the bulk of their code in either the kernel, each client pro­
cess, or some separate server process. All three partitioning schemes require 
that some information be passed between address spaces. A set of processes 
is trying to cooperate; this cooperation has a price, and that price is the cost 
of exchanging information. 

Window systems that require each client to perform graphics operations 
by directly accessing the hardware expect high performance, but often do 
not achieve it due to unexpected synchronization problems. The centralized 
window-server architecture solves most of these problems. It incurs an 
added message passing cost, but the impact of this cost can be substantially 
reduced by careful design of the protocol. 



4 
Introduction to the PostScript 
Language 

" PostScript is the future of words on paper." 

Arthur C. Clarke 

This chapter gives a brief introduction to the standard PostScript lan­
guage, as implemented in NeWS and many thousands of PostScript printers. 
This introduction is not particularly rigorous, but it should offer enough in­
formation for understanding the rest of the book. For a full description, see 
the PostScript Language Reference Manual[ADOB85a]. 

4.1 psh 

The NeWS psh command, entered by the user to the system command 
shell, provides an easy way to test the PostScript commands and programs 
described below. If you have NeWS available to you, use psh to try out the 
examples from the following sections: psh establishes a connection to the 
NeWS server and sends the PostScript programs you type to the server, then 
you can interactively program and debug the NeWS server. For the purposes 
of this chapter, consider psh a way to preview standard PostScript programs 
on the screen. However, psh is demonstrated in the chapters ahead as a 
means to also test and run complex NeWS programs. 

There are some differences between interacting with NeWS using the psh 
command and interacting with a PostScript printer. First, some printer­
related commands, such as showpage, operate differently in the NeWS envi­
ronment. Second, the coordinate systems of a standard PostScript printer 
and a NeWS window may differ. The default LaserWriter coordinate scheme 
goes from (0,0) to (612,792), whereas a NeWS canvas can be any size. 

Usually, you connect to the NeWS server using the psh command, then 
you type the executive operator to start an executive, an interactive session 
with the server. Commands are typed in as follows: 
system prompt% psh 
executive 
Welcome to NeWS Version 1.1 



54 

Once running an executive, you can type in arbitrary PostScript 
commands. 

4.2 Conventions 

All the PostScript commands in this and following chapters can be tested 
by typing them into the psh executive. In the psh examples, bold text indi­
cates indicates system response. Regular text indicates commands typed in 
by the user. Unquoted bold text within the descriptive text denote NeWS 
or PostScript operators. Newly defined words, variables and values are itali­
cized. These conventions are followed throughout the remainder of the book. 

4.3 Syntax 

A PostScript program is a stream of characters. This stream of characters 
is broken up by the PostScript interpreter into a sequence of tokens. A 
token is usually delimited by spaces, but a few special characters also delim­
it tokens (like braces and the percent sign). Tokens represent objects. So: 

100 150 moveto (Hello world!) show 

is made up of five tokens: the two numbers 100 and 150, the keyword move­
to, the string Hello world! and the keyword show. These tokens are 
translated into integer, keyword and string objects. Objects are manipulated 
internally by the PostScript language. 

4.3.1 Numbers 

Number tokens are just sequences of digits with an optional decimal 
point and "E" format exponent, like you would see in Fortran or C. Some 
valid numbers are 100, 100.75, 1.0075£2 and 1000£-1. Number tokens are 
translated into number objects that are either of type integer or real. 
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4.3.2 Strings 

String tokens in PostScript are sequences of characters surrounded by 
parenthesis: "(" and ")". These character sequences are translated into 
objects of type string. They follow the C language convention for special 
characters, so that, for example: 

(Hello!\n) 

is a string that contains 7 characters, the last of which is a newline, indi­
cated by ''\n''. 

4.3.3 Comments 

Everything from a "%" up until the end of the line is a comment. Com­
ments are completely ignored: 

% this will be ignored 

4.3.4 Keywords 

Keywords tokens are sequences of characters that do not look like num­
bers, strings or comments. K, add, sum, this-thing, and jl0 are all 
keywords. Keywords serve the purpose of identifiers in other languages. 
Like Lisp atoms, they are real objects, not just compile-time symbols that 
represent something else. A very important property of keyword objects is 
that if two look the same, then they are the same - they are equal. 

All objects have a flag that indicates whether or not they are executable. 
The meaning of this will be explained later. Normally, on numbers and 
strings the executable flag is off. For keywords, the flag is normally on. A 
slash character ("/,,) written in front of a keyword indicates that it should 
not be executable. Thus, sum and / sum are the same keyword, except that 
the first is executable, and the second is not. 

4.3.5 Arrays 

Array objects are linear collections of other objects, distinguished by 
enclosing the array objects in either square brackets "[ ]", or brace brackets 
" { } ". Arrays written with square brackets are not executable, and arrays 
written with brace brackets are executable. As an example: 

[ heinz 57 (tasty!) ] 
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is a non-executable array that contains three objects: the executable key­
word heinz, the number 57 and the string tasty!. Similarly, 

{ heinz 57 (tasty!) } 

is the same array, now executable. There is a "catch" in the syntax of non­
executable arrays that will be explained later. 

4.3.6 Other Data Types I 

There are many other PostScript data types. The following list presents 
the most important. Others will be mentioned in the pages that follow: 

boolean The two special values true and false. 

dictionary A table that associates values with keys. Keys in dictionaries 
do not have to be keywords - they can be any PostScript 
language object. See section 4.5.4 for more information about 
dictionaries. 

marker Objects which mark the stack to delimit groups of objects on 
the stack. 

null A unique value used to represent the null value or "nothing". 

operator Operator objects refer to operations that PostScript can 
perform. For example, there is an operator to add two numbers 
and one to draw a string. 

4.4 Stacks 

The PostScript language makes extensive use of several stacks. Stacks rep­
resent locations where objects are temporarily stored. Everything in the 
PostScript language operates on these stacks, even variable definitions and 
control statements. Operators take their operands from the stack, and push 
the objects returned onto the stack. The language actually has four separate 
stacks that store data (operand stack), commands (execution stack), local 
storage context or lists of dictionary objects (dictionary stack), and graphic 
settings (graphic state stack). The stack colloquially referred to as the 
stack is the operand stack. 



57 

4.5 Execution 

N ow that we have some background, we can talk about what PostScript 
programs are and how they execute. A PostScript program is just a sequence 
of PostScript objects. The expression 2 3 add is parsed into a sequence of 
three tokens, which in tum become three PostScript objects: the integer 2, 
the integer 3, and the keyword add. A sequence is executed by taking each 
object in tum and executing the object individually. The execution of an 
object depends on its type, according to the following rules: 

An executable operator executes the action denoted by that operator. 

An executable keyword is looked up in the dictionary stack. The dictionary 
stack is a set of dictionaries that provide the naming context for a 
PostScript program. After the keyword is looked up, the object found is 
executed. A special case is made for executable arrays. The array is pushed 
on the execution stack and is executed as a sequence of objects. 

If the type of the object is neither a keyword nor an executable operator, 
then the object is pushed on to the operand stack. 

Let's look more closely at the execution of "2 3 add". When the first 
object, the number 2, is encountered, it is pushed onto the operand stack 
since it is neither an executable operator nor an executable keyword. Pro­
cessing of 3 is identical. add is an executable keyword, so the second rule 
applies: add is looked up in the dictionary stack. The dictionary at the top 

of the stack is searched to determine if any value exists under the key add. 
If no key exists, then the next dictionary down in the stack is examined, 
until a key is found or the entire dictionary stack is examined. For this 
example, we assume that a value is eventually found, and that it is an exe­
cutable operator. The PostScript interpreter executes this object, causing 
some action to occur. In this case, the add operator (as opposed to the add 
keyword) is the value found, and it pops the top two entries from the 
operand stack and pushes their sum onto the operand stack. 

Procedures in PostScript are simply executable arrays. When a keyword is 
looked up in the process of executing a sequence of objects, and the value of 
the keyword is an executable array, then that executable array gets executed 
as a sequence of objects. It is important to remember that if an executable 
array occurs in a sequence, it is not executed: it is only pushed on the oper­
and stack. It will only be executed if it is found as the value of a keyword 
or if some operator explicitly executes it (more on this later). 

The bottom element of the dictionary stack is normally a dictionary 
known as systemdict. This dictionary contains all the operators defined by 
the PostScript language. The second from the bottom is a dictionary known 
as userdict that contains user defined local variables. 
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4.6 The PostScript Language Operators 

The PostScript language is commonly perceived as a graphics language, 
but in fact it has a full set of general-purpose operators. These operators are 
used for such varied purposes as arithmetic, manipulating data structures, 
control flow, and, of course, for graphics. 

4.6.1 Arithmetic 

When an operator is defined it is presented in the following format: 

i1 i2··.in name 0 1 02···on 

The operator name pops its input parameters i l' i2, .. .in from 

the stack, performs some computation based on them and 
pushes its output parameters 01' 02, ... on onto the stack when 

it is done. If the operator takes no inputs or returns no results, 
then an em dash (-) will appear in the description. 

Arithmetic operators cexist for all the commonly used arithmetic func­
tions. There are the binary operators add, sub, mul, diy, idiv, and, or, xor 
and mod. Unary operators include abs, round, floor, ceiling, truncate, 
neg and not, and the relationals It, Ie, gt, ge, ne and eq. 

a b add c Pops a and b from the stack and pushes c, their sum, on 
to the stack. 

a b sub c c = a - b 

a b mul c c = a * b 

a b div c c = a / b (real division). 

a b idiv c c = a / b (integer division). 

a band c c = a & b (bitwise and and boolean and). 

a b or c c = a I b (bitwise or and boolean or). 

a b xor c c = a 1\ b (bitwise exclusive or and boolean exclusive or). 

a b mod c c = a % b (remainder after integer division). 

a abs b b = lal (absolute value). 

a round b b = a rounded to the nearest integer. 

a floor b b = the largest integer less than or equal to a. 



a ceiling b b = the smallest integer greater that or equal to a. 

a truncate b 

anegb 

a not b 

a bIt c 

a b Ie c 

a b gt c 

a b gec 

a bnec 

a beq c 

b = a with its fractional part removed (truncate is equivalent 
to floor if a is positive, and to ceiling otherwise). 

b =-a 

b = ~a (boolean not). 

c = true if a<b, false otherwise. 

c = true if a$,.b, false otherwise. 

c = true if a>b, false otherwise. 

c = true if a?:.b, false otherwise. 

c = true if a#b, false otherwise. 

c = true if a=b, false otherwise. 

Let's look at the execution of "1427 add 2 div round": 

Operator 
14 
27 
add 

2 
div 

round 

Stack 
14 
14 27 
41 

41 2 
20.5 

21 

4.6.2 Stack Manipulation 

Comment 
push the integer 14 onto the stack. 
push the integer 27 onto the stack. 
Looks up the keyword add. add 

will be found in systemdict to be the 
operator that replaces the top two 
elements of the stack with their sum. 
push the integer 2 onto the stack. 
Divides 41 by 2. 

Rounds 20.5 to the nearest integer. 

Some operators exist for the purpose of manipulating the stack only: 

a pop - Removes the top element from the stack. 

a dup a a Duplicates the top of the stack. 

in··.iO n index in .. .iO in 

Duplicates the nth element from the top of the stack (0 index 
is the same as dup). 
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in··.iO n icopy in··.iO in .. .iOn 
Duplicates the n elements on the top of the stack (1 copy is 
the same as dup). 

a b exch b a Exchanges the top two elements of the stack. 

i l··.im m n roll im_n+ 1 ·.im i 1· .im_n 
Rotates the top m elements n places (2 1 roll is the same as 
exch.). 

Let's look at the execution of "(is) (now) exch 1 index 3 2 

roll' ': 

Onerator Stack Comment 

(is) (is) Push the string is onto the stack. 
(now) (is) (now) 

Push the string now onto the stack. 
exch (now) (is) 

Exchange the top two elements 
1 (now) (is) 1 

Push the integer 1 onto the stack 
index (now) (is) (now) 

Duplicates the string now to the top 
of the stack. 

3 2 roll (is) (now) (now) 

Rotate the top three elements of 
the stack. 

4.6.3 Dictionaries 

A dictionary is a table that contains pairs of key-value objects. Dictionar­
ies are the ubiquitous way of storing and accessing information within the 
PostScript language interpreter. Dictionaries act as databases for system and 
program information. They are structured as groups of key-value pairs. A 
key is usually a keyword object (such as /sum), although it may be any kind 
of object, while a value may be any object. The PostScript language defines 
a set of operators to manipulate the contents of dictionaries: 

n dict dict Creates a dictionary with enough room for n pairs. Initially, 
none will be in use. 

dict object get value 
Looks into the dictionary for the pair whose key is object and 
returns the corresponding value. 



dict key value put -
Stores the pair key value in diet. If a pair with a matching key 
already exists in the dictionary, it will be replaced. 
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The PostScript language interpreter maintains a dictionary stack that 
stores the set of dictionaries in use. The order of the dictionaries on the 
stack determines the order in which the dictionaries will be accessed. With 
this mechanism PostScript programs can maintain a local set of data or pro­
gram definitions. The last dictionary pushed onto the stack is accessed first, 
other dictionaries are accessed in their order on the stack if the reference is 
not found. Therefore, if a user program redefines a key that already exists, 
the new definition will be found in the topmost dictionary, stopping the 
key search. The top dictionary on the stack is called the current dictionary, 
and all keys referenced in a program are first searched for in the current dic­
tionary. 

There are two standard dictionaries that are always present on the 
stack - systemdiet and userdiet. All of the system operators are stored in 
systemdict. Whenever a new PostScript user program begins, it is given a 
new userdict dictionary where the bulk of user key-values are defined. 

Here are some operators for dictionaries and the dictionary stack: 

- currentdict dict 

dict begin-

Returns the current dictionary: the dictionary on the top of the 
dictionary stack. 

Pushes diet onto the dictionary stack. diet becomes the current 
dictionary. 

- end - Pops a dictionary from the top of the dictionary stack. 

key value def -
Stores the pair key value in the current dictionary. It is 
exactly equivalent to "currentdict key value put". def is 
the operator that is normally used to define variables. 

key load value 
Scans the dictionary stack for a dictionary that contains key and 
pushes that value onto the operand stack. load is very similar 
to normal variable access (keyword lookup in the process of 
executing a sequence) except that it always pushes the value on 
to the operand stack: load never tries to evaluate it. 



62 

~ 
a 
b 
c 

Figure: 4.1. 

value 
5 
(b-str) 
(c-str) 

dictionary stack 

fa 
fb 

fa 
Ic 

systemdict 

5 
(b-str) 

7 
(c-str) 

The name search for a newly defined variable - stack with system­
diet, userdict, and currentdict on the stack and an instance of the 
redefinition of a key that is in two places. 

Let's look at another example "/sum 2 2 add def": 

Operator 

/sum 

2 
2 
add 

def 

/sum 

/sum 2 
/sum 2 2 

/sum 4 

empty 

Comment 

push keyword, since / sum is non­
executable. 
push integer 2 . 
push integer 2 . 
Since add is executable, it gets 
looked up in the dictionary stack, is 
found in systemdict, and its operator 
object gets executed to add the two 
values. 
Stores the value 4 into the dictionary 
on the top of the stack (currentdict) 
under the key sum. 

Without explaining all operator references, the following is an example 
of dictionary use. Unlike previous examples, it is presented as a typescript 
of a psh session: 

% psh 

executive 

Invoke psh as a UNIX shell command. 

Tell NeWS that we're an interactive session, not a 
program. Otherwise if we make any mistakes NeWS will 
break the connection. 

Welcome to NeWS Version 1.1 

/mydict 10 dict def 



Create a dictionary, name it mydi ct. 

mydi ct == Print it out. 

dict [ ] It is empty. 

mydict /var 23 put 

Associate the value 23 with the key va r . 

mydict == Once again print the dictionary. 

dict[/var:23] 

Note that var is now defined in mydi ct . 

mydict 23 /var put 

This time, use 23 as the key rather than the value. 

mydict == Look at the value again. 

dict[23:/var 

/var: 23] Note the two entries. 

mydict /var get == 

Get the value of va r from the dictionary. 

23 It is what was expected. 

mydict begin 

Push mydi ct onto the dictionary stack. 

var Now normal variable lookups wi11look there. 

23 The "variable" var comes from mydi ct. 

/var 77 def Change the value of var. 

/var2 23 def 

Define a new keyword/value. 

mydict == Look atmydict. 

dict[23:/var 

end 

var 

/var2: 23 This is where var2 got defined. 

/var: 77] The value of var changed. 

Pop mydict from the dictionary stack. 

Access var as a simple variable. 

***ERROR*** 

Process: Ox3C783C Error: undefined 
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Stack: dictionary [22] 

var is undefined because the dictionary in which it is 
defined is no longer anywhere on the dictionary stack. 

Executing: var 

At: Reading file(?,W,R) 

***** 
A dictionary is a composite object; it is made up of other objects. Other 

composite objects include arrays and strings. Composite objects behave dif­
ferently from simple objects in some cases. One of the most significant is 
copying an object. When a composite object is copied, its data is not dupli­
cated. Only a pointer (or a reference) to the object is passed to the requestor 
of the copy, which conserves memory and also allows data sharing to take 
place easily among cooperating PostScript programs. This attribute encour­
ages the object-oriented structure of the NeWS Lite toolkit, discussed in 
Chapter 6. 

4.6.4 Arrays 

An array object is simply a list of other objects. This array is indexed by 
integers starting at O. Here are some common array operators: 

n array array 
Creates an array of length n on the stack. All entries will 
be null. 

array n get value 
Gets the nth element from array. 

array n value put -
Puts value into the nth element of array. 

array length len 
Returns the number of elements in array. 

The following simple example shows an interactive session using arrays: 

% psh Connect to the NeWS server. 

executive Tell it we want an interactive session. 

Welcome to NeWS Version 1.1 

/arr 3 array def 

Create a 3 element array and assign it to a variable. 

arr Print out the array. 



[null null null] 

It starts out filled with null's. 

arr 0 (Hello) put 

Put the string Hello into the zeroth element. 

arr == 

[(Hello) null null] 

arr 1 4 put 

Now it contains the string and the nulls. 

Fill in the other elements: 4 in second element (the first 
element has index 0, the second has index 1, ... ). 

arr 2 /key put 

Place /key in third element. Note the different types. 

arr == 

[(Hello) 4 /key] 

arr 2 get 

/key 

Fetch value at 2nd array element from the array. 

The value is what we put there. 
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The catch in the syntax of non-executable arrays: "[" and "]" are actually 
operators. "[" pushes a mark on the stack, and "]" takes everything on the 
stack above the mark and makes an array out of them. The mark is removed 
from the stack and the array is pushed on. The PostScript code between "[" 
and "]" is therefore executed before the array is built. In contrast, "{" and 
"}" are handled by the parser. Here is an example: 

% psh 

executive 

Welcome to NeWS Version 1.1 

{ 2 2 add } 

{2 2 add} 

[2 2 add] 

[4] 

Type in an executable array. 

Notice that when we print it, the array contains the 
objects that we typed in. 

Type almost the same thing, but using [] instead. 

Notice that 2 2 add was evaluated. 
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4.6.5 Control flow Operators 

The PostScript language has many operators that control the flow of exe­
cution. There is nothing that resembles a goto. Control flow is handled by a 
mechanism that looks like procedure calls: the operators take executable 
arrays (referred to as proc parameters) and execute their contents. Here are 
some of them: 

boolean proc if -
If boolean is true, proc, an executable array, will get executed. 

boolean Procl Proc2 ifelse-

If boolean is true, proc 1 will get executed, otherwise proc2' 

proc loop-
Executes proc forever -or until something in proc executes 
the exit. 

- exit - Exits the innermost loop. It can be used to exit any kind 
of loop. 

n proc repeat -
Similar to loop except that it only executes proc n times. 

10 inc hi proc for -
Pushes 10 onto the stack, compares hi to the current top of the 
stack. If they are not equal, it executes proc and increments the 
value on the top of the stack by inc. If inc is negative, then the 
loop proceeds in the reverse order. 

obj proc foraH -
Executes proc for each element of obj. 

4.7 A Small Example 

So far we have presented some of the important non-graphic operators of 
the PostScript language. The following PostScript function illustrates 
them in action: 



fmin 

2 diet begin 

end 

def 

Create a dictionary for local storage and push it onto the 
dictionary stack. 

fa exeh def 

Save the top of the stack in a . 

fb exeh def 

And the next in b. 

a b lt 

Compare a and b. 

a } 

Code fragment to push a onto the stack. 

b } 

ifelse 

Code fragment to push b onto the stack. 

Execute the first code fragment if a is less than b, the 
second otherwise. 

Remove the local variable dictionary from the stack. 

Define min to be the preceding executable array. 
Remember: executable arrays are procedures. 

4 7 min Invoke our newly defined function. 

Print out the result. 

4 
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This PostScript program defines a function called min by defining the key­
word min to have a code fragment as its value. The code fragment begins by 
creating a dictionary and pushing it onto the dictionary stack (2 diet begin). 
This creates a place for local variables. Next a and b are assigned the values 
of the parameters to min which were passed to it on the stack. The variables 

a and b are then compared (a b It) and either { a } or { b } is executed to 
push the lesser of the two onto the stack. Finally end is used to remove the 
local variables from the dictionary stack. 

While the use of dictionaries for local variables is reasonably clear and 
understandable, it is usually preferable to avoid them when possible and 
just keep temporaries on the stack. Here is a significantly more efficient ver­
sion of the min function: 
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/min 

} def 

2 copy gt 

Compare a and b. 

exch } if 

if a is greater than b, exchange them, leaving the largest 
on the top of the stack. 

pop Pop the largest from the stack. 

4.8 The Stencil/paint Imaging Model: Paths 

The PostScript language implements the stencil/paint imaging model, incor­
porating the concept of a path. A path is an arbitrary sequence of points, 
straight lines, and curves that describe some shape. This shape may be closed 
and enclose a region, or it may be a line trajectory. Many operators can be 
used to modify a path. Once a path is built, it can be filled with paint, 
drawn as a line, or treated as a clipping boundary for further graphic opera­
tors. Like the current dictionary, the PostScript language maintains the 
concept of a current path, which is the path currently being constructed and 
manipulated. The current path can be explicitly or implicitly defined by the 
user program. Some operators such as stroke, fill, and clip automatically 
construct a new current path upon their completion. Otherwise, a new cur­
rent path can be started by using the newpath command. Unlike many other 
graphics languages, every operator that needs a geometric description of an 
outline as an argument gets it in exactly the same way - from the current 
path. This principle guarantees consistency between the operators. 

Paint Stencil Path Result 

Figure: 4.2. Paths and paint. 
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One way to think of a path is as a silkscreen or a stencil. When drawing 
an object, first construct a path (stencil) and apply color (ink) through it. 
Figure 4.1 shows a large patch of color that is pressed through a path. 
Images can be used as inks as well as uniform colors. 

When a path is constructed, it is built from pieces by operators such as 
lineto. lineto takes two parameters, the x and y coordinates of the endpoint 
of the line. The line starts at the current point, defined with the moveto 
command. After Iineto has been executed, the endpoint becomes the start 
point of the next line. By contrast, moveto sets the current point, but does 
not add a line segment to the path. Here are a few of the path construction 
operators: 

-newpath-
Empties the current path. 

x ymoveto-
Set the current point to x,y. 

x y lineto-
Add a straight line segment from the current point to x,y. 

x y r as ae arc -
Add an arc to the path whose center is at x,y and has radius r. 
The arc starts at angle as and continues counterclockwise until 
angle ae. Before adding the arc, a straight line segment is added 
to the path that goes from the current point to the beginning 
of the arc. After adding the arc, the current point will be at 
the end of the arc. 

xl yl x2 y2 x3 y3 curveto-
Adds a cubic bezier to the path which starts at the current 
point and ends at x3,y3 whose two control points are xl ,y 1 
andx2, y2. 

- closepath -
Adds a straight line segment from the current point to the 
beginning of the current segment - the point that was last 
moved to with moveto. 
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Current Path Current Clip Resulting Fill 

Figure: 4.3. Clipping. 

Once a path is established, there are few simple things that can be done 
with it: 

- fiIl- Fills the current path with the current color (see Section 4.11 
for more discussion of color). 

- clip - Intersects the current clip path with the current path. 
Whenever a graphics operation is performed, it is constrained 
to operate only within the current clip path. For example, 
whenever you fill a path, that path will be intersected with 
the current clip path to get the region to fill. 

4.9 Transformation Matrices 

The coordinates passed to these path construction operators are always 
transformed using the current transformation matrix (CTM). The CTM 
maps coordinates specified by a PostScript program into device coordinates. 
This transformation can be used to scale, rotate, skew, and translate a path. 
This transformation is always present; it is a fundamental concept of the 
PostScript language imaging model. Although the transformation can never 
be avoided, its overhead can be negligible, as in the case of the identity trans­
formation, where the coordinates specified by the PostScript program map 
directly into device coordinates and no actual transformation is performed. 
In the NeWS PostScript interpreter, nine different special forms of the 
transformation matrices are recognized and optimized. 

There are a number of operators that manipulate the CTM: 

x y translate -
Move the origin of the coordinate system to x,y. 

a rotate - Rotate the coordinate system of the image by a degrees. 

xfyfscale-
Scale the coordinate system by xf in the x direction and yf in 
the y direction. 



Below is the code fragment that drew the rotated "Text" from figure 4.4: 

1 0 lOs cal e Expand the coordinate system. 

5 1 translate 

Move the origin. 

40 rotate Rotate about the origin. 

1 1 moveto Move to 1,1 in the new coordinate system. 

(Text) show Draw the string. 

4.10 Color 

71 

The color model in the PostScript language is simple. Color is the paint 
in the paint/stencil model. There is a current color that is used whenever 
anything is filled or stroked. It can be defined in one of three ways: 

nsetgray-
Sets the current color to be a grey value determined by n which 
ranges from 0, for black, to 1 for white. 

r g b setrgbcolor -
Sets the current color to be a combination of read, green and 
blue as measured by r, g and b (which range from ° to 1). 

h s b sethsbcolor -

Figure: 4.4. 

Sets the current color to a specific hue, saturation and 
brightness. 

Text being rendered in a translated, scaled and rotated coordinate 
system. The CTM is applied to everything. 
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4.11 Imaging 

The PostScript language supplies general facilities for displaying raster 
images. Images are described in a way that is completely independent of the 
kind of output device upon which the image will be displayed. They can be 
scaled, rotated, and skewed so that they can be placed in an arbitrary 
parallelogram on the page. The image operators base their actions on three 
pieces of information: 

The image. This consists of a specification of the width and height in pixels 
of the image, the depth in bits of each pixel, and the pixels themselves. 

The destination/or the image: the parallelogram into which the image is 
to be rendered. This is implicitly specified by the current transforma­
tion matrix: the image is rendered into the rectangle with the lower left 
comer at user coordinate 0,0, and the upper right at 1,1. This unit 
rectangle can be placed anywhere on the page by manipulating the 
current transformation matrix. 

A specification 0/ how the pixels are to be rendered. This consists of both a 
mapping from grey values in the image to grey values in the result, and 
the layout of a halftone screen. 

Figure: 4.5. 

27 rotate 

135 108 scale 

125 100 8 

[ 125 a a 100 a -100] { ... } image 

data .... 

Figure 4.5 shows an image being rendered in a rotated and scaled 
coordinate system. 



w h d matrix proc image -

Renders an image measured wxhxd. p~oc is a procedure that 
is repeatedly called by image to return the data for the pixels 
of the image as a string. It need not return all of the pixels 
at once: image will call it again if it needs more. The matrix 
argument specifies a mapping from the unit square to the 
pixels in the image: the first pixel is at coordinate 0,0 at the 
lower left comer, the last pixel is w,h at the upper right 
comer. A common use for the matrix argument is to flip the 
image so that the top line, rather than the bottom line, comes 
first in the data. 

w h invert matrix proc imagemask -
This is similar to image except that the image is a I bit deep 

mask that defines where paint (the current color) is to be 
applied. If invert is true, 1 pixels are painted in the current 
color, 0 pixels are not disturbed. Otherwise O's are painted, 
and l' s are not. 
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The program fragment begins by translating the origin, then scaling it up 
by a factor of 100 in x and y, and then rotating it 27 degrees. An image is 
then displayed inside the rectangle in the new coordinate system 0,0 to 1,1. 

4.12 Composite Operations: Lines 

Almost everything else in the PostScript language graphics model is 
based on these three concepts: paths, transforms, and colors. Even line draw­
ing is expressed through these concepts. The stroke primitive is used for 
drawing lines. It draws a line based on the current path according to the cur­
rent line style. 

> 
Figure: 4.6. Stroking a path. 
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However, stroke is not conceptually a primitive; it is actually a combi­
nation of the strokepath and fill primitives. fill fills the region bounded by 
a closed path; fill is used to press ink through a stencil. strokepath is an op­
erator (that can be written entirely in a PostScript program) that iterates 
over the current path and replaces it with a path that encloses the current 
path. For example, straight line segments are replaced by rectangles that 
enclose the segment and are of the correct width. 

4.13 Composite Operations: Text 

Text is similarly based on paths and ink. When drawing a letter like "L" 
a path is generated that bounds the character, and that path is then filled. 
Text is based on paths, and paths are subject to transformations, which is 
why text is always transformed in a way that can be predicted by looking at 
theCTM. 

The text model is not quite as simple as the illustration indicates. Each 
character is actually represented by a procedure that is invoked when the 
character needs to be drawn. The procedure will usually generate a path and 
fill it, but it can also generate a path and stroke it, or use a bitmap image. 

Since the text model sounds so general, it initially appears expensive, 
too. In reality, there are many implementation tricks that increase efficiency 
in all implementations of PostScript language interpreters. For example, 
the text model allows a cache to be used that saves the execution results of 
the character drawing procedures as bitmaps. When a character needs to be 
rendered, this cache is checked first. If an earlier procedure call was made to 
render that character, the cached results are used directly, without having to 
again call the procedure defining that character. Similarly, when lines are 
being drawn, if the transformed line width is less than or equal to the size 
of a pixel, then specialized high-speed algorithms are used. 

"L" ----+ 

Figure: 4.7. Painting a character. 
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The appearance of a character is defined by its font. Fonts are a special col­
lection of routines to draw the characters and symbols of a typeface such as 
Times-Roman, Helvetica, Courier, Gothic, and Kanji. A font in the Post­
Script language is a dictionary. Like any other dictionary, the font 
dictionary contains fields that describe the properties of the font: how to 
render it, metrics, encoding information (e.g., ASCII or EBCDIC), its name 
and other characteristics. Fonts are an extremely important, and complex, 
part of the PostScript language model; the details are in the PostScript Lan­
guage Reference Manual[ADOB85a]. 

The show operator is used to draw a string of characters. It takes the 
string to be drawn as its only parameter. The string is drawn starting at the 
current position using the current font and the CTM. 

The current position, established by moveto, is advanced by show. The 
current font is set by setfont, whose parameter is a font dictionary. Font 
dictionaries may be obtained, given the font name, by findfont. 

These are the font manipulation operators: 

font setfont -
Sets the current font to font. 

name findfont font 
Looks up the named font object in a global dictionary called 
FontDirectory: all defined fonts can be found there. 
FontDirectory contains fonts whose height is 1. 

font n scalefont font 
Scales font by n. 

key dict definefont font 
Defines a new font in FontDirectory under the given key that is 
described by the dictionary. 

Using the above operators, a simple Times-Roman, 12-point character 
string would be drawn as follows: 

/Times-Roman findfont 

12 scale font 

set font 

Locate the font we want to use. 

Scale it to be 12 points high. 

Make it be the current font. 

100 100 moveto 

Set the current point. 
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(Hello world!) show 

Draw the string. 

4.14 Graphics State Components 

The various objects that are described by the graphics model are contained 
inside an object called the graphics state. The current graphics state con­
tains the objects that are used by the graphics operators. So far we've seen a 
few of the components of the graphics state: 

The current path. 

The current transformation matrix. 

The current color. 

Two primitives manipulate the entire graphics state as an object. gsave 
saves a copy of the current graphics context on a special stack, and grestore 
restores the graphics state from this stack. gsave and grestore are used 
when you wish to (1) preserve the graphics state, (2) alter the current 
graphics state in a way that is destructive, and then (3) restore the changed 
graphics state. For example, suppose that you wanted to draw a circle that 
was both filled with 50% gray and edged in black. Since the fill and stroke 
operators leave the current path empty when they are done, you would have 
to construct the circle twice. Creating the circle twice can be avoided by sav­
ing the state (including the path) before filling the circle, and restoring the 
state before edging the circle, as shown in the following example: 

newpath Make sure that the path is cleared. 

400 400 200 0 360 arc 

Construct the circular path. 

gsave Save the state (including the current path). 

.5 setgray fill 

Fill the circle with 50% gray. 

grestore Restore the state (especially the current path). 

o set gray stroke 

Edge the circle in black. 



Other important components of the graphics state are the following: 

clip This is a second path, different from the "current" path. All 
graphics operations are clipped against it. Note that since the 
clip is a general path, you can clip to any shape at all. 

dash pattern An array describing how a line is to be dashed. 

flatness The accuracy of curves. This measures the maximum distance 
that the rendered curve is allowed to deviate from the true 
curve. More accurate curves (smaller values of flatness) are 
generally slower to draw. 

font The font used for text rendering. 

halftone screen 

Describes the shape, angle and frequency of the halftone screen 
used to render greyscale values on black and white devices. 

line cap Describes the shape of the cap at the ends of a stroked line 
(O=>square butt ends, l=>round ends, 2=>square ends 
that project). 

line join Describes the shape of the joint between line segments 
(O=>mitered, l=>rounded, 2=>beve1ed). 

line width The width of lines when they are stroked measured relative to 
theCTM. 

miter limit How long a miter can be before it is converted to a bevel 
(when you have an acute angle, a mitered corner generates a 
sharp projection that can get very long, in these cases the joint 
can be converted to a bevel). 

position The current position is a coordinate in user space. It is 
generally the last coordinate referenced by a path construc­
tion operator. 

transfer A function that maps user gray ~evels into device gray levels. 
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Along with these graphics state components, there is a set of operators to 
manipulate them: 

nsetlinecap / currentlinecap 

nsetlinejoin / currentlinejoin 

nsetlinewidth / currentlinewidth 

n setmiterlimit / currentmiterlimit 
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o linejoin 1.0 linewidth 
o linecap 

o linejoin 10.0 linewidth 
o linecap 

1linejoin 
2linecap 

2linejoin 
1linecap 

10.0 linewidth 

10.0linewidth 

Figure: 4.8. A line rendered several times with different values of the various 
parameters. 

The line style parameters (dash, width, join, cap, and miter limit) are a 
little hard to understand without an example. Figure 4.8 shows a line ren­
dered several times with different values of the various parameters. 

4.15 A PostScript program 

The following example program fills its clip path with a fan of lines. It 
will be used in chapter 7 as the paint method for a window: 

/fanoflines 

gsave 

o set gray 

This draws a fan of lines from 0 , 0 to the top and left 
edges. The number of lines in the fan is passed on the top 
of the stack. 

Preserve the graphics state. 

Set the current color to black. 

matrix currentmatrix 

exch 

Push a copy of the current matrix onto the stack. 

Exchange it with the number of lines parameter to get the 
number of lines onto the top of the stack. 

clippath pathbbox 



Find the bounding box of the current clip path, which 
will be the bounding box of the window. This leaves 
the x and y of the lower left hand comer on the stack 
followed by the width and height of the window. 

scale Scale the coordinate system by the width and height. 
This yields a coordinate system that ranges from 0 to 1 
on both axes. 

pop pop Ignore the lower left hand comer information, since we 
know it's zero (that's the default). 

newpath Clear out the current path. 

o 1 3 -1 roll div 1 { 

This is a loop that steps from 0, with an increment of 
l/number of lines (the number of lines was on the 
top of the stack; roll is used to move it around for 
dividing it into 1), up to 1. 

o 0 moveto 

1 1 index lineto 

Draw a line from (0, 0) to (1, i ) , leaving i on the 
stack (i is the index that for leaves on the stack). 

o 0 moveto 1 lineto 

for 

Draw a line from (0,0) to (i, 1), popping i off the 
stack (or rather, using it, and not making a copy to 
preserve it). 

o 0 moveto 1 1 lineto 

Draw the diagonal line. 

setmatrix 

stroke 

Set the coordinate system back to what it was before we 
scaled it (the line matrix currentmatrix left the 
current matrix on the stack). 

Draw the lines. We have to save and restore the current 
matrix so that when we draw the lines they get the right 
width. 

grestore Restore the graphics context to what it was before. It is 
usually good practice for functions to leave the graphics 
context undisturbed. 

} def 

10 fanoflines 
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Figure: 4.9. Graphic output of the fanoflines function. 

4.16 NeWS and the PostScript Language 

This chapter has reviewed the basics of the standard PostScript language, 
designed primarily to describe the printed page. The NeWS interpreter stays 
faithful to the PostScript language definition because compatibility between 
the printer and the screen is important. Areas where NeWS differs from a 
PostScript language interpreter for a printer are detailed in Appendix A. 

However, NeWS is much more than a PostScript language interpreter; 
NeWS is a window system. The next chapter explores these extensions. 



5 
NeWS Facilities for an 
Interactive World 

" I know why there are so many people who love chopping wood. 
In this activity one immediately sees the results." 

Albert Einstein 

5.1 Introduction 

The previous chapter described the PostScript language as defined by 
Adobe Systems, originally designed to drive printers. With printers, only 
one PostScript program is being executed at a time and output can only take 
place to a single page at a time. In contrast, NeWS is a window system. It 
requires that multiple application programs be able to concurrently access 
the display, which is partitioned into separate regions for each application. 
And it needs to handle input from a keyboard, a mouse, and the network. 

For these added requirements, NeWS incorporates more than the basic 
PostScript language, adding several facilities to satisfy the demands of an in­
teractive window system environment. For the most part these additions are 
completely separate from the primitives defined by Adobe. The objective in 
designing the added NeWS facilities was to avoid defining new imaging op­
erators, so that NeWS applications use only standard PostScript operators 
for output. 

The rest of this chapter describes these added facilities. Here are the 
three most important new types. These new objects are all accessible as new 
types of PostScript dictionaries, as described in Chapter 4: 

canvases A canvas is a drawing surface. Multiple canvases can be 
displayed and overlapped on the screen. Canvases can be 
arranged in a hierarchy, and they may be mapped onto 
other canvases. 

processes A process is a thread of execution. NeWS uses what are 
sometimes called lightweight processes. What this means is 
that a NeWS process is inexpensive to create (in terms of 
elapsed time, memory usage, and CPU usage) and that all 
NeWS processes share the same address space. 
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events Events are interprocess messages between lightweight 
processes. The keyboard and mouse (and any other input 
device) generate events. 

Wherever possible, NeWS facilities are patterned after the PostScript lan­
guage structure. Consistency between the PostScript language and NeWS 
makes it possible to minimize the number of new operators that have to be 
defined. For example, many NeWS functions on these new types can be rep­
resented as either read or write accesses to fields in the type dictionaries. 

Other NeWS facilities are described briefly at the end of this chapter. For 
a full description of their features, you should read the NeWS 
Manual[suN87a]. 

5.2 Canvases 

The basic objects a window system manipulates are windows. Windows 
can be thought of as mUltiple drawing surfaces laid out like sheets of paper 
on a desktop. Clients of the window system draw on one or more of these 
windows, and the user moves them around on the desktop, typically bring­
ing the one of the most current interest to the top of the pile. 

Canvases are the simple objects that underlie NeWS windows. A NeWS 
canvas has the properties of an artists canvas: it is an unadorned surface 
without a frame, to which paint is applied. It is often rectangular, but can 
in fact be an arbitrary shape. Canvases are arranged in a hierarchy, and a can­
vas is created on top of its parent canvas. Normally, the object that a user 
thinks of as a window will be made up of several canvases. 

5.2.1 The Canvas Structure 

A NeWS canvas is a drawing surface. In PostScript language terms, a can­
vas is a rectangular coordinate space with a boundary defined by a path. 
Canvases are treated as normal PostScript data objects, and like the current 
path and the current dictionary, there is the concept of a current canvas. The 
current canvas is part of the current graphics state, and the PostScript 
graphics operators apply to the current canvas, as they do to the current 
path. Similarly, the current canvas is saved and restored along with the rest 
of the state by gsave/grestore. 

cv newcanvas canvas 
Creates and returns a canvas whose parent is cv. 



cv setcanvas -
Makes cv be the current canvas. All further graphics 
operations will refer to it. 

- currentcanvas cv 
Returns the current canvas object. 
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Canvases can be transparent or opaque. Anything painted on a transparent 
canvas is actually painted on its parent canvas. A transparent canvas has no 
real surface of its own, it is actually a piece of another canvas. Transparent 
canvases are useful for defining areas that are sensitive to input but that do 
not interfere with drawing in other canvases. Opaque canvases are indepen­
dent surfaces. An opaque canvas will obscure those parts of other canvases 
that lie beneath it. 

A canvas may also be retained, upon request of the client that creates the 
canvas (such as the window manager). While a canvas is being retained, an 
off-screen copy of its contents is maintained, and updated as images are 
drawn into the canvas. If the canvas is moved, or obscured portions of the 
canvas are exposed, the offscreen copy is automatically moved onto the 
screen. Retained canvases are more resistant to damage (see Section 5.2.4, 
Damaged Canvases) and this can improve performance, but retaining can also 
consume substantial storage particularly on color displays. In light of this, 
the retained property of a canvas is only a hint; the server may decide at 
times when memory is scarce to stop retaining a canvas. In general, retained 
canvases should only be used if it is particularly time-consuming to regener­
ate the image in the canvas. 

A canvas object is actually a dictionary. The internal attributes of the can­
vas are thus accessible as fields of the canvas dictionary. To set and inspect 
the values of the various properties of a canvas, the standard dictionary oper­
ators can be used. 

Creating a sample canvas and setting its properties could thus be done as 
follows: 

lev framebuffer 

neweanvas def 

Create a canvas. 

ev ITransparent false put 

Make it opaque. 

ev IRetained false put 

Make it non-retained. 
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5.2.2 The Canvas Tree 

Canvases are arranged in a hierarchical tree structure, the root of which 
is a device canvas, or the frame buffer itself. The root of the canvas struc­
ture is created by using the create device operator. 

string create device cv 
Creates and returns a device canvas. The string parameter is 
interpreted in a system and device dependent manner. For 
example, on a Sun workstation the string (/devljb) describes 
the default frame buffer. 

A canvas has some shape and position, whether visible or invisible. If a 
canvas is to be visible on top of its parent, it must be mapped, which is 
another canvas property. Mapped canvases sit on top of their parent canvas­
es. In effect, there are two separate trees of canvases, one tree containing all 
canvases descended from a device canvas expressing their familial relation­
ship, and one tree containing only the potentially visible (i.e. mapped) 
subset of these canvases, expressing their overlapping relationships. 

lev framebuffer neweanvas def 

Create a child canvas of the framebuffer. 

ev IMapped true put 

Map it onto the display. 

In order for a canvas to be visible on a device, it and all of its ancestors 
must all be mapped. This hierarchy is used to create what people normally 
think of as windows: things with borders and titles and scroll bars. For ex­
ample take figure 5.1. 

The various children of a canvas are ordered visually from top to bottom. 
In Figure 5.1, the frame is the parent of the client's canvas. Assuming all 
canvases are mapped and opaque, a canvas will obscure (appear to be on top 
of) its parent, and some of its siblings. The children of a canvas are arranged 
in a list from lowest to highest, and a canvas will obscure its siblings 
lower in the list. NeWS provides several operators to manipulate the posi­
tion of a canvas in relation to its sibling and parent canvases; these 
operators are used by the NeWS window manager as the user hides and 
exposes overlapping windowed applications on the screen. 
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Figure: 5.1. 

The frame 

The canvas for the client 
to draw in 

The stretch box 

A window which is built out of four canvases. It has one large canvas 
that provides the frame for the window, and three child canvases that 
make up the subparts of the window. The window frame is, itself, a 
child of a frame buffer canvas. 

Examples of canvas manipulation operations are: 

cv canvastobottom -
Make canvas cv the lowest (least visible) among its siblings. 

cv canvastotop -
Make canvas cv the highest among its siblings. 

S x y insertcanvasabove -
Position the current canvas above one of its siblings S, located 
at (x,y) relative to its parent. 

S x y insertcanvasbelow -
Position the current canvas below one of its siblings S. 

x y movecanvas -
Position a canvas cv at (x ,y ) relative to its parent. 

cv getcanvaslocation x y 
Discover the location of canvas cv relative to its parent 
(returns x y). 
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A A 

Start B canvastobottom B canvastotop 

Figure: 5.2. Result of two of the operations above - canvastobottom and 
canvastotop. 

Note that the position (visibility) of the canvas is not determined by 
whether it is the current canvas or not; these two characteristics are entirely 
unrelated. 

5.2.3 Canvas Shapes 

Many window systems restrict their canvases to rectangular shapes, but 
NeWS allows canvases to be of any shape that can be described with a path, 
even one with holes or disconnected parts. 

Figure: 5.3. 

inal emulator 

Nov 14 0:04 ra:cpd ; 

NoV 14 0:18 ine.td 

NOV 14 O:OO/usr/L 

14: 32 0:00 -b.inlc~ 

Nov 14 0: 55 mount -

14: 51 0:00 sunclo( 

Non-rectangular canvases: the logo clock & the "round" clock on top 
of the terminal emulator. 



cv reshapecanvas -
Sets the shape of cv to be the region outlined by the current 
path. It also sets its default transformation matrix to match 
the current transformation matrix. 
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In figure 5.3, the round canvas is defined by a circular path. The code 
below paraphrases that part of the program that gives the canvas its round 
shape. We use psh to create a canvas, make it round, and give it a coordinate 
system with the origin in the center of the canvas. 

shell prompt% psh 

executive 

Welcome to NeWS Version 1.1 

Icv framebuffer newcanvas 

def Create a canvas that is a child of the frame buffer. 

framebuffer set canvas 

The current canvas is now the frame buffer. 

300 300 translate 

Change the coordinate system so that the origin is where 
300,300 used to be. 

o 0 100 0 360 arc 

Construct a circular path centered at the origin with radius 
1 00 - remember that the origin has been translated. 

cv reshape canvas 

Reshape the new canvas: it will be circular with the 
origin of its default coordinate system being in the 
center of the circle. 

cv IMapped true put 

cv setcanvas 

erasepage 

Make the canvas visible. 

Make it be the current canvas. The CTM gets set to the 
default coordinate system of the canvas, which in this case 
puts the origin in the center of the canvas. 

Fill the canvas with white. 

a a moveto 100 100 lineto stroke 

Draw a line in the canvas. Notice that it starts in the 
center of the canvas. 
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Figure: 5.4. The result of the sequence above; a round canvas with a line in it. 

The output of a standard PostScript program sent to a printer is clipped 
to the intersection of the shape of the page and the clip specified in the 

graphics context, set by the clip or initclip operator. The analogy in NeWS 
would be to clip to the intersection of the shape of the canvas and the cur­
rent graphics state clip path. In fact, NeWS provides one additional clip, a 
clip that is a property of the canvas rather than the graphics state, and out­
put is clipped to the intersection of all three clips. 

clip canvas Set the current canvas' clip to the current path. 

clipcanvaspath 

Set the current path to the current canvas' clip. 

You can see the effect of the canvas clip if we use it to restrict output to 
the center of the round canvas in the previous example: 

newpath Make a new path for the new clip. 

o 0 50 0 360 arc 

Construct a circle centered at the origin with radius 50 . 

clipcanvas Make the current canvas' clip this path. 

o 0 moveto -100 100 lineto stroke 

Draw a line from the center to the edge of the canvas -
only the center part will be visible. 
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Figure: 5.5. The result of the sequence above, showing the canvas clip. 

The canvas clip is used during damage repair, and at other times when out­
put must be restricted to only part of a visible canvas. 

To remove the round canvas from the screen, all that is needed is to re­
move all the references to it. 

Icv null def 

Remove the reference from the process' userdict. The 
canvas will remain on the screen. 

framebuffer set canvas 

Remove the reference from the process' graphics state. 
The canvas will vanish from the screen. 

5.2.4 Damaged Canvases 

Printed pages never change size and they retain their image no matter how 
other pages obscure or reveal them in the pile on the desktop. Canvases on a 
display are not so robust. The image in a canvas can vanish at any time. The 
canvas can be reshaped, so that the image needs to be rescaled. The canvas can 
be covered by another canvas, and the window system may not have retained 
the obscured part of the image in off-screen memory. Retaining canvases con­
sumes memory, and there may not be enough memory available when more 
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than a few canvases are displayed on the screen, or if the framebuffer is 
more than one bit deep. 

A canvas is therefore damaged when some part of its image is invalid. 
Damage can happen in many ways. When a canvas is first mapped, its entire 
visible image is considered damaged (unless it is retained, in which case the 
whole image is considered damaged when the canvas is created). Any time 
that an obscured area of a canvas is exposed, by moving away an elder sib­
ling for example, one of two things happens: if the canvas is retained, the 
saved part of the image is used to fill in the exposed part; if the canvas is 
not retained, then the exposed part is damaged. 

NeWS, like most other window systems, requires its clients to repair any 
damage that may occur that it can't repair itself. Exactly how a client man­
ages to reconstruct the contents of a damaged part of a canvas is up to that 
client, but the basic mechanism by which damage is repaired is the same for 
all. When damage occurs a message is sent to the client program using the 
event mechanism. The client should eventually respond to the message and 
repair the damage. If some damage occurs in the intervening time, the record 
of the damaged area is simply enlarged to include the new damage. It is· im­
portant to understand that the damage notification message does not include 
the damage record, which describes the extent of the damage. The client pro­
gram must explicitly request the damage record from the window system 
through the damagepath operator. This damage communication protocol is 
used in order to avoid mUltiple damage repairs by the client. Since the client 
and the window system may be asynchronous, the damage record is not 
passed to the client until the window system knows that the client knows 
that there is damage and can repair all damaged areas. 

5.2.5 Canvas Dictionary 

Like most of the new types NeWS defines, canvas objects are accessible as 
dictionaries. The Canvas dictionary has the following fields: 

Transparent 
True if the canvases behind show through. 

Mapped True if the canvas is visible. 

Retained True if the invisible parts of the canvas are being preserved in 
off-screen memory. Retaining canvases helps prevent damage, 
but does not eliminate it entirely. 

SaveBehind 
True if the obscured parts of canvases behind this one are being 
preserved in off-screen memory. Setting SaveBehind True on 
transient canvases, such as pop-up menus, helps prevent damage 
to other canvases, but does not eliminate it entirely. 
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Figure: 5.6. A damaged window on a screen, with a message going to the client to 
request repair of the window. 

Color True if the canvas can show colors other than black and white 
or grayscale. 

EventsConsumed 
Three possible values, as follows. Events are explained in more 
detail in Section 5.5. 

AIlEvents 
This canvas prevents any events passing through to those behind. 

MatchedEvents 
This canvas prevents any events it matches passing through. 

NoEvents 
This canvas passes all events through to those behind. 
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All these fields are read-write, and setting them will change the proper­
ties of the canvas, except for Color, which depends upon the properties of 
the device on which NeWS is running. 

5.2.6 Offscreen Canvases 

NeWS also provides facilities to manipulate canvases that are not on a 
screen. There are two ways to create such canvases. 

width height bits/sample matrix proc buildimage cv 
Constructs an offscreen canvas that is width pixels wide and 
height pixels high. Each pixel is bits/sample bits deep. The 
default matrix is specified by matrix. Proc is executed re­
peatedly to obtain the initial image data. Proc is expected to 
return a string which contains the pixel values packed into its 
bytes. The arguments to buildimage correspond exactly to 
the arguments to the standard PostScript image operator. As 
a special case, if proc is null the image is zeroed. 

string readcanvas cv 

file readcanvas cv 
Constructs an offscreen canvas by reading its contents from the 
file object or from the file named by string. 

These canvases can be treated, for the most part, like other canvases: they 
can become the current canvas and you can render into them. But you can't 
map them to the screen, or do any of the other operations that are particular 
to screen canvases. There is an operator that will take one canvas and display 
it on another. 

cv imagecanvas -
Renders cv onto the current canvas. It is very similar to the 
standard PostScript image operator, except that it gets the 
image from a canvas object rather that from a user-defined 
procedure. The standard PostScript image operator can be 
broken into two pieces: one that constructs a canvas, and one 
that renders it on another canvas. Image is exactly equivalent 
to {buildimage imagecanvas}. 

5.3 Lightweight Processes 

A printer need only do one thing at a time, that is, print on the current 
page. As a result, the standard PostScript language is a uniprocessing envi­
ronment. It supports only a single thread of PostScript execution. But in 
the world of user interfaces, many different processes may be executing 
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simultaneously. Concurrency is required. Luca Cardelli and Rob Pike ident­
ify the problem as follows: 

" Providing a suitable graphical display is not especially difficult; 
what causes problems is the complicated flow of control required 
to deal with all the possible sequences of user actions with the 
input devices.' , [CARD85] 

Cardelli, Pike, and others have demonstrated how much easier it is to 
write a consistent user interface as a set of cooperating parallel processes, 
rather than, for example, a single-threaded, finite state automaton. 

NeWS supports parallel processing in the user interface by maintaining a 
set of processes that each execute independent PostScript programs. UNIX 
processes are heavyweight; they have their own contexts and are expensive 
in terms of start-up time and consumption of system resources. NeWS pro­
cesses are said to be lightweight because they are inexpensive, easy to create 
and switch among, and they all share the same address space. The NeWS 
lightweight processes need no support from the operating system, and are 
not scheduled by the operating system scheduler. Creating a new NeWS pro­
cess takes only a few hundred microseconds. Because NeWS lightweight 
processes are so cheap, they may be used extensively (and are in the Lite 
toolkit package). For example, each time a menu is invoked, the menu pack­
age creates a lightweight process to listen for input in the menu. 
Lightweight processes communicate through a general interprocess communi­
cation (IPC) facility, implemented by events, described below. Each 
individual thread of PostScript interpretation is represented as a process 
object. 

When NeWS is initialized, it creates a single process, or thread, which 
executes the NeWS start-up file (normally init.ps), which may download 
code into the NeWS server and start up many more lightweight processes. 
All processes except this first one are the result of earlier processes execut­
ing the fork operator. 

There are quite a few primitives associated with the process mechanism. 
Here are a few of the most important: 

proc fork process 
Creates a new process that is executing the code in proc. When 
proc returns, the process terminates. fork returns a process 
object that may be used to manipulate the process. A newly 
created process is the child process of the parent process that 
created it. When a process starts it is running in an environ­
ment that is a clone of its parent process' environment. The 
dictionary stack, operand stack, and graphics state are copied 
to the new process. 
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process waitprocess return 
Waits for process to terminate and then returns the value 
that was on the top of its stack. If its stack is empty when 
it terminates, null is returned. 

- pause - Momentarily suspends the current process, letting other 
processes execute. Once all other processes that want to run 
have taken a tum, the current process resumes. This is used 
for fine-grained control of scheduling. 

process killprocess -
Kills (terminates) process by causing the kill process error to 
occur in it. 

- newprocessgroup -
Processes can be grouped together. When/ork is executed, 
parent and child are in the same process group. 
newprocessgroup removes the current process from its process 
group and creates a new process group that contains only the 
current process. 

process killprocessgroup -
Like killprocess, except that it kills all processes in the same 
group as process. 

suspend process, breakpoint, and continueprocess are additional com­
mands that help debug the running NeWS process. 

Each lightweight process has complete control over the extent to which 
its name space is shared with other processes. This sharing is a consequence 
of the fact that the PostScript language mechanism for resolving references 

Figure: 5.7. 
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The dictionary stacks of two processes, one the child of another. They 
share two dictionaries, but each has a private dictionary on'the top of 
its stack. 
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to data objects is based on a stack of dictionaries. As discussed in Chapter 4, 
a dictionary is a table whose key-value elements are pairs of PostScript 
objects. Each process has a stack of such dictionaries. 

N ames are bound to values by looking them up in each dictionary, start­
ing from the top of the stack. When a child process is forked, it inherits a 
copy of its parent's dictionary stack, so the child process starts with the 
same name space as its parent. If one process defines a new name in some 
dictionary in its shared stack, the other will see it. 

However, the child process can push and pop dictionaries to and from its 
private stack, thus controlling the extent that its name space is actually 
shared with its parent and with other processes. 

5.4 Monitors 

Whenever a system has asynchronous processes that can share data, some 
kind of mechanism is needed to keep them from accessing and trying to 
change the same data at the same time: they need to be synchronized. The 
PostScript language, having only a single thread of execution, does not need 
any form of interlock to protect shared write access to data. NeWS, on the 
other hand, requires some form of interlock to provide processes with con­
sistent access to shared data. It provides monitors for this purpose. A 
monitor is an object that is restricted to being accessed by at most one pro­
cess at a time. It is similar to the monitors introduced by Hoare[HoAR78]. 
There are three primitives that deal with them: 

- createmonitor monitor 
Creates a new monitor object. 

monitor proc monitor -
Executes the code inproc with monitor locked (entered). 
At most one process at a time can have a monitor locked. If 
a process tries to lock a locked monitor, it is blocked until 
the process which has it releases it. When proc returns or is 
terminated by an error, the monitor is unlocked. 

monitor monitorlocked boof 
Returns true if monitor is locked, false otherwise. 

Here is a simple example: 

/mon createmonitor def 
/value 0 def 
/increment { 
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mon { /value value 1 add def } monitor 
fork 

def 

This defines mon to be a monitor object and value to be the integer O. 
increment is defined as a function that creates a process (fork) which locks 
mon and, with mon locked, increments value. So, if we do the following: 

increment 

increment 

increment 

Create a process, 

create another just like it, 

and another. 

three processes are created executing in parallel all modifying value. Be­
cause of the monitor there is no chance of one process modifying value 
while another is doing the same, so the final value of value will be three: 

value Print out the value of "value". 

3 Just as we expected. 

Of course, since NeWS currently has non-preemptive scheduling and runs 
on single-processor machines, and since increment doesn't pause, the value 
would have been three even without the monitor. Butin the future, we ex­
pect NeWS to implement other scheduling policies, for which the use of 
monitors will be essential. 

5.5 Events 

There are three types of communication that take place as NeWS runs. 
First, as described previously in Chapter 2, and in more detail in Chapter 7, 
client processes send PostScript byte streams to lightweight PostScript pro­
cesses within the server. Second, the server receives input from devices, such 
as the keyboard and locator, and performs output on its display. Third, the 
NeWS lightweight processes pass messages to each other. 

The following diagram shows the communication paths between clients, 
devices, and the lightweight processes within the server. 
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Figure: 5.S. 

PostScript 
Process 

All of the thick arrows in this drawing indicate communication through 
events. This is essentially all interprocess communication and all com­
munication from the keyboard and mouse to processes. 

Input and communication between lightweight processes are integrated in 
NeWS through a general interprocess communication mechanism called 
events. Events are NeWS objects which can be generated either by light­
weight processes, the server, or by external devices such as the mouse and 
keyboard. They are received, translated, dispatched, and routed by the server 
to its PostScript program clients. A process can send an event to itself or 
any other process, or, it can place an event into the server's event distribu­
tion mechanism, in which case it will be distributed just as if it had been 
generated by an input device. 

Event objects can represent one of three things: 

1 A message from one lightweight process to another. 

2 A description of some event external to all lightweight processes, 
such as a mouse movement, or damage to a canvas. 

3 A template against which other event objects are matched. 

In fact, there is no way for a lightweight process receiving an event to 
tell if it has come from an external event source or from another process; 
to a receiving process the first two types of event are identical. This allows 
processes, for example the NeWScorder journalling process, to simulate de­
vices and to drive NeWS clients just as a user would. 

Events can be thought of as structured objects with a number of fields. 
As with canvases and processes, these fields are accessed as if the event were 
a dictionary and the fields were keys in that dictionary. Most of these fields 
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are mentioned as they become relevant in this section. Among the most 
interesting fields in an event are: 

IName 

IAction 

ITimeStamp 

The name of an event, it describes what happened. For instance, 
it may be an integer ASCII character or keystation code. Or 
it may be a keyword describing an abstract operation like 
I AcceptFocus or IDeSelect. 

A modifier for the name field. It usually describes what 
happened to the named thing. For instance, keyboard char­
acters usually have an action of either IDownTransition 
or IUpTransition. 

The time when an event happened. Events are delivered strictly 
in order of their time stamp. No two events can have the same 
timestamp. 

ICanvas The canvas that the event "happened in" or is "directed to". 
The keyboard and the mouse typically set this to the uppermost 
canvas that was under the cursor when the event happened. 

5.5.1 Events as Templates 

Internal interprocess events are used in two ways, as messages that are 
sent to processes, and as templates that a process uses to describe the events 
in which it is interested. A process specifies the kinds of events it would 
like to receive by constructing events that look like these interesting events, 
and expressing interest in them. These template events are called interests, 
and as real events occur they are matched against these templates. Events 
that match correctly will eventually be received by the process that ex­
pressed the interest. 

Here are the most important of the event primitives: 

- createevent event 
Creates a blank event. All of its fields are null (when used in 
an interest event, null matches anything). 

event sendevent -
Sends event to all the processes that are interested in it. 

- awaitevent event 
Returns the next event sent to this process. 



event expressinterest -
Expresses interest in event. Further events that are generated 
which match it will be sent to this process. Note: if a process 
forks its children do not inherit its interests). 

event revokeinterest -
Undoes an expression of interest. 

event redistributeevent-
Sends event (which must have been received by awaitevent) 
back to the distribution process to see if any other interest 
might match it. Normally, when an event is sent it is received 
by all processes that expressed interest in it. This can be 
controlled by using the IExclusivity and IPriority fields of 
an interest event. 

5.5.2 Event Distribution 
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Input events enter the system as they are generated by the NeWS server 
or when a lightweight process executes sendevent or redistributeevent. 
Events generated by the server are stamped with the time of their creation; 
other events are given whatever time stamp is left by the process that sends 
them (a process can use currenttime or lasteventtime to generate suitable 
values). In any case, newly created events are sorted into a single event 
queue according to their time-stamp values. 

Events are removed from the head of the event queue one at a time as the 
server schedules processes to be run. No event will be distributed before the 
time indicated in its time stamp. Copies of events are distributed to all pro­
cesses whose interests it matches and each of those processes is given a 
chance to run before the next event is taken from the queue. 

A process gets its next input event by executing awaitevent. If no event 
has been distributed to it, the process will block. If a distributed event is 
waiting, awaitevent will return immediately with the new event on the top 
of the operand stack. 

5.5.3 Event Matching 

No process wants to receive all the events that appear on the event queue. 
Processes determine the events they will receive by constructing an event 
that looks like an event they would like to receive, and expressing interest 
in events that look like this template. Real events are matched against these 
interest templates and, if they match, they are delivered to the process that 
expressed interest. 



100 

Event from 
input queue. 

MouseOragged 

Interest Lists 

r-__ E_n_te_r_E_v_en_t __ -; -4---C::cess ~ 
LeftMouseButton 

Event matches an 
interest expressed 
by process B. 

~_M_o_u_s_e_o_ra_g_g_e_d __ -; -4---~ 
LeftMouseButton 

Figure: 5.9. 

RightMouseButton 

Events are removed from the queue, matched against interest templates, 
and distributed to the processes that expressed the interests. 

The matching process compares the following fields of the interest and 
real event: 

Name and Action. These fields are matched in the same ways according to 
the following rules: 

Null in an interest field matches anything in the corresponding field 
of the real event. 

2 If the value in the interest and the value in the real event are the 
same, the match for that field succeeds. Typically, this will be the 
case for simple values like booleans, keywords, or numbers. 

3 An array or a dictionary in the interest field specifies a class of values 
the real event may match. A real event value matches if it is any of 
the elements of the array, or keys in the dictionary. 

A null canvas matches events happening anywhere. If the Canvas field of 
the interest is non-null, the match succeeds if the event happened when 
that canvas was the current input focus, or if the event was sent with a 
matching canvas field (as, for example, a Damaged event for that canvas). 

The Process field of an interest is set by expressinterest to the process 
expressing the interest. Normally, events being distributed have null in 
their process fields and will be matched against interests without 



restriction. If an event has a specific process in its Process field, the 
event will only match interests that have been expressed by that process. 
It must still match the interest on Name, Action and Canvas. 

If all the matching conditions are met, the event matches the interest. 
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Here's a simple example. We create a process listening for /Hello events, 
and printing them out. Then we create and send a /Hello event, and the lis­
tener prints it out: 

Start defining a listener process. 

createevent dup begin 

Create and open an event to be a template. 

/Name /Hello def 

Listen for /Hello events. 

end expressinterest 

Express interest in / He 11 0 events. 

awaitevent == } loop 

Print out each event as it arrives. 

} fork Fork the listener process. 

createevent dup begin 

Create and open an event to send. 

/Name /Hello def 

Make it a /Hello event. 

/Action /Mumble def 

With Action /Mumble . 

end sendevent 

Send the /Hello event. 

The listener process will wake up and print it. 

event (Ox3A7E44, [0,0], name(/Hello), action(/Mumble» 

createevent dup begin 

Create and open an event to send. 

/Name /Goodbye def 

Make it a / Goodbye event. 

/Action /Mumble def 
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With Action /Mumble. 

end sendevent 

Send the /Goodbye event. 

No-one is listening for / Goobye events, so nothing 
happens. 

killprocess Kill off the listener process - its process object has been 
on the stack all this time. 

5.5.4 Special Events 

The NeWS server autonomously generates a number of different input 
events in response to external events, but unlike many other window sys­
tems NeWS events are of only one type. They are distinguished by the 
values of the fields in the event dictionary. Keystrokes generally have 
numeric values in their Name, but most others are identified by a keyword 
in the Name. The most important of these keywords are: 

Damaged Generated for a canvas whenever it is damaged. The total 
damage is accessible with damagepath. The Action for a 
damage event is null, and the Canvas field identifies the 
affected canvas. 

EnterEvent & ExitEvent 
When the cursor is moved across a border between canvases, 
multiple events are generated. In each event, the Name is 
either EnterEvent or ExitEvent, depending on the direction 
of the crossing. The Action field contains a more detailed 
description between the canvas and the cursor. 

MouseDragged, LeftMouseButton, MiddleMouseButton 
&RightMouseButton 

Manipulation of the mouse generates events with these names. 
If the mouse moves, the event Name is MouseDragged and 
the Action is null. If a mouse button is pressed or released, 
the Name identifies which button is affected and the Action is 
one of the keywords DownTransition or UpTransition. 

As an example of the use of interests, the round canvas used earlier is cre­
ated and a line is drawn from the center to the place where the left mouse 
button is clicked: 



% psh 

executive 

Welcome to NeWS Version 1.1 

/cv framebuffer newcanvas 

def Create a canvas that is a child of the frame buffer. 

framebuffer set canvas 

The current canvas is now the frame buffer. 

300 300 translate 

Change the coordinate system so that the origin is where 
300,300 used to be. 

o 0 100 0 360 arc 

Construct a circle centered at the origin with radius 1 00 
- remember that the origin has been translated. 

cv reshape canvas 

Reshape the new canvas: it will be circular with the origin 
of its default coordinate system being in the center of 
the circle. 

cv /Mapped true put 

cv set canvas 

erasepage 

Make the canvas visible. 

Make it be the current canvas. The CTM gets set to the 
default coordinate system of the canvas, which in this case 
puts the origin in the center of the canvas. 

Fill the canvas with white. 

Start defining a procedure that will eventually be forked 
as a process printing out each event. 

createevent dup begin 

Create an event to serve as an interest, leave a reference to 
it on the stack, and push the event on the dictionary stack. 

/Canvas cv def 
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Set the Canvas field of the interest to the round canvas, 
indicating that we're interested only in events in the canvas. 

/Name /LeftMouseButton def 

/Action /UpTransition def 

Set the Name and Action fields of the interest, indicating 



104 

that we're interested only in up transitions of the left 
mouse button. 

end expressinterest 

Pop the interest off the dictionary stack, and use the 
reference to it on the stack to express interest in events 
that match it. 

awaitevent == } loop 

Loop forever, printing out each event that arrives. 

} fork Take the procedure we've defined and make a process 
running it. 

Now, left-click once in the round canvas, aad the process forked prints 
the" event describing the click. Try clicking the other mouse buttons, and 
clicking the left button outside the round canvas. Notice that nothing 
happens. These events don't match the interest. 

event (Ox47FAB8, [435,467], name(/LeftMouseButton), 
action(/UpTransition), canvas(201x201@300,400» 

Next, we replace the printout process by one drawing a line to the click: 

killprocess Destroy the printing process. 

Start defining a procedure that will eventually be forked 
as a process drawing lines in the canvas. 

createevent dup begin 

Create an event to serve as an interest, leave a reference to 
it on the stack, and push the event on to the dictionary 
stack. 

/Canvas cv def 

Set the Canvas field of the interest to the round canvas, 
indicating that we're interested only in events in the canvas. 

/Name /LeftMouseButton def 

/Action /UpTransition def 

Set the N arne and Action fields of the interest, indicating 
that we're interested only in up transitions of the left 
mouse button. 

end expressinterest 

Pop the interest off the dictionary stack, and use the 
reference to it on the stack to express interest in events 
that match it. 



Start defining what we will do on each event. 

await event begin 

Wait until we get an event, then push it on the dictionary 
stack so that we can access its fields. 

o 0 rnoveto 

Start the line at the center of the canvas. 

XLocation YLocation lineto stroke 

end 

loop 

fork 

End the line at the click, and stroke it out. 

Finished with the event, so pop it off the dictionary stack. 

Finish defining what we do on every event. 

Take the procedure we've defined and make a process 
running it. 
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Now, left-click in the round canvas, and the process forked draws a line 
from the center of the canvas to the mouse position for each click. Once 
again, note that other buttons have no effect. 

Remember to kill off the process drawing the lines and remove the refer­
ences from the psh process. If you don't the round canvas will remain after 
you exit from the psh . 

......... .......... . . . . . 
:~(((//\:::.:.: .... 

Figure: 5.10. The results of the example, a round canvas with lines where we clicked. 
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killproeess Destroy the line-drawing process and its references to the 
round canvas. 

/ev null def 

Remove the reference from the psh process' userdict. 

framebuffer seteanvas 

Remove the reference from the psh process' graphics state. 

This is explained in the section below on storage management. 
There are no special timer events in NeWS; rather, the guarantee that no 

event will be delivered from the event queue before the time in its time 
stamp means that any event can be used to generate another event at some 
time in the future. There is no requirement that a process send a timer event 
to itself; it can just as easily send a delayed message to another process, or 

broadcast one, by changing the Process field in the event passed to 

sendevent. 
Here is an example program using this capability. It ticks, printing out a 

new event every 12 seconds (0.2 of a minute - times in NeWS are in min­
utes and fractions): 

Start defining a procedure that will eventually be forked 
as a ticking process. 

ereateevent dup begin 

Create an event to serve as an interest, leave a reference to 
it on the stack, and push the event on the dictionary stack. 

/Name /Hello def 

Set the Name field to show that we're interested in 
/Hello events. 

end expressinterest 

Pop the interest off the dictionary stack, and use the 
reference to it on the stack to express interest in events 
that match it. 

awaitevent == 

Print out each event as it arrives. 

ereateevent dup begin 

Create and open the next event. 

/Name /Hello def 



Make it a / He 11 0 event. 

/TimeStamp currenttime 0.2 add def 

Make the timestamp 12 seconds in the future. 

end sendevent 

And send it to be delivered in 12 seconds. 

} loop Loop for ever. 

fork Take the procedure we've defined and make a process 
running it. 

Nothing happens until we send an event to start. 

createevent dup begin 

Create an event to be the trigger. 

/Name /Hello def 

Make it a / He 11 0 event. 

end sendevent 

And send it - it gets printed immediately. 

event (OxlFA12C, [0,0], name (/Hello), action(null» 

12 seconds later, we get another. 

event (OxlFA280, [0,0], name (/Hello), action(null» 

And 12 seconds later, another. 

event (Ox205590, [0,0], name (/Hello), action(null» 

killprocess Kill off the listener process. 

5.5.5 Processing After a Match 
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After a real event has been successfully matched with an interest, a copy 
of the event is made and eventually delivered. In effect, event distribution 
is a broadcast mechanism; all processes interested in an event see a copy of 
that event. In this broadcast copy, the Interest field is set to the interest 
matched, and the Process and· Canvas fields to the process and canvas of 
that interest. If the Name and/or Action values matched a key in a dict­
ionary in the corresponding field in the interest, one of two things will 
happen: 

If the value in the dictionary corresponding to the matching key is not 
executable, then the value replaces the Name or Action field in the event. 
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If the dictionary value is executable, then the value in the corresponding 
field of the event is not modified; instead, the executable object from the 
dictionary is queued for execution in the receiving process immediately 
after the event is returned by awaitevent. If both the Name and Action 
fields of the event have such executable matches the Name is executed 
first, then the Action. 

The replacement of the Name or Action fields can be demonstrated with 
a simple example that listens for /Ping events and maps them into /pong 
events, and vice versa. This could be used, for example, to map function 
keys into strings: 

Start defining a procedure that will eventually be forked 
as a listener process. 

ereateevent dup begin 

Create an event to serve as an interest, leave a reference to 
it on the stack, and push the event on the dictionary stack. 

2 diet dup begin 

Create a dictionary for the name field. 

/Ping /Pong def 

Turn a /p ing into a/Pong. 

/Pong /Ping def 

Turn a /Pong into a/Ping. 

end /Narne exeh def 

Put the dict in the Name field to show that we're 
interested in /P ing & /Pong events. 

end expressinterest 

Pop the interest off the dictionary stack, and use the 
reference to it on the stack to express interest in events 
that match it. 

awaitevent == } loop 

} fork 

Print the events we receive. 

Take the procedure we've defined and make a process 
running it. 

ereateevent dup begin 

Create an event. 

/Narne /Ping def 

Make it a /p ing event. 



end sendevent 

And send it - we get a IPong. 

event (Ox2035CO, [0,0], name (/Pong), action(null» 

ereateevent dup begin 

Create an event. 

IName IPong def 

Make it a IPong event. 

end sendevent 

And send it - we get a Ip ing. 

event (OxlDBDF8, [0,0], name (/Ping), action(null» 

killproeess Kill off the listener process. 
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The executable match process can be demonstrated by attaching code to 
the interest: 

Start defining a procedure that will eventually be forked 
as a listener process. 

ereateevent dup begin 

Create an event to serve as an interest, leave a reference to 
it on the stack, and push the event on the dictionary stack. 

2 diet dup begin 

Create a dictionary for the name field. 

IPing { (Ping) == } def 

Print Ping when a IP ing event is matched. 

IPong { (Pong) == } def 

Print Pong when a IPong event is matched. 

end IName exeh def 

Put the diet in the Name field to show that we're 
interested in I Pin g & I Pan 9 events. 

end expressinterest 

Pop the interest off the dictionary stack, and use the 
reference to it on the stack to express interest in events 
that match it. 

awaitevent pop } loop 

Do nothing with the events we receive. The executable 
match code in the IName dict will be run before the pop. 
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} fork Take the procedure we've defined and make a process 
running it. 

createevent dup begin 

Create an event. 

/Name /Ping def 

Make it a /P ing event. 

end sendevent 

And send it. 

(Ping> The executable match prints Ping. 

createevent dup begin 

Create an event. 

/Name /Pong def 

Make it a /Pong event. 

end sendevent 

And send it. 

(Pong> The executable match prints Pong. 

k iII pro ce s s Kill off the listener process. 

Once the copy has been received, it is placed on a private queue for the pro­
cess that expressed the interest. If that process was blocked in awaitevent, 
it is made runnable. The original event then may be matched against further 
interests. 

This processing of the Name and Action fields is a generalization of the 
concept of keymapping supported by many window systems. Every time an 
event is received, it can potentially be processed not merely by a dictionary 
lookup and replacement, but even by a PostScript procedure specific to that 
individual key. The procedure can be specified by some process other than 
the one receiving the events. 

5.6 Color 

The PostScript language as specified has a very simple color model. There 
are two primitives, sethsbcolor and setrgbcolor used to specify the color 
of subsequent fill operations. NeWS extends this concept by adding special 
color objects and some primitives to manipulate them. 



r g b rgbcolor color 
Returns a color object whose red, green and blue components 
are set to r, g, and b. 

h s b hsbcolor color 
Returns a color object whose red, green, and blue components 
are calculated from the hue, saturation, and brightness values, 
h, s, and b. 

color setcolor -
Sets the current color to color. 

- currentcolor color 
Returns the current color. 
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So the sequence rgbcolor setcolor is equivalent to setrgbcolor, and 
hsbcolor setcolor is equivalent to sethsbcolor. For both hsbcolor and 
rgbcolor, the same color object will be returned if the same arguments are 
given. Colors can thus be compared using the normal PostScript eq opera­
tor. The color that actually appears on the screen is only an approximation 
to these values, and several sets of RGB or HSB values may end up mapping 
to the same color on the screen. The contrastswithcurrent operator detects 
if a color color will be distinguishable from the current color. 

color contrastswithcurrent bool 
Returns True or False. 

5.7 Storage Management 

The PostScript language was designed for printers with limited amounts 
of memory running "one-shot" programs, and could, therefore, take a some­
what idiosyncratic approach to storage management. The save operator 
remembers a state of (most of) a PostScript program's memory in a save 
object, and the restore operator restores the state of (most of) the memory 
to that of the save object. 

This approach cannot survive in a multiprocess world, where objects are 
shared between processes, so NeWS uses reference counts on objects, and 
garbage collection. Objects persist as long as at least one reference to them 
exists. When the last reference goes away, the object vanishes and its space 
is reclaimed. NeWS programmers need to be careful not to let processes 
place references to private data objects in shared dictionaries; the private 
objects will persist after the process dies. A common example is accident­
ally using def to place a reference to a canvas into systemdict rather than a 
private dictionary. When the process dies a zombie canvas remains behind. 
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/- In the preceeding example, in which a process was forked off to listen to 
mouse clicks and draw a line for each it receives, it's important to remem­
ber to kill off the process. If you don't, it will remain active and it will 
retain its reference to the canvas it has created. It will be effectively stuck 
on the screen since the process doesn't listen for any termination commands. 

Garbage collection in NeWS is intended to be invisible, and has almost no 
impact on a PostScript program or the language itself. The PostScript lan­
guage contains primitives for creating objects, but none for releasing them. 
This structure lends itself naturally to a garbage collector that releases 
objects when they are no longer referenced. A reference count garbage collec­
tor is simple and evenly distributes the cost of doing garbage collection 
throughout the execution of the server. Most other garbage collectors 
either double the amount of memory used, or occasionally pause for a long 
time to sweep memory and collect garbage. Neither of these side-effects 
were considered acceptable. 

5.8 Debugging in NeWS 

The PostScript language offers very few debugging facilities, at least 
partly because it is often difficult to get access to what is happening inside 
a printer. A major problem in printer debugging is that the only connection 
to the outside world is already being used for sending data to be printed. 
NeWS, being a mUltiprocess interpreter intended for an interactive environ­
ment, requires a more sophisticated debugging environment and runs on 
platforms that are better able to support debugging facilities. NeWS sup­
ports an interactive, multiprocess debugger with which one can perform 
both breakpoint and post-mortem debugging of any number of lightweight 
NeWS processes. 

In order to use the debugger the following command should be entered: 

(NeWS/debug.ps) run 

This instruction can also be included in the user-tailorable user.ps startup 
file. Once the debugger has been started, one or more interactive connections 
to it can be set up by invoking psh as described in Chapter 4 and typing the 
following: 

executive 
dbgstart 

Now, whenever a lightweight process gets an error, it will stop and a 
message describing the error will appear in all these interactive debugger 
connections. In any of. the interactive debuggers other commands, detailed in 
the NeWS manual, can be used to: 



Examine the state of any of the stopped processes. 

Add breakpoints to procedures. 

Add debugging printout commands to procedures. 

Execute PostScript procedures in the context of any of the stopped process. 

Restart any of the stopped processes. 

} loop 
} fork 
oreateevent dup begin 

/Name /Hello def 
end s endeven t 
event(Ox2442AO, [0,0], name (/Hello), aotion(null}} 

............... 

............... 

iillill!!!i!i!II!!1 

devnull9b psh 

eloome to N~S version 1.1 
(N ~S/ debug. p s) run 
dbgstart 

ebugger ins talled . 

h19 terminal emulator 

reak:undefined from prooess(1022??20, input_wait} 
Curren tly pending b reakp 0 in ts are: 

1: undefined oalled from prooess (1022?720, input_wait) 

Figure: 5.11. The debugger on the screen. 
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This structure, with multiple interactive connections to a single central 
debugger, seems odd at first sight. But, in a mUlti-process environment, the 
ability to examine both sides of an interaction between two processes is es­
sential, and this framework allows the user to freely assign interactive 
contexts to processes as it becomes convenient. 

The simplest use of the debugger is to trap processes that cause errors. To 
illustrate this, we need two interactive connections (see Figure 5.11). In 
one, we type a program with an error, and in the other we communicate 
with the debugger. 

Into the first session, we mis-type the earlier repeating event example: 

Start defining a procedure that will eventually be forked 
as a ticking process. 

createevent dup begin 
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Create an event to serve as an interest, leave a reference to 
it on the stack, and push the event on the dictionary stack. 

/Name /Hello def 

Set the Name field to show that we're interested in 
/Hello events. 

end expressinterest 

Pop the interest off the dictionary stack, and use the 
reference to it on the stack to express interest in events 
that match it. 

awaitevent == 

Print out each event as it arrives. 

createevent dup begin 

Create and open the next event. 

/Name /Hello def 

Make it a /Hello event. 

/TimeStamp currentime 0.2 add def 

Make the timestamp 12 seconds in the future. Notice that 
currenttime has been misspelled. This is the bug we are 
looking for. 

end sendevent 

And send it to be delivered in 12 seconds. 

} loop Loop forever. 

fork Take the procedure we've defined and make a process 
running it. 

Nothing happens until we send an event to start. 

createevent dup begin 

Create an event to be the trigger. 

/Name /Hello def 

Make it a /Hello event. 

end sendevent 

And send it - it gets printed immediately, and then we 
hit the bug. 

event (OxlFA12C, [0,0], name(/Hello), action(null» 
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When the listening process that we created to print out the events tries 
to execute the misspelled eurrenttime primitive, it gets an undefined error. 
During the process of installing the debugger, it installed its own error­
diet that traps into the debugger. The result in the debugger connection is: 

Break:undefined from process (11404420, input_wait) 

Currently pending breakpoints are: 

1: undefined called from process (11404420, 
input_wait) 

Now, the buggy process is stopped and we can use the debugger to exam­
ine it. First, we can find out where the error occurred by printing the 
execution stack: 

dbgwhere 

Level 1 

Print the execution stack of the stopped process. 

{ 'awaitevent' '==' 'createevent' 'dup' 'begin' 
Name Hello 'def' 

TimeStamp *currentime 0.2 'add' 'def' 'end' 
'sendevent' } (*9,15) 

Level ° 
{ 'createvent' 'dup' 'begin' Name Hello 'def' 'end' 

'expressinterest' 

array{15} *' loop' } (*9,10) 

The asterix shows the current primitive at each level. The two numbers 
in parentheses are the zero-based index in the procedure of the current primi­
tive, and the length of the procedure. The "array{15}" in the level 0 
procedure is the level 1 procedure. 

Next, we print out the stack of the buggy process. We do this by 
"entering" the stopped process, making the operand and dictionary stacks of 
the debugging process the same as the buggy process, and allowing us to use 
the normal PostScript primitives to examine its state: 

dbgenter Enter the context of the stopped process. 

pstack Print out its operand stack. 

event (Ox1FA12C, [0,0], name(/Hello), action(null» 
/TimeStamp currentime 

The misspelled primitive is on the top of the operand stack. We can re­
place it with the value that should have been its result, and copy the 



116 

modified stack back into the buggy process by: 

pop currenttime pstack 

Replace the "curentime" on the stack by the current time, 
and print the stack. 

event (Ox1FA12C, [0,0], name (/Hello), action(null» 
/TimeStamp 202.0283 

dbgcopystack 

Replace the stack of the stopped process by the copy of it 
the debugger has been using. 

Now the buggy process' stack is correct, we can replace the misspelled 
primitive in the executable array that contains the bug using dbgpatch: 

1 9 /currenttime load dbgpatch 

Overwrite the erroneous primitive in the code that the 
buggy process is running. 

Result: Level 1 

Level 1 

{ 'awaitevent' '==' 'createevent' 'dup' 'begin' 
Name Hello ' def' 

TimeStamp *'currenttime' 0.2 'add' 'def' 'end' 
'sendevent' } (*9,15) 

The numbers 1 and 9 are the execution level, and the index within the exe­
cutable array at that level. Note the use of load to get the value of 
currenttime rather than the word currenttime (as we would from 
/currenttime) or the result of executing currenttime. 

Finally, we leave the buggy process' context, and leave it to execute, by: 

dbgexit Detach the debugger from the context of the buggy process. 

dbgcontinue Resume executing the no-longer buggy process. 

Now, in the first psh session, the events start printing out 
as they should have. 

event (Ox1FA12C, [0,0], name(/Hello), action(null» 

And, 12 seconds later ..... 

event (Ox1FA12C, [0,0], name(/Hello), action(null» 

killprocess Kill the ticking process. 
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As well as these capabilities for repairing broken processes, the debugger 
provides the ability to set breakpoints, to cause entry and/or exit of a proce­
dure to generate debugging printout, and to add a prelude and a postscript to 
an existing procedure. It does not, yet, provide for single-stepping stopped 
processes. 

5.9 Next, Writing Interactive Programs 

Although, as we have described, NeWS provides a debugger, it is much 
better not to write bugs in the first place than to have to use it. In the next 
chapter, we show how an object-oriented style of writing NeWS programs 
can make it easy to compose interactive applications from pre-defined, 
tested pieces without needing to be aware of the details of the underlying 
primitives we have described in this chapter. 





6 
Object-Oriented PostScript 

" If we cannot now end our differences, at least we can help make the 
world safe for diversity. " 

John Fitzgerald Kennedy 

The previous chapter introduced the extensions that NeWS makes to the 
PostScript language in order to support interaction with a window system. 
This chapter shows how these extensions are combined with a stylized way 
of writing PostScript programs to make developing interactive programs 
easy. We do this by following the gradual construction of a simple example 
NeWS client. 

6.1 The NeWS Style of Writing PostScript Programs 

Some window systems attempt to enforce a consistent style of user inter­
face across all the applications that use them. The Andrew and Macintosh 
window systems are good examples. Others, such as Sun Windows and the X 
window system, attempt only to provide low-level mechanisms, and avoid 
specifying any details of the appearance or function of an application's user 
interface. 

Nevertheless, vendors supplying base window systems like Sun Windows 
and X do not expect every application to hand craft its user interface from 
scratch. They normally provide a layer above the base window system that 
implements common components of a user interface such as menus, scroll 
bars, buttons and text panels. This upper layer provides a user interface 
toolkit; a user interface can be rapidly assembled by selecting and compos­
ing components from the toolkit. 

As experience has been gained with these toolkits, much attention has 
been focused on toolkits with an object-oriented structure and programmer 
interface. Object-oriented toolkits allow application developers to select­
ively customize certain aspects of toolkit components, while still working 
within the standard toolkit framework. Applications can take a generic 
object from the toolkit, such as a menu, and tailor its appearance or behav­
ior for that application only and not affect other applications. Customizing 
for a specific need does not require detailed understanding of the toolkit 
internals. Applications can be customized by creating sub-classes of generic 
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object classes. These sub-classed objects inherit all aspects of their generic 
object subclasses, except for those which the application developer chooses 
to selectively replace. The freedom to replace or restrict individual aspects 
of a generic object in an application-specific subclass allows developers to 
specify only the details in which they have particular interest, and automati­
cally have consistent behaviors for all other aspects of their tailored user 
interface components. 

This evolution towards object-orientation is visible in the history of 
many existing toolkits. Sun's SunView toolkit has evolved gradually from 
a conventional subroutine package towards a more object-oriented interface, 
the major change being from routines with many individual arguments to a 
single argument, which is a list of attribute-value pairs. This change illus­
trates the problems of grafting an object-oriented interface onto a language 
(Sun View is written in C) that does not naturally support it. The best pop­
ular example of a user interface toolkit designed from the start to be object­
oriented is the Macintosh MacApp toolkit. There, a fundamental design 
decision was to use an object-oriented programming language, Object Pascal. 

Many of the essential ideas in object-oriented systems can be mapped to 
similar constructs in the traditional "package" or "module" based systems: 

Packages (modules) are replaced by classes. 

Procedures in packages are replaced by methods in classes. 

Creating package objects is replaced by creating new instances of a class. 

Package local and global variables are replaced by class variables. 

Object variables are replaced by instance variables. 

Object-oriented systems also incorporate new ideas that do not corre­
spond to more traditional approaches. Classes are ordered irlto a hierarchy 
by subclassing a new class from a prior one, inheriting its methods, instance 
variables, and class variables. Means exist to construct these sub-classes 
dynamically. Few languages can create modules at run-time. Methods are 
invoked by use of the send primitive. The term message is used for an invo­
cation of a method with its arguments; send the message "display 
yourself'" to a menu object with the location as a parameter, and the 
menu's "display yourself" method is executed. 

Two new concepts, the self and super pseudo-variables, are also intro­
duced. They are used when writing the methods of a class to refer to: 

self - the object that received the message. To invoke another method of 
the same object, send the message to self. 

super - the class's superclass. To invoke a method from the superclass that 
is being overridden in the subclass, send the message to super. 



Instance I 
/ x I send Instance of 8 

returns 23 .----------+ .... ~ Ix 23 def % an instance variable 

Class B 
/paint I send Subclass of A 

invokes this method ------+4 Ipaint { method to paint a 8 
which, in turn, invokes Ipaint super send} def 
this method 

Class A 
Superclass of 8 

/ destroy I send Ipaint { method to paint an A} def 
invokes this method -----~ Idestroy { destroy an A } def 

Figure: 6.1. Class object-oriented relationships showing instance, class, and 
superclass. 
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Thus, when writing a method of a class, self represents the object in the 
class that received the message that caused this method to be invoked. Super 
represents the object that received the message as it would have been had it 
been an instance of the superclass, rather than the class being written. 

6.1.1 Object-Oriented PostScript Language Programming 

NeWS provides mechanisms to encourage an object-oriented style of pro­
gramming, using concepts and techniques, invented by Owen Densmore, that 
are implemented entirely in PostScript code within the server. NeWS pro­
vides classes, represented as dictionaries containing procedures implementing 
the methods of the class, and instances of a class, represented as dictionaries 
containing the instance variables of the class and all its superclasses[DENs86]. 

When writing applications, you can use these mechanisms in two ways. 
You can create, assemble, and manipulate objects in pre-defined classes. You 
can create new subclasses and create objects in these new classes. 

To use a pre-defined class, you must send it messages it understands. You 
send a message to an object with the send operator: 

meth obj send -

Invoke the meth method of the object obj. Any parameters the 
method needs will be taken from the stack. 
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NeWS provides some extra flexibility in using pre-defined classes. Un­
like most object-oriented language environments, it is not restricted to 
operating on an object using the methods defined for it by its class. You can 
provide a new method for an existing object at any time simply by sending 
the code for the method to the object by: 

proc obj send -

Execute proc as if it had been defined as a method of the 
object obj. Any parameters the method needs will be 
taken from the stack. 

If the meth argument to a send is an executable array, it is executed in the 
context of the object exactly as if it had been pre-defined as a method of the 
object, given a name, and that name supplied as the meth argument. This 
technique is frequently used in NeWS, and the examples below show 
several uses. 

6.1.2 The Lite Toolkit 

NeWS uses this implementation of object-oriented programming to pro­
vide a user interface toolkit, the Lite toolkit, that allows applications to 
create and use windows, menus and other user interface objects without 
knowing the details of their implementation. In particular, the Lite toolkit 
provides a basic class Object, and some important subclasses that are used to 
construct all Lite user interface components: 

Window 

Menu 

Item 

The Window class is what clients use instead of a bare canvas 
as a surface to draw on. It includes methods for re-sizing, re­
positioning, closing into an icon, opening, and so on. 

Menus associate keys with actions. Keys are objects that can be 
drawn, generally a string but possibly a PostScript procedure. 
Actions are normally a PostScript procedure, but can possibly 
be another menu. 

Items are user-definable graphic interactive objects, such as a 
button, a slider, or a scroll bar. 

These classes have variables pointing to a default implementation, for ex­
ample DefaultWindow. It starts out being the LiteWindow class. All 
applications using the DefaultWindow will look the same, that is, like a 
LiteWindow. You can create a new window class, perhaps called MyWin­
dow, and set DefaultWindow to point to it. Now all the subsequent 
windows you create wi1llook like a MyWindow. 
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LiteMenu 

Figure: 6.2. Part of the Lite toolkit object hierarchy. 

The remainder of this chapter describes the construction of a simple 
NeWS client, using each of these pre-defined classes in tum, and then by cre­
ating new subclasses. 

6.2 Class Window 

Almost all NeWS clients will want a canvas on which to draw their 
image. They normally get one by creating a new instance of class Default­
Window. New objects are created by sending the message new to the object 
representing their class. 

shell prompt% psh 

executive 

Welcome to NeWS Version 1.1 

/win Put win on the stack for later use. 

framebuffer The parent of win is the framebuffer. 

/new DefaultWindow send 

def 

Make a new instance of the Defaul tWindow class by 
sending the new message to the class object. 

Call it win. It will not appear until it is mapped. 

Clients will then ask the user to specify the size and location of the new 
Window using a rubber-band box interaction, and make the new Window 
visible with these parameters: 
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/reshapefromuser win send 

Set size and location of win from the user. 

/map win send 

Make window visible by invoking method /map. 

Figure: 6.3. On screen version of a default instance of Lite Window. 

Although the default window appears simple, it has many interesting 
characteristics. It can overlay other windows and be overlaid by them. It 
has a border with window controls in the top-left and bottom-right 
comers. Left-clicking on the circular icon in the top-left comer closes the 
window into an icon. 

Figure: 6.4. Default Lite Window icon. 

Press the right button in the icon and the default icon menu appears. 
Selecting '''Open'' from the menu re-opens the window. 

Figure: 6.5. 

Move 
Top 

Bottom 
Zap 
Open 

Open &Resize 
RedisplSJ 

Default LiteWindow icon menu. 
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Grabbing the bottom-right control with the left button and dragging it 
causes the window to be resized. 

Grabbing the border with the middle mouse button drags the whole win­
dow to a new position. Clicking the left mouse button pops the window to 
the top of the hierarchy of windows so it is completely visible. Pressing 
the right mouse button in the border pops-up a menu of generic window op­
erations such as Move and Resize. 

Move 
Move Constrained 

Top 
Bottom 

Zap 
Resize 

Stretch Comer 
Stretch Edge 

Close 
Redisplay 

Figure: 6.6. The window frame menu of Lite Window. 

Notice that we did not specify any of these characteristics, they were in­
herited from the DefaultWindow class. Instead of creating a canvas, 
decorating it with other canvases, and attaching processes listening for 
mouse events in the decoration canvases to perform the window operations, 
the program simply creates a DefaultWindow object with these methods pre­
created. And further, by replacing the implementation of DefaultWindow 
the user can supply all the windows with a consistent set of decorations. 

We can replace the default window implementation by a ScrollWindow 
by changing DefaultWindow to be the ScrollWindow class object: 

/DefaultWindow ScrollWindow store 

Now, if we repeat our actions: 

/win2 Put win2 on the stack for later use. 

framebuffer The parent of the Window is the root Window. 

/new DefaultWindow send 

Make a new instance of the DefaultWindow class. 

def Call it win2. 

/reshapefromuser win2 

send Set size and location of win2 from the user. 
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/map win2 send 

Make window visible by invoking method /map. 

/DefaultWindow LiteWindow store 

Restore the definition of DefaultWindow. 

I 
] 

J.i 

• ~ 

Figure: 6.7. Creating another window after changing DefaultWindow. 

This is a simple example of the power of the inheritance concept. Notice 
that if you now start any of the standard NeWS clients, they will look like 
a ScrollWindow, too. 

6.3 Painting Windows 

The Window object is made of several canvases, some for the frame, and 
one special canvas, called the client canvas, which is surrounded by the 
frame. It is this client canvas that the client can use to paint on. 

The default window does not paint anything interesting; the canvas that 
is surrounded by the frame is always white. In the Lite toolkit, window 
objects have a method called the PaintClient method that is invoked when­
ever the image in the window needs to be painted. In order for a client to 
have an image painted on the blank canvas of the DefaultWindow object, it 
must override the object's PaintClient method. 
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Figure: 6.8. Running the Go demo after changing DefaultWindow. 

6.3.1 The PaintClient method 

We already have a suitable PaintClient method, the fan-of-lines procedure 
from Chapter 4. We can use it as our example window win's PaintClient 
method, using the technique of sending an executable array to the window 
object. The window object already has a PaintClient method, but we can re­
define it by sending the window object a procedure that does the re-defining: 

/PaintClient { 

Re-define the PaintClient method. 

10 fanoflines 

To be a fan of 10 lines. 

} def 

win send In the instance win. 

/PaintClient win send 

Invoke the new PaintClient metchod. 

[] ..... 

Figure: 6.9. An error in the PaintClient method. 
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The result is a fan of lines in the background, and a blank window. What 
went wrong? 

The problem is that the fanoflines procedure paints on the current canvas, 
and by default this is the root. The method was invoked without the correct 
context being established. Each of the window methods that NeWS develop­
ers can override, such as PaintClient, has a correspondirig method that they 
are not expected to override, such as paintclient, which establishes the con­
text (including making the appropriate canvas current) before invoking its 
opposite number. 

/paintclient win send 

Invoke PaintClient in the right context. 

Figure: 6.10. PaintClient method correctly invoked. 

The result is a fan of lines in the window. (Notice that we were able to 
use a standard PostScript program as the PaintClient method for a window; 
often the way in which printing and displays are integrated in NeWS.) 

6.3.2 When Are Windows Painted? 

The fan-of-lines procedure was executed as the result of an explicit invo­
cation of the paintclient method. The paintc!ient method is also invoked 
implicitly, by the DejaultWindow code itself. Grabbing the bottom-right 
window control and resizing the window will cause another invocation. 
Clicking in the top-left control to close the window, and then in the win­
dow icon to re-open it, will cause another invocation. 

In general, the paintclient method will be invoked automatically when­
ever the window's client canvas is damaged (see Section 5.2.4). Client 
programs in NeWS must always be ready to re-paint their canvases when 
required. 

Clients using the Lite toolkit need not take any special measures to meet 
this requirement, since the toolkit arranges for their paintclient methods to 
be invoked when damage repair is required. 
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6.3.3 The PaintIcon Method 

Closing the default window reveals that it paints its window icon white 
just as it paints its window white. In fact, the icon is simply another can­
vas, like the window's client canvas, which needs a paint method. It 
overlaps and is overlapped by other canvases, and it too can be damaged. 

Figure: 6.11. The default method for PaintIcon leaves a blank icon. 

The icon is just another canvas; we can use the same method to paint it: 

/PaintIcon { 

Define the PaintIcon method. 

10 fanoflines 

To be a fan of 10 lines. 

} def 

win send In the instance win. 

/painticon win send 

Invoke PaintIcon in correct context. 

The result is a small fan of lines in the icon. Now, whenever the window 
is closed, the fan-of-lines procedure is run on the icon canvas, and whenever 
the window is opened, the same code is run on the window's canvas. This is 
the reason for the PaintClient vs. paintclient distinction outlined above. 
Notice the importance of establishing the correct context for a method that 
is being invoked. 

Figure: 6.12. Our Painticon method now shows what was happening in the window. 
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6.4 The Simple Lines Client 

We now have a simple working NeWS client. It draws an image in its 
window, and in its icon. The application's window can be resized, and 
moved on the screen. The window overlays and is overlaid by other win­
dows. Although the application is small enough to type into psh 
interactively, we are going to continue expanding it, and life will be easier 
if we keep the entire program in a file. So, here is the complete text of the 
"Simple Lines" client: 

#!/usr/NeWS/bin/psh 

See below. 

/fanoflines 

gsave 

a set gray 

This draws a fan of lines from 0,0 to the top and left 
edges. The number of lines in the fan is passed on the top 
of the stack. 

Preserve the graphics state. 

Set the current color to black. 

matrix currentmatrix 

exch 

Push a copy of the current matrix onto the stack. 

Exchange it with the number of lines parameter to get the 
number of lines onto the top of the stack. 

clippath pathbbox 

Find the bounding box of the current clip path, which will 
be the bounding box of the window. This leaves the x and 
y of the lower left hand comer on the stack followed by 
the width and height of the window. 

scale Scale the coordinate system by the width and height. This 
yields a coordinate system that ranges from ° to 1 on 
both axes. 

pop pop Ignore the lower left hand comer information, since we 
know it equals zero (the default). 

newpath Clear out the current path. 

a 1 3 -1 roll div 1 { 

This is a loop that steps from 0, with an increment of 
l/numbecoClines (the number of lines was on the top of 
the stack; roll is used to move it around for dividing it 
into 1), up to 1. 



o 0 moveto 

1 1 index lineto 

Draw a line from (0,0) to (l,i), leaving i on the stack (i is 
the index variable that for leaves on the stack). 

o 0 moveto 1 lineto 

for 

Draw a line from (0,0) to (i,l), popping i off the stack (or 
rather, using it, and not making a copy to preserve it). 

o 0 moveto 1 1 lineto 

Draw the diagonal line. 

setmatrix 

stroke 

Set the coordinate system back to what it was before we 
scaled it (the line matrix currentmatrix left the 
current matrix on the stack). 

Draw the lines. We have to save and restore the current 
matrix so that when the lines are drawn, they have the 
right width. 

grestore Restore the graphics context to the previous context. It is 
usually good practice for functions to leave the graphics 
context undisturbed. 

} def 

/win 

Finish defining the fanoflines procedure. 

Put win on the stack for later use as the name of 
the window. 

framebuffer /new DefaultWindow send 

def 

Send the new message, with argument framebuffer, to the 
default window class. This tells it to create a new instance 
of the class with the frame buffer as its parent. 

Call the new window win. 

Start creating a procedure that will be sent to the window 
object to set up its instance variables and override some 
methods. 

/FrameLabel (Lines) def 

Make the FrameLabel instance variable the string "Lines" 
- it will be displayed in the window's frame. 

/PaintClient { 10 fanoflines} def 

Make the PaintClient method of the new object be a 
procedure that draws a fan of 10 lines per side. 
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/Paintlcon { 10 fanoflines } def 

Make the PaintIcon method of the new object be a 
procedure that draws a fan of 10 lines per side. 

win send Send the procedure to the win object to set it up. 

/reshapefromuser win send 

Invoke the method that interactively sizes and positions 
the window. 

/map win send 

Invoke the method that makes the window visible. 

Note that we have over-ridden one of the default window class' instance 
variables by: 

/FrameLabel (Lines) def 

When the window is open, the frame headline will show the client's name. 

Figure: 6.13. Results of the Simple Lines client code. 

The only other change from our earlier program is the first line: 
# ! /usr /NeWS/bin/psh. For 4.2BSD~based UNIX systems, this means 
that the file can be made executable and when it is executed, the remaining 
lines will be given to psh as its standard input. In this way, NeWS can be 
programmed at a command-shell level, by writing simple text files that 
can be executed directly by the window system. These scripts are the major 

use of psh, and they represent a significant difference between NeWS and 
other window systems. 

psh scripts mean that simple NeWS clients are truly portable: 

They do not need compilation before use and are thus machifle-independent. 

They are ASCII files, and can be mailed or transferred through any 7 -bit 
medium. 



They are readable, editable, and can be used as templates as the basis for 
new clients. 

6.5 Class Menu 

133 

After this introduction to class Window, we can enhance the Simple Lines 
client example by using class Menu. Let us add a menu to set the number of 
lines to be drawn, which so far has been fixed at 10: 

#!/usr/NeWS/bin/psh 

Header for making the file executable. 

/fanoflines 

% Repeated from the previous example. 

def 

/linesperside 10 def 

The Linesperside variable holds the number of lines per 
side that will be displayed. Initial value is 10. 

/setlinesperside { 

Define a procedure that will be used to update the 
Linesperside variable. 

/linesperside exch store 

Actually do the update. 

/paintclient win send 

} def 

/win 

Since the number of lines per side changed, the image in the 
window is now out of date. We invoke the paintclient 
method to refresh it. 

Finish the definition for setlinesperside. 

Put win on the stack for later use as the name of 
the window. 

framebuffer /new DefaultWindow send 

def 

Send the new message, with argument framebuffer, to the 
default window class. This tells it to create a new instance 
of the class with the frame buffer as its parent. 

Call the new window win. 

Start creating a setup procedure for win. 
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/FrameLabel (Lines) def 

Make the FrameLabel instance variable the string "Lines" 
- it will be displayed in the window's frame. 

/PaintClient { 

gsave clippath 1 set gray fill grestore 

linesperside fanoflines 

de f Make the PaintClient method of the new object be a 
procedure that clears the window and draws a fan of 
the appropriate lines per side. 

/Paintlcon { 10 fanoflines } def 

Make the PaintIcon method of the new object be a 
procedure that draws a fan of 10 lines per side. 

/ClientMenu 

We will create a new menu object and store it into the 
ClientMenu instance variable. 

[ (10) (20) (100) (500) ] 

When creating a menu object, the arguments are two 
arrays. The first array contains the strings to be displayed 
in the menu. 

[ { currentkey cvi setlinesperside } ] 

The second argument is an array of the procedures to call 
when the corresponding string is selected. If the procedure 
are all the same, the array can have only a single entry. 
This procedure finds the string that was selected, converts 
it into an integer, and calls the procedure that updates the 
Linesperside variable. 

/new DefaultMenu send def 

Send the new message to the DefaultMenu class. It will 
create a new menu object, which we will set into the 
ClientMenu instance variable. 

win send Send the procedure to the win object to set it up. 

/reshapefromuser win send 

Invoke the method that interactively sizes and positions 
the window. 

/map win send 

Invoke the method that makes the window visible. 
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Now, when the Simple Lines client is executed, the window is created 
with 10 lines per side. Displaying the menu allows the user to select a new 
number of lines, and when the menu disappears the window is re-painted 
with the new number of lines. The repainting happens because the Menu 
object invokes the setlinesperside procedure, and it in turn invokes the paint­
client method of win. 

Figure: 6.14. The Simple Lines client executing with parameters from the 
ClientMenu. 

6.5.1 Scheduling window system activities 

Notice that if you select 500 lines per side, it takes some time to finish 
painting the window. Try pressing the menu button during this repaint, and 
you will notice that the menu appears only after the repaint is complete. 
Delays like these are not satisfactory. They can be eliminated by adding a 
pause statement to the fan-of-lines procedure: 

/fanoflines 

gsave 

o setgray 

This draws a fan of lines from 0,0 to the top and left 
edges. The number of lines in the fan is passed on the top 
of the stack. 

Preserve the graphics state. 

Set the current color to black. 

matrix currentmatrix 

exch 

Push a copy of the current matrix onto the stack. 

Exchange it with the number of lines parameter to get the 
number of lines onto the top of the stack. 
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clippath pathbbox 

Find the bounding box of the current clip path, which will 
be the bounding box of the window. This leaves the x and 
y of the lower left hand corner on the stack followed by 
the width and height of the window. 

scale Scale the coordinate system by the width and height. 
This yields a coordinate system that ranges from ° to 1 
on both axes. 

pop pop Ignore the lower left hand corner information, since we 
know it equals zero (the default). 

newpath Clear out the current path. 

a 1 3 -1 roll div 1 { 

This is a loop that steps from 0, with an increment of 
l/number_of_lines (the number of lines was on the top of 
the stack; roll is used to move it around for dividing it 
into 1), up to 1. 

a a moveto 

1 1 index lineto 

Draw ~ line from (0,0) to (I,i), leaving i on the stack (i is 
the index variable that for leaves on the stack). 

a a moveto 1 lineto 

Draw a line from (0,0) to (i,I), popping i off the stack (or 
rather, using it, and not making a copy to preserve it). 

pause After drawing each pair of lines, we pause to allow other 
processes to run. 

for 

a a moveto 1 1 lineto 

Draw the diagonal line. 

setmatrix 

stroke 

Set the coordin~te system back to what it was before we 
scaled it (the line matrix currentmatrix left the 
current matrix on the stack). 

Draw the lines. We have to save and restore the current 
matrix so that when the lines are the right width when 
they are drawn. 

grestore Restore the graphics context to its previous value. 

de f Finish defining the fanoflines procedure. 
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Why did the delay happen? Why did the pause statement cure it? When 
the default window object decides that the paintclient method should be 
executed, it creates (forks) a new lightweight process to run it. Unlike 
UNIX processes, the NeWS lightweight processes are scheduled non-pre­
emptively. The delay in displaying the menu was because the fan-of-lines 
procedure had not finished running. The pause statement allows other pro­
cesses to run, in this case allowing the menu code to pop-up the menu. 

As we explained in Chapter 5, lightweight processes are very cheap, and 
can be used liberally. The Menu class implementation, for example, forks a 
new lightweight process every time a menu is popped-up. This allows other 
activities to take place while the user is manipulating the menu. The Win­
dow class implementation forks a new lightweight process every time a 
canvas is to be repainted. In this way the repaint can be aborted (by killing 
the repaint process) if it is no longer useful. 

Now that the Lines program no longer blocks other processes, you can see 
the abort of the repaint in action. Select 500 lines per side and, while it is 
painting, grab the bottom right comer and resize the window. As soon as 
you let up on the mouse button, the painting will stop, and restart at the 
new size. The process painting at the first size was killed, and another was 
created which painted at the new size. 

6.6 Class Item 

When the Lines client created its window, it had to supply an argument 
iframebuffer) to the new method of DefaultWindow: 

/win framebuffer /new DefaultWindow send def 

This argument iframebuffer) supplied the parent canvas for the canvas 
that formed the window. All canvases form part of a hierarchy whose root 

is the canvas representing the whole display, the root canvas. This hierarchy 
is used both for output, to restrict drawing to the boundaries of multiple 
overlapping drawing surfaces, and for input, to route events to the canvas 
containing the mouse. 

6.6.1 Output and the Canvas Hierarchy 

Canvases can be moved in x and y directions and repositioned "vertically" 
so that they either obscure or are obscured by their siblings. They can be 
either opaque, or transparent. Transparent canvases do not obscure images 
drawn beneath them by parents or siblings, and anything drawn in a trans­
parent canvas is drawn in its parent. Canvases are cheap, and can be used 
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liberally to divide up drawing surfaces into convenient pieces. Their shape is 
determined by a PostScript path, so that they can be any shape desired. 

6.6.2 Using Canvases 

We now demonstrate the use of canvases by adding another way to con­
trol the number of lines in the example, a slider control that can be 
manipulated by the user. 

For simplicity, we change the Simple Lines client in two stages. First, 
the fan-of-lines procedure is given a separate canvas, a child of Client­
Canvas, to draw in. Second, the shape of the child canvas changes to cover 
only part of the ClientCanvas, and create a Slider/tem (which is in itself a 
canvas) to cover the rest. 

So far in this chapter, we have been using pre-defined classes. Now, we 
want to define a new subclass. We tum the Simple Lines client program 
into the definition of a new class, Lines Window, and extend it with a child 
canvas of the client canvas. This first stage involves the following steps: 

creating a special LinesWindow subclass of the DefaultWindow class. 

overriding the operations that create and shape the ClientCanvas to create 
and shape the child canvas too. 

changing the PaintClient procedure to paint in the child canvas. 

6.6.3 Defining the Lines Window Subclass 

To define a subclass of an existing class, NeWS provides the c1assbegin 
and c1assend operators: 

class diet c1assbegin -
Start defining a subclass of class. The diet holds the instance 
variables needed by objects in the new subclass. 

- c1assend obj 
Finish the new subclass definition started by classbegin, and 
return obj, an object representing the new class. 

Now, we use these operators to convert the Simple Lines client to define 
its window as a subclass of the DefaultWindow class: 

#!/usr/NeWS/bin/psh 

/fanoflines { 

% Repeated from the previous example. 

def 



/LinesWindow 

Put Lines Window on the stack for the eventual def. 

DefaultWindow 

We will make LinesWindow a subclass of DefaultWindow. 

1 diet dup begin 

end 

Create a dict big enough to hold the instance variables for 
the class object. Leave it on the stack, and open it. 

/linesperside 10 def 

This instance variable holds the number of lines. 

elassbegin Start defining a new subclass of DefaultWindow. 

/FrameLabel (Lines) def 

Override the default FrameLabel variable. 

/Paintleon { 10 fanoflines } def 

Override the default PaintIcon method. 

/PaintClient { 

Override the default PaintClient method. 

gsave elippath 1 set gray fill grestore 

Clear the window. 

linesperside fanoflines 

Draw the fan of lines. 

} def 

/setlinesperside 

Create a method to update the number of lines per side. 

/linesperside exeh store 

Update the instance variable. 

/paintelient self send 

Repaint the window. Note the use of self. 

} def 

/ClientMenu 

Override the default ClientMenu variable. 

[ (10) (20) (100) (500) ] 
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[ { eurrentkey evi /setlinesperside win send } ] 

/new DefaultMenu send def 

elassend def 

Finish defining the new class and call it LinesWindow. 

/win frarnebuffer /new LinesWindow send def 

Create a Lines Window object, and call it win. 

/reshapefromuser win send 

/rnap win send 

Figure: 6.15. The new Simple Lines client works just like the old one. 

This version of the Simple Lines client works just like the previous one, 
but the structure is simpler and the newly defined class can be re-used. 

6.6.4 Adding a Canvas to LinesWindow 

Now that we have re-structured the Simple Lines client to use the 
Lines Window class, we can change the definition of this new class to allow 
the PaintClient method to draw in a child of the client canvas. To demon­
strate this better, we make the child canvas round: 

/LinesWindow 

Put Lines Window on the stack for later use. 

DefaultWindow 2 diet dup begin 

These are the class' instance variables. 

/linesperside 10 def 

The number of lines per side. 

/LinesCanvas null def 



end 

classbegin 

A child of the ClientCanvas that we will draw in. 

/PaintClient 

LinesCanvas set canvas 

Make the class' child canvas current, and then repeat our 
previous actions. 

gsave clippath 1 setgray fill grestore 

linesperside fanoflines 

def 

/CreateClientCanvas 

Override the default method that creates the client canvas. 

/CreateClientCanvas super send 

Our version does whatever the DefaultWindow class does, 
and then .... 

/LinesCanvas ClientCanvas newcanvas store 

Creates a child of the DefaultWindow class' ClientCanvas, 
and calls it LinesCanvas. 

LinesCanvas /Mapped true put 

} def 

Map it, so that when its parent is mapped, it will become 
visible too. 

/ShapeClientCanvas 

We also override the ShapeClientCanvas method of 
the DefaultWindow class with our own version, 
which starts here. 

/ShapeClientCanvas super send 

Our version does whatever the DefaultWindow class does, 
and then .... 

gsave Save the graphics state to be on the safe side. 

ClientCanvas set canvas 

Make the DefaultWindow's ClientCanvas current. 

clippath pathbbox scale pop pop newpath 
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Make the coordinates [0, 0] to [1, 1 ] . 

0.5 0.5 0.35 0 360 arc 

Make a circular path in the center of the canvas. 

LinesCanvas reshapecanvas 

Make the LinesCanvas this circular shape. 

grestore 

Restore the graphics state. 

} def 

classend def 

When the Lines Window is created, it creates a round child of the default 
window's client canvas and maps it. Then, when the PaintClient method is 
invoked, it draws in this round canvas. 

Figure: 6.16. This Simple Lines client paints in a "round" child canvas. 

6.6.5 U sing the LiteItem Class 

For the second stage, we change the LinesWindow class to add in a slider, 
change the setlinesfromuser procedure to update the slider, and change the 
PaintClient method to paint the slider as well: 

#!/usr/NeWS/bin/psh 

systemdict /Item known not 

(NeWS/liteitem.ps) run 

if Load the Liteltem files if they have not already 
been loaded. 

/fanoflines { 



def 

/LinesWindow 

DefaultWindow 3 diet dup begin 

end 

The other instance variables are unchanged. 

/Linesltern null def 

This one holds the slider object. 

elassbegin 

/PaintClient 

The PaintClient method is the same, except ... 

/paint Linesltern send 

} def 

that we send a /paint message to the slider so that it 
paints too. 

/CreateClientCanvas 

We now place on the stack the arguments we need to 
create a slider . 

/Linesltem 

Once we have created it, we will call it LinesItem. 

(Lines: ) 

The slider has a text label, in this case Lin e s : 

[1 500 linesperside] 

/Right 

Th~s array holds the minimum, maximum, and current 
values of the slider item. 

The slider goes to the right of its label. 

ItemValue /setlinesperside win send } 

This proc gets invoked when the slider is activated. It 
updates the number of lines per side. 

ClientCanvas 

The slider canvas will be a child of this canvas. 

143 



144 

/new SliderItem send store 

Create a new object in the SliderItem class and call it 
Linesltem. 

[LinesItem] forkitems pop 

Now fork a process controlling the slider. 

} def 

/ShapeClientCanvas 

The ShapeClientCanvas method is the same, except 

o 0 1 0.25 /reshape LinesItem send 

that we reshape the slider to occupy the bottom quarter of 
the window. 

grestore 

def 

/setlinesperside 

Create a method to update the number of lines per side. 

/linesperside exch store 

Update the instance variable. 

linesperside /setvalue LinesItem send 

Update the value of the slider, so that it always reflects 
the latest value even if it was set with the menu. 

/paintclient self send 

Repaint the window. Note the use of self. 

} def 

The rest of the client is unchanged. 

The result is a window with a fan of lines and a slider. Drag the slider 
with the left mouse button and when you let go, the fan will be repainted 
with the new number of lines. Select a number from the menu, and both the 
fan and the slider will be updated. Because the fan and the slider draw in 
their own canvases and take their sizing parameters from the shape of these 
canvases, neither the slider nor the fan code needed to be changed to allow 
them to coexist in a window. 
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LmesWindow 

e 
Lines: .10 

'.;J 

Figure: 6.17. N ow there is a slider to control the number of lines per side. 

Notice again the use of lightweight processes for concurrency. You can 
drag the slider or pop the menus while the fan is being painted, because both 
the menus and the slider are managed by separate processes. . 

6.6.6 Input and the Canvas Hierarchy 

The canvas hierarchy is not merely useful for controlling output. It also 
allows for control and routing of input. Note the following points: 

The right button in the frame pops-up the window management menu. 

The right button in the fan or the slider pops-up the number menu. 

The middle button anywhere in the window drags the window around. 

The left button in the frame or the fan pops the window to the front. 

The left button in the slider drags the sliding cursor. 

This behavior is the result of the different canvases expressing different 
interests in events. The slider canvas is interested only in left button 
events. The LinesCanvas is not interested in any events. So, except in the 
slider which intercepts left button events, all events fall through to the 
ClientCanvas. Here, the menu code has expressed interest in right button 
events, but others fall through to the FrameCanvas, which is interested in 
all three buttons. 
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A mouse click over the LinesCanvas is 
distributed to the ClientCanvas due to the 
LineCanvas' lack of interest. 

Mouse clicks over the Linesltem 
are consumed by an interest. 

~---- FrameCanvas 

+-~---+---"~~~- LinesCanvas 

ClientCanvas 

~--- Linesltem 

Figure: 6.18. Canvas hierarchy and event flow in the LinesWindow. 

6.7 External Clients 

We have shown how to use the classes that NeWS provides to create 
simple client programs, and how to use them as the basis for new, 
application-specific sub-classes. Many NeWS users have done so, creating 
radically different user interfaces for windows and menus that work even 
with pre-existing clients. For example, one prominent NeWS developer, 
Don Hopkins of the University of Maryland, was able to replace the menus 
with round, "pie" menus. [HOPK88, HOPK89] 

All the clients we have constructed so far run entirely within the server; 
they are written entirely in PostScript. While this is a quick and effective 
way of creating simple applications, most people will want to use other 
programming languages. In the next chapter, we show how to use C and 
other languages to write programs that can exploit both PostScript pro­
grams and the class mechanism in the NeWS server. 
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NeWS Applications and the Network 

" The other Messenger's called Hatta. I must have two you know­
to come and go. One to come, and one to go." 

Lewis Carroll, 
Through the Looking Glass 

Up to this point we have talked about the NeWS server and about writ­
ing PostScript programs that execute in the server. However, NeWS is a 
network-based window system. Network-based window servers allow the 
clients to make use of window system and display resources on the net­
work, much as a distributed file system such as NFS allows programs to 
make use of file system and disk resources over the network. End-users or 
NeWS clients can connect to remote NeWS servers to display output inside 
a window on the screen or receive input from the keyboard mouse or other 
input device. 

This chapter explains how to write applications outside the server that 
communicate with it over a local or remote communication path. PostScript 
programs flow over this path from the client to the server. The protocol 
used by the PostScript program to reply to the client is specified by the 
application according to its needs. 

PostScript 
Programs 

Replies 

Figure: 7.1. NeWS protocol over a network connection. 

NeWS 
Server 
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The client-server dialogue consists of four parts: 

Establishing a connection to the server. 

2 Sending PostScript code (downloading) to the server. 

3 Invoking the PostScript code downloaded. 

4 Sending replies from the server back to the client. 

This chapter concentrates on communicating with NeWS from clients 
written in C. 

7.1 Establishing a Connection 

NeWS specifies the server to be used by client applications through the 
NEWSSERVER environment variable; by default they access the local host. 
The utility program setnewshost outputs the correct setting of the 
NEWSSERVER variable for a given remote host. A NEWSSERVER variable 
on a 4.2 BSD UNIX system may have a value something like: 
3227656822.2000 ;paper. The first number is the IP (Internet Protocol) 
address of the server in host byte order. The second number is the host's IP 
port number. In order to access NeWS, the application needs to create a byte 
stream connection, and connect it to the remote host's IP address and port. 
In this instance, the text name of the host upon which the server is running 
follows the semicolon. setnewshost will be implemented differently on 
different operating systems. For example, it may be implemented as an 
iconic application on a Macintosh instead of as a UNIX shell command. 

In normal use, only the NeWS server and the NeWS application support 
library are concerned with NEWSSERVER. When NeWS starts up, it calcu­
lates the correct value of NEWSSERVER and passes it on to any applications 
initiated. The C client procedure call ps _open _P ostScript() opens a connec­
tion to the NeWS server that is identified by NEWSSERVER. The procedure 
ps_c!ose_PostScript() closes the connection. 

The rough skeleton of a NeWS application is: 

rnain(argc, argv) 

Setup. 

Try to open a connection to the NeWS server. 

if (ps_open_PostScript() == 0) { 

Connection attempt failed. 

fprintf(stderr, "Could not connect to NeWS 
server. \n"); 



exit (1) ; 

Successfully connected to server. 

The body of the application. 

The application has completed: close the connection to 
the server. 

ps close_PostScript(); 

7.2 Sending PostScript Programs to the Server 
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Unlike most window systems, NeWS does not currently offer a C sub­
routine library. The C interface is not specifically defined. Instead of having 
a particular interface and subroutine library , NeWS provides a preprocessing 
tool and support routines that allow interfaces to be easily constructed on a 
per-client basis. Fixed interfaces to C and other languages, such as Fortran, 
Lisp, and C++, are provided by a variety of user interface toolkits which 
exist or are being developed for NeWS. 

The preprocessor cps compiles a specification file into an interface. The 
specification file contains C function declarations and bodies for each of 
these written in the PostScript language. The interface that cps generates 
contains the declared functions. If one of the cps-generated functions is 
called by a client, the PostScript code in the body of the function is exe­
cuted by the NeWS server. 

For example, taking a look at a simple cps definition file: 

cdef ps_moveto(x, y) 
x y moveto 

The first line starts the C definition (edef) of a function called 
ps _ moveto that takes two integer arguments: x and y. The second line is the 
PostScript code that will be executed when ps _ moveto is called. This Post­
Script code fragment that ref~rs to the C function parameters will be 
substituted into the PostScript body. In a client's C program, ps _ moveto 
cfln be called like any other C fupction: 

ps_moveto(37,290); 

This particular ps _ moveto call transmits the PostScript code fragment: 

37 290 moveto 

to the NeWS server, where it is executed. 
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cps supports several types of parameters to PostScript code fragments: 

int Used for C ints, longs and chars. This is the default type. 

float Used for C floats and doubles. 

string and cstring 
Used for C strings that are either null terminated (string) or 
have a count of the number of bytes in them (cstring). Counted 
strings appear as two parameters in the C function's parameter 
list: the pointer to the string and the count. 

fixed A fi~ed point number represented as an integer with 16 bits 
after the decimal point. 

token A special user defined token. This is a tool that can be used for 
fast access to objects in the server - it is used for performance 
improvement only. 

The following function specifications are slightly more complex: 

cdef ps_drawstring(x, y, string s) 

x y moveto s show 

cdef ps_drawcstring(x, y, cstring s) 

x y moveto s show 

The only difference between these two functions is that the first takes a 
null terminated string, the second a counted string. These functions would 
be used to display a string at a specific location: 

ps_drawstring(37, 95, "Hello World"); 

ps_drawcstring(37, 95, "Hello World", 11); 

Both functions transmit the same PostScript fragment: 

37 95 moveto (Hello. World) show 

It is important to point out, since most people are concerned with effi­
ciency, that the ASCII form of the PostScript fragment is not generally 
transmitted to the server. Rather, a precompiled compressed binary form is 
sent instead (This will be discussed at the end of the chapter). 

This model essentially comprises cps communications with NeWS. This 
simple structure enables extremely powerful tasks. For example, functions 
can be defined: 



cdef defsmile () 

/smile { 

gsave 

% w h x y smile => -

Draw a smiling face. 

In the rectangle (x,y) to (x+w,y+h). 

translate 

Coordinate system centered at x, y. 

scale 

Coordinate system is the unit square . 

. 5 .5 .5 0 360 arc stroke 

Face . 

. 5 .5 .3 225 315 arc stroke 

Smile. 

.7 .7 .03 0 360 arc stroke 

Right eye . 

.3 .7 . 03 0 360 arc stroke 

Left eye . 

.5 .5 . 03 0 360 arc stroke 

Nose. 

grestore 

de f Define the smile function. 

cdef smile(x, y, w, h) 

w h x y smile 

Call the smile function. 
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This code fragment defines two C functions: defsmile defines a PostScript 
function call smile; and smile (in C) calls smile (in PostScript). defsmile 
needs to be called only once. Each time the client wants to draw a smile, 
smile is called, avoiding the need to send the description of the image. 

Procedure definitions can be used in an open-ended way as display lists: 

cdef ps_begindef() 
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/displaylist { 

Start defining a function. 

cdef ps_enddef () 

de f Close code body and define the function. 

cdef ps_drawdisplaylist() 

displaylist 

Invoke the display list function. 

cdef ps_moveto(x, y)x y moveto 

cdef ps lineto(x, y)x y lineto 

cdef ps closepath()closepath 

cdef ps stroke()stroke 

These definitions can be used to open and close the definition of a display 
list and to invoke the display list. Such functions are useful in C programs 
like the fragment that follows: 

ps_begindef () ; 

ps_moveto(lOO,lOO); 

The PostScript code generated by this call won't be 
executed directly, rather it will be added to the code 
fragment. 

ps_lineto(lOO,200); 

ps_lineto(200,200); 

ps_closepath(); 

ps stroke () ; 

ps_enddef () ; 

Close off the display list definition. 

ps_drawdisplaylist(); 

Execute it, causing the figure to be drawn. 

How does the developer benefit from the cps model? NeWS and cps com­
bine to allow flexible and customized C interfaces. Where reasonable, the 
developer can shift parts of the application into the server by using remote 
function definition and execution. Applications can be split into two or 
more pieces that run on either end of the communication link. The developer 
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has much latitude in deciding where that split occurs. 

But this flexibility itself introduces a problem. Where should the split 
lie? This is a common question in the design of distributed applications. Un­
fortunately, no hard and fast rules have emerged, but a few general 
principles apply: 

Developers should avoid trying to keep a lot of synchronized data structures 
on both sides of the connection. This duplication of structure is more 
prone to error and can be a source of inefficiencies. Data structures should 
be on either the client side or the server side, and should not straddle the 
boundary. However, it seems acceptable to have structures on one side 
reference structures on the other. 

Complicated data structures and computation are generally best handled 
on the client side. C will often outperform PostScript, since compiled 
languages usually outperform interpreted languages. 

Operations tightly tied to user interaction, such as dragging lines or 
animating the change of a switch, are best done in the NeWS server 
because the server is closer to the display and the user. 

7.3 Server to Client Communication 

Above, we discussed communication from the client to the server. It is 
time to look at the other direction: server to client. At one level there is 
little to describe: the server-client protocol is determined by the client ap­
plication. Since the code in the server is generated by the client, the client 
can strictly specify the amount and kind of information it wishes sent back 
from the server. The only protocol is that defined by the client. The code in 
the server can use the standard PostScript output primitives (such as print, 
write, writestring) to send an arbitrary sequence of bytes down the commu­
nication channel to the client. 

Once again, cps, with a little help from the server, provides a facility for 
making this easier. The stream from the server to the client is made up of 
packets of data beginning with a tag that contain typed data. The tags form 
the boundaries between the packets. There are functions in NeWS to send 
packets and features in cps for receiving them. 

Two kinds of client-to-server messages exist: synchronous and asynchro­
nous. When using a synchronous message, the client sends a request to the 
server and then waits for a reply - the server and client are synchronized. 
An asynchronous message permits the server to send a message to the client 
without a direct request to do so. 

The syntax of cdef in cps is somewhat more complicated than the func-
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tions defined so far. cdef's structure is: 
,i 

cdef cname ( arguments ) => tag 
PostScript_code_fragment 

return values 

The tag and the return values are new. These values define the layout of 
the packet that is expected by the client in response to the execution of the 
code fragment. Note that the return values must appear in the argument 
list, and when the function is called, pointers must be provided. The tag is 

simply a unique integer (-32768 ~ tag ~ 32767). 
NeWS has two operators that can be used on the server side to construct 

packets: 

n tagprint-
Starts a packet whose tag is n. 

obj typedprint -
Adds obj to the end of the packet. 

This would be an example of a synchronous request that returns the value 
of a PostScript variable to the client: 

#define GETVAR TAG 37 

Use a symbolic definition for the tag. 

cdef ps_getvar(x) => GETVAR_TAG (x) 
GETVAR_TAG tagprint 
var typedprint 

When ps _getvar( &q) is invoked in the C program, it causes the following 
sequence of events: 

The code fragment 37 tagprint var typedprint is sent to 
the server. 

The C program blocks, waiting for a packet with the tag 37. 

The server executes the code fragment, which transmits a packet with the 
tag 37 that contains one data value: the value of the variable var. 

The C program receives the tag and data and stores it in q. 

An asynchronous cps definition omits the PostScript code fragment: 

#define MENUHIT TAG 38 
cdef ps_menuhit(index) => MENUHIT TAG (index) 
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The function ps _ menuhit tests to see if the first packet in the clients 
input queue is tagged with MENUHIT_TAG. If it is, the packet is read and 
stored into the return value, index, and the function returns true; other­
wise, the function returns false and does not change the input queue. If the 
input queue is empty, the client waits until it is not. 

These tagged packets are created in the server by calling tagprint and 
typedprint in the usual way, except that the calls are usually done in re­
sponse to some external event that was not triggered directly by the client. 
The function used in this example could be used to receive messages from a 
menu package: when the user makes a selection, the PostScript code sends a 
MENUHIT packet back to the client. 

Asynchronous definitions are typically used in the heart of the client's 
command interpretation loop by cascading them in a polling fashion. Ex­
tending the chapter's first example that gave the skeleton of an application, 
we add the body of the application: 

main (argc, argv) 

Setup. 

if (ps_open_PostScript() == 0) { 

fprintf(stderr, "Could not connect to NeWS 
server.\n"); 

exit(l); 

ps ini tiali ze () ; 

A cps function to set things up in the server. 

while (!psio_eof(PostScriptInput) && 
!psio error(PostScriptInput)) 

if (ps_menuhit(&item)) { 

Handle a menu selection. 

else if(ps_damaged()) 

Handle damage repair. 

else break; 

ps close_PostScript(); 
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7.4 cps and Compressed PostScript 

Although it is not necessary to understand the inner workings of the pro­
gram stubs generated by cps in order to write NeWS clients, understanding 
the internals is both interesting and instructive. The foundation of the com­
munication between the client and the server is the reliable byte stream 
connection established by the client to the server. 

Data is communicated between the ~ partners through a stream of typed 
objects defined on top of the byte stream. A typed object is simply a byt~ 
that describes the object followed by the object itself. For example, an inte­
ger that can be represented in 8 bits can be transmitted in two bytes: 0200, 
followed by a byte containing the integer. For a full description of the com­
munication format, see the "Byte Stream Format" section of the NeWS 
Manual. All of these typed objects are introduced by a byte whose top bit 
is one, i.e. the byte is 128. If the top bit is zero, then it is a normal 
ASCII character. 

When cps compiles a PostScript code fragment it translates the sequence 
of tokens into a sequence of bytes that are ready to be transmitted to the 
NeWS server. There are three classes of tokens in the code fragments. 

Compressed binary token This would represent a type such as a number, a 
string or a well-known built-in primitive (like moveto). 
Cps substitutes the binary representation for the token. 

Formal parameter reference cps inserts a place holder which the runtime 
routine will replace with a compressed binary token that contains the 
value of the actual parameter. 

ASCII keywords This class is really limited to keywords outside the other 
two classes that cps does not understand. These keywords are left alone 
in their original ASCII form. 

The client runtime routine merely takes the array of bytes, performs the 
parameter substitution, and transmits it to the server. It looks remarkably 
like a version of the C print! function: the first parameter is a pointer to the 
server connection block, the second is a string that contains markers indicat­
ing where values should be substituted, and the rest are the values that get 
substituted. The result is that the client side runtime support for NeWS is 
very simple and small. 

7.5 A Graph Example 

This sample program illustrates the way in which a C client would use 
cdef to define PostScript functions inside the server. It uses one main cps 
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definition, ps _initialize, to set things up by creating a window with an 
attached menu. The menu sends an asynchronous message back to the client 
telling which item in the menu was selected. 

The program displays the graph of one of four functions in the window. 
The C program initializes its window and then goes into a loop waiting for 
menu selections. The menu is used to select one of four functions. Whenever 
a new function is selected, the C program redefines the display list and asks 
for it to be redrawn: 

% cps header file for the function display program 

#define MENUHIT TAG 1 

cdef ps initialize() 

/displaylist {} def 

Define an empty display list. 

/paintchart { 

A function to paint the chart. 

gsave 

win /ClientCanvas get setcanvas 

clippath pathbbox 

Get the window width and height. 

3 div 

Height divided by 3. 

exch 13 div exch 

Width divided by 13. 

scale new coordinate system is 13x3 

pop pop 

Erase the other two values left by pathbbox. 

erasepage 

a 1.5 translate 

Put 0,0 in the middle at the left. 

a a moveto 13 a lineto 

stroke 

X axis. 

a a moveto 
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displaylist 

Invoke the display list function. 

stroke 

Draw it. 

grestore 

def 

Create a window. 

/win framebuffer /new DefaultWindow send def 

Install application-specific handlers in the window 
instance. 

The label that goes at the top of the window frame: 

/FrameLabel (Function Chart) def 

The procedure that gets called when the client part of the 
wiIldow needs to be repainted: 

/PaintClient {paintchart} def 

The menu associated with the client part of the window: 

. /ClientMenu 

[(sin) (cos) (damped) (sum)] 

[ { MENUHIT_TAG tagprint 

/currentindex self send 

typedprint } 

/new DefaultMenu send def 

win send 

Shape the window. 

/reshapefromuser win send 

Activate the window. 

/map win send 

Map the window - damage causes PaintClient to be called. 

cdef ps _ begincurve 0 

Begin redefining the display list. 

/displaylist { 
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cdef ps_endcurve() 

Finish the redefinition of the display list. 

} def paint chart 

After the curve has been defined, paint it. 

cdef ps_menuhit(index) => MENUHIT_TAG (index) 

cdef ps lineto(float x, float y) x y lineto 

Here is the C program that uses these definitions: 

#include <stdio.h> 

#include <math.h> 

#include "func.h" 

Include the definitions generated from the cps specification. 

main () 

int index; 

float x, y; 

Connect to the NeWS server: 

if (ps_open_PostScript() == 0) 

fprintf(stderr, "Can't contact NeWS server\n"); 

exit (1); 

Create the window. 

ps initialize(); 

Loop waiting for input events: 

while (!psio_eof(PostScriptInput) && 
!psio_error(PostScriptInput)) 

if (ps_menuhit(&index)) 

ps_begincurve(); 

Start redefining the display list. 

for (x = 0; x<=13; x += .1) 

switch (index) { 

Execute the appropriate function. 

case O:y = sin(x);break; 
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case l:y 

case 2:y 

break; 

case 3:y 

break; 

cos(x);break; 

sin(x)*exp(-x/3) *3; 

sin(x) + .1*sin(x*5+1); 

default: y 0; 

ps lineto (x, y); 

Add a point to the display list. 

ps endcurve(); 

Finish off the display list. 

} else break; 

Terminate when the connection closes. 

ps close_PostScript(); 

Figure 7.2 shows the window that would be created whel). the ,program is 
run. The borders and decorations around the edges are drawn by the Defaiilt­
Window class. The curve that is drawn was chosen by selecting "damped" 
from the menu, which you see popped up over the window with the cursor 
pointing at "damped". 

Figure: 7.2. 

: : :::'::: :::'::: :::'::: :::'::: :::-::: :::'::: :::'::: :F.~~t"~ :::-::: :::'::: :::'::: :::'::: :::'::: :::'::: :::'::: ::;';:; 

Function Graph program being run. 

sin 
cos 

damped 
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7.6 Conclusion 

NeWS can be programmed at three different levels, two of which this 
book discusses. At the lowest level, the programmer deals with an entirely 
PostScript world, writing programs that are downloaded into the server. 
The programmer typing simple exploratory programs directly to the server, 
as described in Chapter 4, works at this level, as does the author of a com­
plex window system package using multiple light-weight processes, such as 
a window manager or a menu package, discussed in Chapters 5 and 6. 

This chapter has described the next level, where the programmer is build­
ing a bridge between the PostScript world of the server and the more 
familiar C world of the application. The programmer is defining either 
application-specific procedures or the primitives found in another window­
system interface, for the purposes of emulating that interface. Programmers 
write a specification file which associates C procedure names with Post­
Script code that is to be sent to the server when the C procedure is invoked 
by the client. This specification is compiled by cps into a C header file that 
is included by C application programs. 

At the highest level, the programmer works in an entirely C world. The 
existence of PostScript is completely hidden. The programmer makes use of 
procedures which have been defined using the cps mechanism, in the same 
way as he would use any other C function. This level is addressed by higher­
level toolkits which would be placed on top of NeWS and the Lite toolkit, 
and is not explicitly discussed in this book. 

The next chapter examines a single NeWS application in some detail, 
focussing on the decisions a programmer needs to make about which of these 
levels is appropriate for the task at hand. 





8 
A Tour Through a NeWS Application 

/I All craftsmen share a knowledge. They have held 
Reality down fluttering to a bench." 

Victoria Sackville-West 

This chapter reviews a relatively large NeWS application and explains 
some of the ways that it uses NeWS to advantage. The application is ched, a 
cheap editor built as a demonstration of how to build a WYSIWYG ~ditor in 
NeWS. The source for this application is in the public domain and available 
from Sun Microsystems. The last section in this chapter explains how to 
obtain the ched program. 

Ched is a fairly simple WYSIWYG (what you see is what you get) editor. 
It implements automatic line breaking, left- and right- margin justification, 
and selections using the mouse. In Figure 8.1 is a set of snapshots of ched 
being run, along with a commentary on what is happening at each step. 

This chapter begins with a section on the general structure of ched. This 
segment is followed by a series of sections on various key points in the im­
plementation of ched that are relevant to its use of NeWS. The points to be 
covered are: 

Fixed point arithmetic. 

How ched uses NeWS to display the document. 

Font information. 

Use of usertokens. 

Debug initialization. 

Input events with names. 

Responding to damage. 

Selections. 

Typeahead. 

Ched uses a number of real-time layout algorithms, which will not be de­
scribed in detail in this chapter. Interested developers should obtain the 
Ched application in order to get more information from the source code. 
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8.1 ched in Action 

Figure: 8,1. 

~; :::'::: :::'::: :::'::: :::'::: ::J.~~~~:'::: :::-::: :::'::: :::'::: :::'::: ?~: 
:::':: Twas brillig and the :iiUty toves did :::':: 
, , , gyre and Igymbl e in Ute wab ~ all ' , , 
, , , mimsey 'Vlele Ute b oro groves, and the ' , , 
.. , Mome Reths outgrab e. Beware the .. , 
.. , jabben.vock my ron! The jaws Utat .. , 
'" bit~ Ute claws Utst catch; beware the '" 
'" jujube bird a:nd shun Ute fruroious .. , 
.. , ba:nderSlatch, So he took his vorpal .. , 

;~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The ched window, 

When ched is started it creates a window and displays the document in it. 
It automatically breaks lines between words to put as many words on a line 
as possible, without extending beyond the right margin. Ched enlarges the 
spaces between words in order to align the right edge of each line. 

Figure: 8.2. 

~::::.::: :::'::: :::'::::::'::: ::J.~~·t::-::::::'::: :::-::: :::-::: :::-::: ~:> 
:::':: Twas brillig and the :iiUty toves did :::':: 
, ,. gyre and ~ in Ute wab ~ all ' , , 
, , , mimsey 'Vlele Ute b oro groves, and the ' , , 
, , , Mome Reths outgrab e. Beware the . , . 
.. , jabberwock my ron! The jaws Utat ... 
, , , bit~ Ute claws Utst catch; b ew81e the ' , . 
, , , juj ub e bird a:nd shun Ute f:ruroious ' , , 
, , , b a:nderSlatch, So he to 0 k his vorp al ' , , 

)~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~ 

Selecting text. 

The current position, or dot as it is referred to in some other editors, has 
a width in addition to a position. If the width is zero, then it is displayed 
as a vertical line, as in the previous screen. In this screen, an entire word, 
"gymble" has been selected by pressing the left mouse button between the 
space and the "g", and sweeping the mouse right with the button down. 
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~;::·2;:!~;;r;:~;;:~~~~::·::::!::: 
· . . were the b oro groves, and 1:he :Mom e .. . 
· . . Reths outgrah e. B ewsre the .. . 
" . jab b erwo ck myron! The jaws 1:hat " . 
· . . bit~ 1:he claws 1:hst catch; b ewsre the .. . 
· . . juj ub e bird and shun 1:he frurnious .. . 
· . . b andennatch. So he to ok his vorp al .. . 

)~::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::d 

Figure: 8.3. Replacing text. 

After the word "gymble" was selected, a single "w" was typed. This 
caused "gymble" to be deleted and "w" inserted in its place. Notice that 
the document has been reformatted so that the right edges remain aligned 
and there are as many words as possible on each line. 

Figure: 8.4. 

P.; :::.::: :::.::: :::.::::::.::: :l~~'~:-::: :::-::: :::-::: :::-::: :::-:::?~: 
:::< Twas brillig and the :ii1:hy toves did :::< 
· . . gyre and waddl ~ in the wah e, all .. . 
· . . roimsey were 1:he b oro groves, and the .. . 
· . . Mome Reths outgrab e. Beware the .. . 
" . jab b erwo ck myron! The jaws 1:hat " . 
". bit~ 1:he claws 1:hst catch; beware the ". 
". jujube bird and shun 1:he frurnious ." 
". bandermatch. So he took his vorpal ". 

)~:::::::::::::::::::::::::::::::::::::::::::::::::::::;:;;:;;:;;:;;:;;:;;:;;:;;:;d 

Continuous update of the ched window. 

The rest of the word "waddle" is typed and, as it is typed, the document 
is continuously reformatted to look as it would if it were printed. Ched is 
engaged in a dialogue with NeWS, continuously receiving characters, updat­
ing internal data structures, and sending descriptions to NeWS of the 
reformatted image. 
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8.2 General Structure 

Ched follows the model/view/controller paradigm that is used in Small­
talk. There are two key data structures, and three key segments of the 
program. The first data structure is the document. It represents the actual 
text of the document being edited. It has a number of subsidiary data struc­
tures that contain the characters in the document, the formatting 
information, a set of markers that indicate portions of the document, and a 
list of the views on the document. There are a set of routines that deal with 
these structures. These structures and procedures form the model portion of 
ched. The next data structure is the view. It contains the actual visible rep­
resentation of the document. It is what maps the document onto the screen, 
and hence is the part of ched most closely connected to NeWS. This, and its 
subsidiary data structures form the view component of the paradigm. These 
two are glued together by the controller that provides the user interface. 

The Figure 8.2 shows how these parts relate to each other and to NeWS. 
Ched downloads PostScript code to NeWS that reads keystrokes and mouse 
events and sends these off to the controller portion of ched. The controller 
decides what to do with the character and updates the model in response. 
When the model is updated, information is fed back to the view to tell it 
that something has changed. Periodically, the view uses the updated informa­
tion from the model to send PostScript graphics operators to NeWS that 
draw the new visible representation of the altered document. 

Figure: 8.5. 

Graphics 
operations. 

NeWS 

Model updates. 

Controller 

mouse events. 

The flow of information amongst the various parts of ched. 



167 

8.3 Fixed Point Arithmetic 

Internally, ched does all of its computations in units of points 
(approximately 1/72 of an inch). Besides being a generally convenient unit 
for use in documents, it is also the default unit in PostScript. But points 
are not sufficiently accurate for general use: a finer precision is needed. 
Ched uses fixed point numbers, with 16 bits of fractional precision, and 16 
bits of integer precision, including sign. This fits in very well with most 
modem computer architectures that have standardized on 32 bit words. Here 
are the declarations necessary for dealing with these fixed point numbers: 

typedef long fixed; 
32 bit fixed point number with 16 bits of fraction. 

#define fixedi (i) (fixed) ((i) * (1«16)) 
Convert int to fixed. 

#define floorfr (fr) ((fr) »16) 
Convert fixed to int by flooring. 

#define floatfr (f) ((double) f/ (1«16)) 
Convert fixed to float. 

#define FIXED HUGE Ox7FFFFFFF 
The largest possible fixed point value. 

These definitions provide the basic tools for declaring fixed point num­
bers and converting between them, integers, and floating point numbers. 
One fixed point number may be added to another by using standard integer 
addition, and one can be multiplied or divided by an integer by using the 
integer operation. Unfortunately, multiplying or dividing one fixed point 
number by another is more complicated, but ched never does this. 

A very significant advantage to using this form of fixed point number is 
that cps has special facilities for them. Cps understands the fixed declara­
tion and can efficiently ship numbers to and from the server in this format. 
For example, the following declaration appears in ched.cps: 

cdef ps frmoveto(fixed x, fixed y) x y moveto 

Then the call ps_frmoveto (fixedi (1) /2, fixedi (1) /2) gener­
ates the PostScript fragment 0.5 0 . 5 moveto. This is especially 
efficient since the NeWS server internally uses fixed point numbers wher­
ever possible, to avoid floating point. 
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8.4 Displaying the Document 

In PostScript, as in all other languages, the execution speed of a program 
is very closely related to how well it is written. Therefore ched pays quite 
a bit of attention to writing clean code to send to NeWS. Developers who 
write applications that generate PostScript, either for a printer or NeWS, 
are often seduced by PostScript's programmability. 

In particular, there is a tendency to download procedure definitions that 
define a graphics model that is more familiar than the graphics model of the 
PostScript language. This extensive downloading of code can incur extra 
overhead in the NeWS server, where operations are more expensive than 
they are in the application. The PostScript language is, after all, an inter­
preted language. If, instead of substituting another model, the PostScript 
language graphics model is used directly for the application, the perfor­
mance benefits are large. Once again, this rule holds for both NeWS and 
PostScript printers. 

Ched uses the basic PostScript operators wherever possible, and it 
attempts to generate the most efficient code possible. For displaying docu­
ments, ched actually only generates five PostScript fragments: 

x y moveto Sets the current position to x,y. 

f setfont Sets the current font to f 

s show Draws string s. 

x 0 32 s widthshow 

whxyERS 

Draws string s with x added to the width of every space. 
Widthshow is used on lines that are right justified, show is 
used on those that are not. 

Erase a rectangle starting at x,y whose size is w,h. This is the 
only PostScript procedure call ever generated during docu­
ment display. 

With these five operators, ched is able to do everything it needs in dis­
playing a document. It is very careful to only invoke setfont if the font is 
really changing. It only invokes ERS if the rectangle really needs erasing. 
And it attempts to draw the longest strings possible. One easy way to sacri­
fice a lot of performance is to use show for each word, and to call moveto 
to reposition at the beginning of each word. When there is a sequence of 
words with equal spacing between them, it is far more efficient to call 
moveto once, and widthshow once. Ched takes advantage of the fact that it 
is using fixed point numbers: it can specify a width to widths how . that is a 
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fractional number of pixels. NeWS will use this and distribute the error 
amongst the spaces between the words such that some of the spaces are one 
pixel wider than others. Because of this, a line of right justified text with 
no font or baseline changes is drawn using exactly one moveto and exactly 
one widthshow. 

8.5 Font Information 

Ched frequently needs to measure the width of strings of text. It could 
do this by sending the strings over to the server and asking the server to 
measure them, but that would incur massive message transmission penalties. 
Instead, it asks the server for a table of widths for each font that it's using, 
and uses that table locally. 

First, we look at the straightforward C language declaration of the font 
structure used by ched. It contains the name of the font (e.g. "Times­
Roman"), its point size (e.g. 12), the height of the bounding box of all the 
characters, the depth of descenders from the baseline, the number of charac­
ters, an "index" for the font, and the actual array of widths. The index of 
the font is a NeWS identifier that refers to the PostScript font. The overall 
font structure is: 

struct font 

struct font *next; 

Fonts are in a linked list. 

char *name; 

Family name. 

char size; 

Size in points. 

char bbheight; 

Height from highest ascender to lowest descender. 

char descent; 

Distance from lowest descender to baseline. 

unsigned short nchars, 

The number of characters in the font. 

fontindex; 

The magic token by which the server knows this font. 

fixed width[256]; 

The array of widths. 

} ; 
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This structure is used by the C function it_create that takes a font name 
and size and returns an associated font structure. it_create first checks if 
that font is already known, and if so, returns the known font structure. If 
the font is unknown, it_create sends a message to the NeWS procedure 
(ps_defstr) that requests information about the font. Once it_create has got 
the basic information, it allocates a font structure and fills it in. Ps _ defstr 
follows its return results by a stream of widths. This stream is picked up 
one-by-one and stuffed into the array using ps _getint. 

struct font * 
ft create(name, size) 
char *name; 

register struct font *f; 
register index; 
int length; 
int bbheight; 
int descent; 
for (f = fontroot; f; f = f->next) 

if (f->size == size && f->name[O] 
&& f->name[l] == name[l] 

&& strcmp(name, f->name) == 0) 
return f; 

index = ps_next_user_token++; 

name[O] 

ps_defstr(name, size, index, &length, &bbheight, 
&descent); 

f = (struct font *) malloc(sizeof(struct font) + 
(length » 1) * sizeof f->width[O] + 

strlen(name)); 
f->next = fontroot; 
font root = f; 
f->size = size; 
f->fontindex = index; 
f->nchars = length » 1; 
f->name = (char *) &f->width[f->nchars]; 
f->bbheight = bbheight; 
f->descent = descent < 0 ? -descent : descent; 
strcpy(f->name, name); 
for (index = f->nchars; --index >= 0;) 

ps_getint(&f->width[index]); 
return f;} 

Ps _defstr looks up the font and scales it, and passes the scaled font and 
the font index, to a PostScript function called DFS. DFS returns the height, 
descent, and number of characters in the font. 



#define DEFSTR TAG 1 
cdef ps_defstr(string name, size, index, 

length, bbheight, descent) 
=> DEFSTR_TAG (bbheight, descent, length) 

name findfont size scalefont dup index DFS 
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When DFS is called, the index is on the top of the stack, and two copies 
of the font lie below the index. DFS first executes setfileinputtoken 
which defines the font as a user defined token, making use of the index. 
(U ser defined tokens and how they work will be discussed in the following 
section). It then sends back the information needed by it_create: 

/DFS { 
setfileinputtoken 
DEFSTR_TAG tagprint 
begin 

currentdict dup fontheight typedprint 
fontdescent typedprint 
WidthArray dup length typedprint 
aload length 2 div { pop typedprint } repeat 

end 
} def 

ps _getint is the last important function which is used by it _create. It 
simply receives a fixed point number from the server. It has only a return 
result, with no body of PostScript code to be sent to NeWS and no tag to 
wait for in return. 

cdef ps_getint(fixed x) => (x) 

8.6 Use of User Tokens 

In the previous section on fonts, there was a small piece of magic left un­
explained that involved the setfileinputtoken NeWS primitive. This 
primitive makes use of the NeWS user defined token facility. Chapter 7 dis­
cussed tokens briefly, and how cps and Compressed PostScript make use of 
tokens in order to compress data for transmission. NeWS has a mechanism, 
supported by cps, where a client program and the server can cooperatively 
agree on the definition of a user token. This allows for efficient protocol 
definition for a specific application. The NeWS reference manual gives more 
detail about tokens and their definition, but we discuss them briefly here. 

There is an array of PostScript objects associated with each input stream. 
The NeWS protocol and cps have facilities that allow references to these 
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objects to be efficiently encoded in the stream that flows from the applica­
tion to NeWS. These references are represented by indexes into this array. 
setfileinputtoken puts a PostScript object, in this case a font, into this 
array. cps encodes a reference to this object when the parameter type token 
is used: 

cdef ps_do_usefont(token font) font setfont 

The C program calls ps _do _ usefont is called with the index that was 
passed to setfileinpnttoken and stored in the font structure. The global 
variable ps_next_user _token, which is referenced in ft_create, simply keeps 
track of the next available slot in the array. 

8.7 Debug Initialization 

Almost all of the interface-code fragments defined in the ched cps speci­
fication file are quite simple. One, however, is not. It is the piece that 
initializes the environment in the server. It contains the definitions of proce­
dures that create windows, define fonts, handle input events, and an 
assortment of other things. These definitions are is kept in a file that is sep­
arate from the cps specification file. In the specification file, the following 
lines appear: 

cdef ps_startup() 
#ifdef DEBUG 

(/home/norquay/jag/ched/ched.ps) run 
#else 
#include "ched.ps" 
#endif 

The initialization file is dynamically loaded from the file ched.ps when 
ched is being debugged. Once ched is stable and not being debugged, the ini­
tialization code is statically compiled into ched. This has the advantage 
when debugging that ched.ps can be altered, and the new version tested, 
without recompiling ched. Once the debugging cycle is finished, there is one 
less file to be bundled into the release and potentially installed incorrectly. 

8.8 Input Events with Names 

The input loop in ched is as follows: 

#define KEYSTROKE TAG 2 
{ clear awaitevent begin 

ClientCanvas set canvas 



173 

Name type /integertype eq 
{ KEYSTROKE_TAG tagprint WindowID typedprint 

Name typedprint } 
{ KeyActions Name get cvx exec } ifelse 

stopped 
end 

loop 

Whenever an event is received, its IName field is inspected. If it contains 
an integer, then it is just a simple keystroke, and a message containing the 
integer is sent to the client. Otherwise, the name is looked up in the Key­
Actions dictionary and whatever value is found will be executed. The 
Key Actions dictionary contains a set of procedures whose names match the 
names of special events generated by NeWS. The stopped and clear primi­
tives in the input loop above are used here as guards and cleanup in the case 
of missing KeyActions. 

For instance, ILeftMouseButton is defined as a procedure that sends a 
IJlessage to the application saying that the left mouse button has gone up or 
down, depending on the I Action field. Besides sending the message to the 
application, the procedure either enables or disables the catching of 
IMouseDragged events, depending on whether the button is going down or 
going up. This sequence avoids the overhead of dealing with drag events 
when no button is pressed. Also, since this enabling happens in the NeWS 
server, and with the scheduling guarantees given by NeWS, the downstroke 
and enable happen atomically: there is no chance that an up event can happen 
in the meantime, which might be missed and cause the system to get stuck 
receiving drag events. 

8.9 Responding to Damage 

In the previous examples in this book, the execution of most graphics 
operations has been triggered by the invocation of the IPaintClient method 
in the window. The typical simple application defines this method as a pro­
cedure that draws the entire contents of the window. When the window 
gets damaged, a IDamaged event generated. This event is caught by a han­

dler that invokes the IFixFrame method. IFixFrame sets the clipping to the 
damaged region, repaints the frame, calls IPaintClient, and finally resets 
the clipping. 

ched's NeWS side doesn't have enough information for IPaintClient to 
repair the display. It needs to send a message to the client requesting the 
information. It would be incorrect to have IPaintClient send the message 
since it is called in the midst of the damage repair context established by 
IFixFrame. The repair cannot actually be started until the client gets the 
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message and sends the information to handle it. Another reason that repair 
cannot be started yet is that requests in flight from the client to the server 
still have to be executed - they were generated without knowledge that a 
repair was needed. 

ehed overrides I FixFrame with a procedure that send a message to the client 
side. So when damage occurs, nothing else happens immediately. In 
particular, the record that NeWS keeps of what region has been damaged 
is untouched. If more damage occurs before the application side gets 
around to dealing with the first damage request, the two damages will 
get merged and the application will see them as one. 

When the client side of ehed receives one of these messages, it replies with 
a message that contains a "start redraw" request, the PostScript code 
necessary to redraw the window, and an "end redraw" request. Start and 
end redraw are essentially the same as I FixFrame broken in half: the part 
before IPaintClient and the part following. 

8.10 Selections 

When people first see NeWS they are often seduced by the fact that they 
can program the server. For performance, they try to avoid client/server 
messages by putting as much code as possible in the server. Sometimes this 
is reasonable, and sometimes it is not. The decision about client/server dis­
tribution of code should be based on whether the programming environment 
in the server is appropriate. 

ehed has a quite elaborate database describing the document and its for­
matting properties. This database has to be accessed very rapidly using quite 
sophisticated algorithms. The PostScript language is not very good for this 
kind of processing; C is far better. So almost all of ehed is written in C, 
with only a thin layer being written using PostScript code. 

An example of a situation in ehed where this trade-off between C and 
PostScript is hard to make is in the code that handles selections. From the 
users point of view, making a selection progresses through three stages: 

The user positions the mouse at one end of the selection and presses down 
on the mouse button. The caret appears as a vertical line at the division 
between two characters nearest the mouse. 

The user moves the mouse with the button down to extend the selection. 
As the mouse is being moved, the caret is echoed as a line that under­
lines the characters between the start of the selection and the position 
of the mouse. 



Finally the user's finger comes off the mouse button, which defines the end 
of the selection. 
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The middle phase is difficult because the echoing of the underline that in­
dicates the extent of the selection depends critically on the text that is 
selected: it is always at the baseline of the text and ends at the boundary 
between two characters. This involves a fairly expensive calculation using 
the document database. There are two choices: 

send messages back and forth between the client and the server each time the 
mouse moves and let the client side deal with the update, 

or download enough code so that the server side can deal with it. 

In ched the first choice was taken. This choice makes the server side of 
the application quite small and puts the responsibility for efficient calcula­
tion on the client side. Performance of ched depends heavily on the 
performance of message passing between the server and the client. In most 
environments, the performance is very good, so ched works very well. If 
ched is run at some distance from the server, with low speed communica­
tion lines or network gateways in the way, it will perform poorly. On the 
other hand, a bigger investment in server-side code could have been made, 
but it probably would not perform as well as the C implementation. 

An alternative to what ched does is to "cheat". Often it is possible to 
approximate the visual feedback entirely on the server, based on only a 
limited amount of information. For example, ched could have placed in the 
server an array of the y coordinates of the baselines of the text. The high­
light could follow the mouse and properly outline the text, except that the 
selection would not always end exactly between two characters. 

8.11 Typeahead 

No computer is ever fast enough. Suppose an editor is displaying compli­
cated real-time animation of typesetting a document. The user can probably 
type faster than the editor can echo if each character is echoed when it's 
received. This is the well-known typeahead problem. If implemented 
properly, the model/view Icontroller paradigm has the advantage that the 
typeahead problem disappears. The key factor is that the connection between 
the model and the controller is decoupled from the connection between the 
model and the view. When the model is updated, the view is not necessarily 
updated. The controlling loop of ched looks like this: 

1 While there are user keystrokes in the input queue, process them. 
These update the model only. 
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2 Invoke the view to update the screen according to the new state 
of the model. 

3 Wait while the input queue is empty. 

4 Go back to step 1. 

Input events are being batched together. If the user manages to type faster 
than the system can echo, it will just start echoing more keystrokes at once, 
quickly catching up. 

8.12 How to Get Ched 

Ched can be obtained by sending electronic mail to "news­
archive@sun.com" (from the ARPAnet) or "sun/news-archive" from 
usenet. The subject field of the message you send should be "send 
Applications ched.shar". An automated mail handling program will send 
the source file to you by return mail. The news-archive is a collection of 
generally useful NeWS documents and sample programs. A subject line of 
"help" will return to you a description of the archive and how to get infor­
mation from it. 



9 
Porting NeWS to Other Platforms 

" There is much virtue in a window. It is to a human being as aframe is 
to a painting, as a proscenium to a play, as ''form'' to literature. It 
strongly defines its content." 

Max Beerbohm 

9.1 Introduction 

"NeWS was designed to be portable." What exactly does this mean? It 
means that it should be possible, with relatively little effort, to adapt the 
NeWS server to run on a variety of different: 

CPU architectures. 

Operating systems. 

Display hardware types. 

Based on the authors experience of porting the Andrew and X10 window 
systems, the internal structure of the NeWS server was divided into three 
major areas, as shown in Figure 9.1 below: 

PostScript Language Interpreter 

File liD 
Interface 

Display 
Interface 

Keyboard 
Interface 

Operating System & Hardware 

Figure: 9.1. The NeWS server and its interfaces to its environment. 
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The diagram is somewhat misleading, since the vast bulk of the code is in 
two pieces, the interpreter and the high-performance imaging library that 
forms the display driver for simple framebuffers that have no graphics hard­
ware support. All this code is written in C, and the Sun Portable Software 
Products team have themselves ported it to the Digital Equipment Corpora­
tion microVAX and a standard 386 PC to ensure its portability. 

Despite this, faced with the source and a new piece of hardware, you can 
expect one or all of the three basic porting problems: 

Operating systems differences. NeWS comes with operating systems 
interface code for both Berkeley and System V versions of UNIX, but 
your operating system may differ. 

Display and keyboard hardware differences. NeWS comes with drivers for l-
and 8-bit memory framebuffers, but even if your hardware is of this type 
the details of how you get access to it will likely differ. And in many 
cases, your display will have graphics accelerator hardware that NeWS 
can use to advantage. 

CPU and C compiler differences. NeWS assumes a homogeneous memory 
model, and the first machines it was ported to all had 32-bit integers 
and pointers. 

To illustrate these problems in a practical context, this chapter gives case 
histories based on three customers' experiences. Parallax Graphics, Inc. 
ported NeWS to a video graphics board. Silicon Graphics, Inc. to a high­
performance graphics workstation. Both of these ports illustrate the ways 
in which NeWS can be adapted to exploit advanced display capabilities. The 
Architech Corporation ported NeWS to the OS/2 operating system on IBM 
PC-compatible personal computers, illustrating how it can be adapted to 
other operating systems and CPU architectures. 

The rest of this chapter is largely the work of Martin Levy from 
Parallax Graphics, Mark Callow from Silicon Graphics, and Maurice Balick 
from Architech Corporation. The NeWS Book authors are very grateful for 
their significant contributions, but remain responsible for any errors and 
omissions in these areas. 

9.2 Port of NeWS to the Parallax Viper Graphics Board 

In the following pages we will discuss the port of NeWS to the Viper 
display board from Parallax Graphics. The Viper boardset has the ability to 
show live video images as well as graphics data on the same screen. The dis­
play memory (1280 x 1024) is 8 bits deep, but can contain either graphics 
data (1 of 256 colors) or video images stored in a Pseudo-YUVI format. 

I. Pseudo-YUV is a term used to describe a coding scheme for color images. 

This format stores the image as lumanance and chrominance value pairs. 
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We present the advantages of a windowing system when it has the ability 
to show live video within a window on its monitor. We also describe the 
implementation of the server, the usage of video features within a Post­
Script program and finally, show an example program. 

9.2.1 Server Implementation 

In order to support live video, Parallax Graphics boards store display 
data in two different formats in display memory. A separate bitplane is 
used to direct video output circuitry to areas of the display that are video. 
These video areas must begin and end on modulus 16 horizontal (X) bound­
aries or unsightly gaps will appear. Video areas are represented in NeWS as 
canvases with a special Video attribute in their canvas dictionary (See Chap­
ter 5). Video attributes are Boolean, and can be both set and read. 

The programmer will probably never need to directly set the value of the 
Video attribute. A sub-class of the DefaultWindow class is defined, which 
overrides the map and reshape methods to enforce the modulus 16 horizon­
tal boundary conditions and gives the various canvases that make up the 
window the necessary Video attribute. Here is the definition of this Video­
Window class: 

/VideoWindow DefaultWindow 

Start defining a sub-class of DefaultWindow that will be 
called VideoWindow. 

dictbegin dictend 

This dictionary will hold the instance variables. 

classbegin Start defining the methods for the new class. 

/ rna p { Override the map method. 

/rnap super send 

Do whatever DefaultWindow does for map. 

FrarneCanvas /Video true put 

Then make the FrameCanvas into a Video canvas. 

ClientCanvas /Video true put 

Then make the ClientCanvas, which overlays it into a 
Video canvas too. 

IconCanvas /Video true put 

Finally, make the IconCanvas into a Video canvas, too. 

} def Finish overriding the map method. 
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/move { Override the move method. 

exch With a method that restricts the location of the window 
to a multiple of 16 horizontally. 

-16 and exch 

/move super send 

} def 

/reshape 

Then do whatever DefaultWindow does for move. 

Override the reshape method. 

exch 15 add -16 and 

Make sure that the width is a multiple of 16. 

exch 4 -1 roll 

Position the horizontal position in the stack. 

-16 and 4 1 roll 

Restrict that to a multiple of 16. 

/reshape super send 

Finally do DefaultWindow's reshape method. 

} def 

classend def 

Finish overriding the reshape method, and then finish 
defining the Video Window class. 

A Video canvas containing live video will obtain damage differently 
than a normal NeWS canvas. Damage will be received any time the live vid­
eo canvas is moved, obscured, or unobscured. Because of the large offscreen 
memory size available, several video canvases can be retained without using 
any host memory. The amount of offscreen memory available for canvas 
cache is determined at start-up time. 

Setting or resetting the Video boolean in the canvas "magic" dictionary 
invokes C code in the device driver. It is used to set the memory on the 
board into the correct mode and control overlay colors and window clipping. 

Video canvases can be live. Bits on the screen will be updated from the 
NTSC video input on the board without any interaction of the host proces­
sor (and hence the NeWS server). This means that if the canvas is moved, 
the live video must be stopped and then restarted in the new canvas area. 
Unmapping the canvas also stops the live video. 
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Because the Parallax video board has more than one video input, a 
Present Video Input number was added to the current graphics context. 
The PostScript command vsource will change the selected input for the pre­
sent graphics context and the initgraphics command will reset the selected 
input number to zero. 

The video regions on the screen have a separate colormap, hence any 
graphics (such as menus, buttons, and overlay graphics) need to have the 
color-table value computed differently. NeWS has a static colormap that 
allows an acceptable selection of colors to be shown on the screen. The 
video regions on the Parallax Graphics Board will only show 32 colors for 
the graphics overlays, so a subset of the normal colors are used within this 
area. These colors are more than enough to have most applications run with­
out seeing much change. (For example, many of the standard demonstration 
programs supplied with NeWS will show quite acceptable colors when run 
as an overlay to a video picture). 

9.2.2 NeWS Operators for Video 

The following operators perform a variety of video related operations in 
the NeWS environment. 

priority x y vstart -

vstop-

fills the current PostScript path with live video. x and y 
determines the offset of the lower left hand comer of the can­
vas relative to the incoming video frame. priority is used by 
the board to control the amount of time spent qoing graphics 
or video operations. 

vstop stops the current live video path. If no video paths are 
active, no action is taken. 

string readcanvas canvas 

The standard readcanvas operator, as defined in Chapter 12 
of the NeWS manual, has been extended to handle digitized 
still frames of video. If string is (VideoFrame), the resulting 
canvas will be a full NTSC video frame, 640x482x8 in YUV 
format. If string is (VideoField), the resulting canvas will be 
an NTSC video field, 640x241x8 in YUV format. If string is 
(VideoGreyFrame), the resulting canvas will be a 640x482x5 
greyscale canvas in graphics format. 

channel vsource-
sets the channel for the NTSC input to the board, which is 
then saved in the current graphics context. With a two input 
board, the values 0 and 1 are valid. 
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9.2.3 NeWS Programming Examples 

This section gives some examples of how to use these video capabilities. 
First, a video window must be created. This is accomplished by calling the 
Inew method of the Video Window class: 

framebuffer /new VideoWindow send 

This code fragment creates an instance of the Video Window class and 
leaves it on the stack. The parent window is the display. The following 
fragment will perform the same operation, but will associate the instance 
with a name by which it can be referred: 

/win framebuffer /new VideoWindow send def 

The video window can now be referenced by the name win. Next, let the 
user pick size and placement of the window so that it can be displayed: 

/reshapefromuser win send 

The reshapefromuser operation is normally performed for any window 
class (see other examples in Chapter 6). Once it has been executed, a win­
dow of type Video is displayed on the screen. In order to display live video 
in this window, it must have a NeWS PaintClient procedure. This procedure 
will be executed any time the window is damaged. (It should be noted that 
mapping a window causes it to be damaged, so the last step performed above 
left the window in a damaged state.) The following is an example Paint­
Client procedure that displays live video: 

/PaintClient { 

gsave Save graphics state. 

newpath clipcanvas 

Reset the canvas clip. 

initclip clippath 

Set current path to the inside of the window. 

vstop Stop previous live video. 

2 0 0 vstart 

Start video. 

grestore 

Restore graphics state. 

} def 
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In order to make this example run, the PaintClient procedure must be 
passed to the window before it is mapped. The calls were presented in a dif­
ferent sequence in order to make the process less confusing. Here is the 
complete sequence of steps necessary to display a live video window: 

/win framebuffer /new VideoWindow send def 

/PaintClient 

gsave 

newpath clipcanvas 

initclip clippath 

vstop 

2 0 0 vstart 

grestore 

def 

win send 

/reshapefromuser win send 

/map win send 

Now that the basic sequence of steps has been covered, the following 
examples will present the PaintClient procedure itself. Here we fill a win­
dow with a frame of still video: 

/PaintClient{ 

gsave Save graphics state. 

newpath clipcanvas 

Reset the canvas clip. 

640 480 scale 

Original size of frame. 

(VideoFrame) readcanvas 

image canvas 

grestore Restore graphics state. 

def 

Note that the canvas clip is always reset, so that the entire canvas will be 
redrawn regardless of the damage that occurs to the window. The reason for 
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this is that if the current source of video is constantly changing, care must 
be taken to ensure that information from a single frame is always displayed. 
Otherwise, if part of a window is covered and then uncovered, the uncovered 
part would be drawn with information from a different frame. 

In order to fill a window with a video frame, regardless of the window 
size, the video information must be scaled proportionally to the window 
size. The scaling is implemented by the following code: 

/PaintClient{ 

gsave Save graphics state. 

newpath clipcanvas 

Reset the canvas clip. 

intitclip clippath 

Set the current path to the inside of the window. 

pathbbox scale 

Scale to fit the window. 

pop pop 

Pathbbox gave us two extra numbers - get rid of them. 

(VideoFrame) readcanvas imagecanvas 

grestore Restore graphics state. 

def 

Because NeWS treats video canvases in much the same way as normal 
graphics canvases, creating graphics overlays is straightforward: 

/PaintClient{ 

gsave Save graphics state. 

newpath clipcanvas 

Reset the canvas clip. 

intitclip clippath 

Set the current path to the inside of the window. 

pathbbox scale 

Scale to fit the window. 

pop pop Pathbbox gave us two extra numbers - get rid of them. 

(VideoFrame) readcanvas imagecanvas 

Fill window with video. 



(Times-Bold) findfont 36 scalefont setfont 

Pick our font. 

initmatrix 10 70 moveto 

(Text is easy over video) show 

grestore Restore graphics state. 

def 

Creating overlays on live video would be just as simple. 

9.2.4 The VideoDisk Browser 
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To show the power of this addition to the NeWS server, this section 
includes some example code segments cut out of a real application, the 
"Video Disk Map Browser". In this, a videodisk storing up to 54000 video 
frames each the equivalent of a 300Kb data file is attached to the work­
station (its video output goes to the graphics board and its RS-232 control 
line goes to a serial port). The disk contains various maps of a specific area 
of the world at different scales. The maps are stored as a series of single 
frames on the video disk arranged as groups; one group for each map scale. 

The object of the application is to allow a user to scan the mapping disk 
in a North/South/East/West direction as well as Zoom In/Out to control 
the scale of the map. 

The user interface is designed to show all the information in one area of 
the screen, in contrast to the same application running on a computer termi­
nal with a TV monitor next to it. By using the NeWS server, the 
application can be combined with other applications doing graphics on the 
same screen. 

The Browser first opens a window and sets it to be a VideoWindow. The 
Canvas (and hence window) is then filled with a video frame. The Browser 
presents a set of labelled buttons (implemented with the Lite/tern button 
package) to give the user control of the map. The user can move the map in 
the NORTH, SOUTH, EAST, WEST directions and ZOOM the map in and 
out by pressing the mouse button on the desired button. 

The Browser contains both C and NeWS code. The C portion of the pro­
gram deals with the disk database and also controls of the videodisk player 
via the RS-232 port. The NeWS code handles the display of video frames 
and also the mouse input. It also processes windowing events such as redis­
play and resize without executing C code. 

As with most NeWS applications, the Browser begins by creating a 
simple PaintClient procedure. This procedure redisplays both the current 
video frame and the buttons. A crosshair cursor is placed at the center of 
the screen with the coordinates shown as text. 
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/current-video % => canvas 
(VideoFrame) readcanvas 

} def 
/repaint-video { 

gsave 
initgraphics 
clippath pathbbox clipcanvas 
clippath pathbbox scale pop pop 
current-video imagecanvas 
grestore 

def 

/PaintClient 
repaint-video 
repaint-buttons 
repaint-coordinate 

def 

The repaint-video routine takes the present video input and fills the 
whole window with it. The video input scales to fit. The C code that inter­
acts with this NeWS fragment is: 

main () 
{ 

char which[132); 

ps_open_PostScript(); 
ps initialize () ; 

getframe(O, 0); 
while (1) { 

ps_button(which) 
switch(which[O)) 
case'N': 

getframe(O, 1); 
break; 

case'E': 

getframe(deltax, deltay) 

ps_newframe(x, y); 

The C routine getframe() takes care of all database interaction, and will 
call the NeWS routine ps _ newframe when a new video input is available. 
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The ps_newframe is defined in the cps file so that it can be called directly 
from the C code. This procedure sends a redisplay event to the window 
when a new video input is available: 

cdef ps_newframe(x, y) 
/current-x x store 
/current-y y store 
/paintclient win send 

A listing of the final NeWS Browser Code can be obtained through the 
news-archive@sun network archive server. See Section 8.12 for more infor­
mation on how to use news-archlve@sun. 

The complete application contains additional NeWS programs that allow 
video frames to be stored offscreen and used as a video disk cache. The 
caching facility enables a user to look at a previously-viewed frame (a com­
mon operation) without re-accessing the disk, allowing a substantial 
improvement in interactive performance. 

9.2.5 Conclusion 

The use of standard video in a windowing environment greatly expands 
the scope and quality of window-based applications by removing many of 
the restrictions in the way visual information is acquired, processed, and pre­
sented. NeWS provides a flexible software platform upon which 
sophisticated multi-media applications can be built on powerful computer 
workstations. Integrating video display with NeWS allows the combination 
of their full graphics, windowing, processing, and networking power with 
one of the most widely used and effective communication technologies. 

9.3 Porting NeWS to the SGI IRIS 

Silicon Graphics Computer Systems, Inc. manufactures the IRIS family 
of high-performance, high-resolution, color workstations for 2- and 3-
dimensional graphics. The heart of the IRIS is a custom VLSI chip called 
the Geometry Engine. A pipeline of several Geometry Engines accepts 
points, vectors, polygons, and curves in user-defined coordinate systems, 
and transforms them to screen coordinates with the use of rotation, scaling 
and clipping. 

Conceptually the graphics hardware of the IRIS is divided into three pipe­
lined components: the applications processor, the geometry pipeline, and the 
raster subsystem. 

The applications processor runs the applications program and controls the 
geometry pipeline and raster subsystem. Graphics routines are expressed in 
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either 2-D or 3-D user coordinates. These coordinates pass through the geom­
etry pipeline which transforms and clips them to normalized coordinates 
then scales the normalized coordinates to screen or window coordinates 
with a lower-left origin. 

The pipeline output passes to the raster subsystem, which fills in the pix­
els between the endpoints of the lines and interiors of the polygons, and 
performs shading, depth-cueing, and hidden surface removal. A color value 
for each pixel is stored in the bit planes. An additional set of overlay bit 
planes is provided for transient displays such as pop-up menus. The overlay 
bit planes are displayed over the image in the main bit planes. 

For several years the IRIS family has used a proprietary window system 
called mex. mex is typical of many early window systems in that the win­
dow manager (the policy) is inextricably linked with the window system 
(the mechanism). mex's policy is all but impossible to change. mex is also 
very simple. It cannot, for example, close a window into an icon. 

SGI wants to provide an environment on the IRIS that is not only more 
productive for the developer, but also encourages the developer to write 
applications that operate inside that environment. This focus benefits the 
end-user who can then mix and match applications to fill his needs. Cur­
rently many developers ignore mex, resulting in unsociable applications that 
take over the whole machine. 

SGI would have to undertake a major rewrite of mex to provide the facili­
ties commonly expected of window systems today. The benefits of such a 
major investment in reinventing the wheel were questionable. SGI custom­
ers would benefit most from an open, network-based window system. Such 
a system makes a wider range of applications and productivity tools avail­
able to them, as-well as bringing the benefits of network transparency to 
(at least 2-D) applications. 

After examining the alternatives, SGI selected NeWS primarily because 
of the PostScript language imaging model. NeWS clients use of their own 
coordinate space, the built in transformations, the consequent lack of 
intimacy with pixels and the default lower-left origin closely mirror the 
IRIS hardware model. SGI was also attracted by the potential for avoiding 
exclusive-OR operations provided by the overlay canvas paradigm. 
Exclusive-OR is not an efficient operation on certain IRIS models. 

The boundless flexibility offered by the programmable server and 
lightweight processes added to its appeal. NeWS' ability to provide a 
global user-interface style that can be modified, even while NeWS is run­
ning and without any changes to the applications, is an attractive feature. 
Clients, too, can change their interfaces while remaining within the window 
system framework. 

This flexibility is beneficial to both end-users and software developers. 
End-users benefit because they can change anything from presentation details 
to the complete window manager. Software developers benefit because they 
can change the user-interface details to suit the needs of their applications, 
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yet those applications can still be sociable. On the other hand, they need to 
exercise self-restraint or the result will be chaos. 

9.3.1 The Port(s) 

SGI first ported NeWS to an IRIS 3030. The 3030 comes with 8 or 24 bit 
planes, and uses a 68020 as its applications processor. It operates in one 
graphics mode at a time: color-index mode (cmode) or RGB mode. The win­
dow system runs in cmode as most applications are written in that mode. 
The 3030 uses UNIX System V Release O. 

Our first copy of NeWS, an early pre-release version, came directly from 
the developer's source hierarchy and lacked documentation. NeWS was 
designed to be portable, but browsing the Sun development source rein­
forced the lesson that isolating system-specific dependencies is difficult. 
We discovered non-portable aspects including: long file names, dependencies 
on a 4.2BSD UNIX stdio (standard input and output) package, 4.2BSD sig­
nals, and the use of some non-standard C language extensions such as left­
hand casts. Fortunately, interprocess communication, the hardest potential 
problem, was already solved. The IRIS uses the 4.3BSD networking code so 
the reliance of the Sun-specific NeWS code on sockets was not an issue. We 
were assured that the next release, the first real beta release, would be 
portable. The current version of NeWS is indeed very portable. 

SGI split into two groups to focus our efforts: one to deal with compila­
tion issues, the other to study the graphics. We planned to modify the 
graphics code to call Silicon Graphics Remote Graphics Library, RGL. The 
RGL calls would be sent to an IRIS for remote imaging. Ultimately these 
calls would be converted to calls to the standard Silicon Graphics' Graphics 
Library (GL). 

In view of the promised portable source, we left the long file names 
alone and compiled, via the Network File System (NFS), from the source 
on our Sun. The left-hand casts were among the most difficult problems to 
fix and some of the NeWS expressions were too complex for our compiler. 

The RGL work had succeeded in rendering window outlines by the time 
we first compiled NeWS on an IRIS. Initial examination of the standard 
imaging layer (an extended version of Sun's pixrect library) revealed that in 
order to take full advantage of our transformation hardware, we would, as 
Sun had warned, have to rewrite the entire imaging layer from the cscript1 

layer down to our hardware. All incoming coordinates pass through soft­
ware transformations as soon as they arrive in the server. Only transformed 
coordinates are sent to the pixrect2 layer, and these are in a screen space 
with an upper-left origin. Since we didn't have time to rewrite the imaging 
layer, we do not use the geometry pipeline for the PostScript language 
transformations. We do use it for the final inversion to IRIS screen space. 

1. cscript is the interface between the PostScript interpreter and the imaging layer of the server. 
2. pixrects are the bottom layer of the imaging section of the version 1.1 server. 
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Our first graphics implementation used a version of a memory pixrect 
that wrote to the screen any pixel that was modified by a RasterOp. This 
took about a week to get running. We implemented both color and mono­
chrome versions. Of course it was fairly slow and used lots of memory, but 
it worked. We then turned our attention to input. 

Input presented special issues. On the IRIS, keyboard and mouse events 
are delivered via a shared memory gl queue. It was impossible to select on 
this queue. Furthermore, the events did not contain timestamps. To solve 
this problem, we added an extra keyboard and mouse to our development 
systems, plugged into tty ports. We then wrote a version of the operating 
system interface that read the serial ports and created the NeWS events. 
This arrangement gave us enough input for selection and typing a few charac­
ters to psterm. 

Our ultimate twofold solution to the input problem necessitated kernel 
changes. We created a pseudo-device Idev/queue that selects when an event 
is in the process's gl queue. This pseudo-device will be useful to many IRIS 
applications. We also created a new shared memory queue that accom­
modates timestamps. This queue is for keyboard and mouse events only and 
a process must be registered as the window manager to use it. When 
enabled, the shared-memory queue becomes the target of selects on 
/dev /queue. 

With input problems behind us, our attention returned to imaging. We re­
worked the pixrect implementation case-by-case to use the GL and take 
every advantage of the hardware. The first change was the re-implementa­
tion of fill in the RasterOp routine. The re-implementation had a dramatic 
positive effect on performance. A great deal of the PostScript language 
imaging is accomplished at the lowest level with fills. Once all pixrect 
cases had been tackled, we removed the shadow memory needed for the mem­
ory pixrect implementation. 

To take further advantage of our hardware we wanted to use the hardware 
cursor and to change the overlay canvas implementation to use the overlay 
planes rather than exclusive-OR. We also wanted to put the menus in the 
overlay planes to avoid having to read back the pixels under them, a 
relatively slow operation on certain IRIS models. 

Making NeWS use the hardware cursor was straightforward. We simply 
changed the macros cv _cursor _ up and cv _cursor _down to be no-ops and 
wrote a function that loads a cursor glyph into the hardware whenever the 
function cs_newcursor is called. We also modified the graphics microcode 
to support a two-color cursor. 

The overlay canvas implementation required significant modification. The 
standard NeWS server implements overlay canvases by storing a display 
list, and traversing the display list, whenever the cursor is drawn, painting 
the primitives in XOR mode. Supporting menus requires at least two colors 
in the overlay canvas rather than the single "invert" color. As the overlay 
canvas no longer needed to be drawn and erased when the cursor moved, we 
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changed the imaging routines to draw as soon as a request came in, as well 
as inserting it into the display list, and modified cv _ unmap to actually un­
map an overlay canvas. We retained the display list because it is much faster 
to erase lines than fill the planes with transparent color. 

We also enhanced the menu package by creating a transparent canvas to 
give us the hit detection, and then imaging the menu in an overlay canvas on 
top of that. No damage would then be caused to the underlying canvas. 

By now we were comfortable with NeWS. We had a solid, well running 
implementation. With a stable NeWS server in hand it was time to port 
NeWS to two more members of the IRIS family: the IRIS 4D/70G and the 
IRIS 4D/70GT. The 4D/70G's applications processor is a MIPS R2000 RISC 
processor. It has an enhanced version of the pipeline architecture that is 
faster and allows multiple simultaneous graphics modes. The IRIS 
4D/70GT couples the same R2000 processor with a brand new very high­
performance pipeline architecture that is an order of magnitude faster than 
the earlier design[AKEL88]. It is capable of rendering up to 100,000 quadrilat­
erals per second. Both machines run UNIX System V Release 3. 

The 4D/70G port was the first that we tackled. 
The MIPS architecture proved a bigger hurdle than the new graphics. It 

requires that data fetches be aligned on their natural boundaries. For ex­
ample, an int must be fetched from an address that is modulo 4. Because of 
this, we had to rewrite large portions of the pixrect code that assumed 
fetching an int from any even address would work. We faced a major prob­
lem with the way NeWS implements the pointers to a PostScript object's 
body. Every PostScript object is represented by a C data structure, struct 
object. Large objects (e.g. dicts) with bodies have a field in their struct 
object that points to a C data structure representing the body. There are 
many objects, and it is important to keep the struct object small. To this 
end, NeWS allocates only 26 bits to the pointer, masking off the other bits 
in the word before using the pointer. The MIPS CPU needs 29 bits for this 
pointer; we tried both adding the extra (constant) bits before using the 
pointer, and making struct object larger to accommodate the extra bits 
before settling on the former. 

Since the 4D/70G supports multiple simultaneous graphics modes and is 
typically configured with 24 bitplanes, we modified the NeWS server to do 
full 24-bit RGB imaging. The major work here was implementing the func­
tions supporting readcanvas and imagecanvas. There is no noticeable 
difference in performance between the 8- and 24-bit models. 

We tired of the simplicity of LiteWindow, so we created a new SGIWin­
dow subclass with a different appearance and feel. This took only about 
eight hours, giving us a clear demonstration of the power of NeWS extensi­
bility and the efficacy of NeWS programming classes. 
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9.3.2 Integration 

We were now ready to integrate NeWS into our system. Integration 
work began while the MIPS port was being finished. 

Graphics applications on the IRIS (called GL clients) draw by calling 
Graphics Library routines that make direct drawing requests to the hard­
ware. When they operate in a windowed environment an outside agent sets 
up clipping hardware to ensure the GL client is confined to its windows. 
For NeWS to become the controlling window system for the IRIS it had to 
take over the job of setting up the hardware clipping from mex and also the 
job of initializing the hardware. A major goal was that an application 
would only need re-linking to work under NeWS therefore we needed to 
mimic the old mex programming interface. 

We wrote a subclass of SGIWindow called MEXWindow with all the 
behavior of the old mex windows. We then created an identical function call 
interface which was added to the GL. An important part of MEXWindow 
is a lightweight process that handles input events for the GL client. It 
expresses interest in NeWS events in response to qdevice calls from the 
GL. Matched events are translated to the GL format and placed in the 
client's g/ queue. 

To manage the hardware clipping we created the GL canvas. A GL canvas 
behaves for the most part just like a normal NeWS canvas, except that it 
cannot be drawn on with PostScript programs. The GL canvas reserves space 
on the screen for the GL client and provides a convenient place to store in­
formation needed to manage clipping and to communicate with the client. 

The 4Dj70G clips to a rectangle list that is equivalent to the visible 
region of the GL canvas. Whenever that region changes we must reload the 
piece list as it is known. There are two cases to handle here: uncovering and 
covering a canvas. When a canvas is uncovered damage is caused as with 
NeWS canvases. MEXwindow responds to the IDamaged event by request­
ing the damagepath before sending a REDRAW event to the GL client. The 
piecelist is updated at this point. 

Because the GL client is drawing asynchronously to the server, we must 
reset the piecelist as soon as a GL canvas is about to be covered. Normally 
at this point NeWS merely invalidates the canvas's clipping. It is validated 
again when the client makes its next drawing request. Resetting the 
piecelist whenever we invalidate the clip requires validating it again immedi­
ately, which is a time-consuming operation. Typically NeWS iterates 
through the about-to-be-covered fragments of a canvas, calling 
cv JnvalidatecIip for each fragment. Setting the piecelist each time would 
therefore be very inefficient. Instead we added a redip list which is very 
similar to the damage queue. The reclip list is checked after NeWS has iter­
ated through a list of about -to-be-covered fragments and the piecelist for 
any canvas in the reclip list is reset. 
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On the 4D/70GT clipping is done against a mask painted into special win­
dow ID planes. Clipping to arbitrary shapes is done with no performance 
degradation. The window ID planes are much easier to manage than 
piecelists. Uncovering of canvases is handled using the damage queue exactly 
like piecelists. When a canvas is to be covered the window ID planes at that 
location are painted to establish clipping for the canvas that is to appear. 
This automatically clips the canvas being covered. 

One of the last areas we dealt with was the colormap. Some of our sys­
tems have only 8 bit planes, so we needed the NeWS colormap. For 
compatibility we had to set the bottom 8 colors to the standard SGI colors 
and wanted the greyramp next. To accommodate the eight colors we shrank 
the greyramp and placed it after the standard colors. Color 0 is black which 
caused a problem in retained canvases when mem _rop expands a source 
pixrect from l-bits to n-bits. 

9.3.3 Conclusion 

Building on top of the GL canvases and the GL client interface, we have 
added an XII server that runs alongside NeWS and sociably shares the 
screen with the NeWS window manager in control. The color plate l shows 
the complete IRIS Window System, known as 4sight. 

We are looking forward to the Xll/NeWS merge and to improving the 
imaging layer implementation to fully reflect the match between the Post­
Script language imaging model and our pipeline hardware. We naturally 
want to explore 3-D extensions to the PostScript language and merging our 
Distributed Graphics Library with the 4sight window server. 

9.4 Architech Corporation: Ne WS/2 

Architech's NeWS/2 is a port of Sun's NeWS to Microsoft's OS/2 envi­
ronment for the IBM-PC and PC-compatible microcomputers. 

This initial release of NeWS/2 is a monochrome implementation that com­
municates with client applications using the OS/2 LAN Manager's named 
pipes. It includes all of the development tools and demonstration programs 
distributed with Sun's NeWS product. 

Ne WS/2 also provides VIO-Term, a facility in which unmodified OS/2 
character-based applications can execute in a NeWS window. 

9.4.1 Background 

Creating a NeWS port for the OS/2 environment was an appealing chal­
lenge for several reasons. First, from Architech's perspective, OS/2 is the 
first "true" operating system to become available for personal computers. 

1. The color plates appear immediately after p. 222-see Appendix I, Description of the Plates. 
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Unlike DOS or the Macintosh Finder, OS/2 provides features such as multi­
tasking and virtual memory. Surprisingly coherent and well thought-out, it 
incorporates such Ne WS-compatiblephilosophies as lightweight processes 
(threads) and shared packages (e.g., DynaLink Libraries.) 

Second, the official user interface for OS/2 - Presentation Manager 
(PM) - does not reflect new user interface technology, but is very depen­
dent on the previous MSWindows user interface and window system, which 
had some integral limitations. In addition, the Presentation Manager is com­
plex to program, and offers little new in terms of window technology. 
NeWS, on the other hand, offers a radically new, "second-generation" 
approach to user interface development. 

A third factor was the importance of timing. Offering an alternative to 
the Presentation Manager was timely, since OS/2 developers have not yet in­
vested significant resources in Presentation Manager development. 
Developers are not yet dependent upon these interfaces, and there are times 
when standards exist for the benefit of exceptions. And finally, it makes 
business sense for Architech to bring technology like NeWS to a large mar­
ket; the OS/2 market forecasts sales of 4 million units per year by 1991. 
The availability of NeWS on both UNIX and OS/2 is of great interest to 
developers trying to maximize their potential markets. 

9.4.2 Technical Aspects 

Architech found that the technical problems usually accompanying a port 
were significantly reduced by the excellent job done by Sun's portable 
NeWS group. Prior to releasing NeWS source to licensees, virtually all of 
the OS and byte ordering dependencies had already been clearly delineated or 
moved to separate files. Yet despite the best efforts of everyone involved, a 
few troublesome items remained. One notable item was the existence of file 
names that were slightly too long for the OS/2 environment. This problem, 
a nuisance in the best of circumstances, became especially burdensome when 
the slightly-too-long file name was the name of a header file that could be 
found virtually everywhere within the code. Other technical problems we 
encountered included unportable C pre-processor tricks, 32-bit integers, and 
extra-large C files (truly, extra-large C files: 82K bytes, for example). 

Architech decided early on that there were two possible strategies for 
dealing with these problems: either the entire source could be cross­
compiled from the SUN to 80286 code and then linked on the PC, or a set 
of custom tools to do the job directly under OS/2 could be developed. They 
opted for the tools; developing a C pre-processor and a cross-referencer. 

The C pre-processor automatically converted invalid file names, did the 
"expected" thing with unportable macro constructs, and was able to handle 
an arbitrary amount of pre-processor statements. 
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The cross-referencer kept track of the large number of macros used in the 
NeWS source, and alerted the programmer when a statement in the source 
code was a macro rather than simply a function call. 

Some of the major sources of new code in the NeWS/2 port were the Sun 
pixrect library, which had to be written for EGANGA hardware; the 
implementation in OS/2 of some unavailable UNIX functionality; and a 
new memory management algorithm designed to be efficient within a seg­
ment swapping architecture. 

The pixrect library implementation was quite straightforward, and did 
not require any special OS/2 features. The UNIX compatibility functions, 
on the other hand, required some unexpected work. For example, two 
UNIX system calls central to the NeWS architecture are select() and 
fcntl(). The plain-vanilla open(), read() , write() , and close() functions of 
most OS/2 C libraries are inadequate for this sort of use, and had to be re­
implemented using lower level OS/2 functions. Similarly, the UNIX socket 
model had to be partially simulated with OS/2 named pipes. Specifically, 
the security features present in the original BSD sockets were not 
completely reimplemented in the OS/2 port, since real sockets will be made 
available in the near future. 

The memory management algorithm is discussed in the section on big seg­
ment swapping, below. 

9.4.3 NeWS/2 Limitations 

NeWS/2 is a fully functional port of NeWS to the OS/2 environment. 
However, the fact that OS/2 is designed to work on a 80286 16-bit CPU 
(even, alas, when NeWS/2 is running on an 80386 chip machine) introduces 
two specific hardware limitations. These limitations are discussed below. 

9.4.3.1 Puny Segments vs. Enormous Arrays 
The segmented architecture of the 80286 imposes a 64-Kilobyte (K) limit 

on the size of any contiguous memory area. This restriction hinders NeWS/2 
functionality in only one case: very large arrays. The NeWS limit is 32,000 
objects per array; the Ne WS/2 limit, on the other hand, is only some 5000 
objects per array. Such large arrays are rather rare, but they do occur. One 
such occurrence, for example, is in the very complex pictures which can be 
generated by some drawing applications (e.g., large Adobe Illustrator 
files), which are represented as gigantic executable arrays. 

To work properly in the NeWS/2 port, the files generated by such pro­
grams have to be cut by hand in smaller chunks. The vast executable array 
that was originally generated is thus replaced by smaller arrays, which can 
then be executed in the body of the original. 

To further minimize this problem, a future release of Ne WS/2 will have 
the ability to automatically "chop up" such large executable arrays. When 
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an OS/2 for the 80386 chip arrives, of course, the problem will go away 
entirely. 

9.4.3.2 Big Segment Swapping 
Virtual memory management on the 80286 (and, again, on the 80386 

under the present version of OS/2) uses segment swapping. While these seg­
ments can vary in size from 1 byte to 64K bytes, they are always swapped 
to disk in one chunk. Regular heap memory management algorithms make 
the segment swapping virtually useless; such algorithms tend to allocate 
memory into 64K segments, which are then divided into smaller chunks as 
requested by mallocO or callocO. Later, when a freeO call returns such a 
chunk to the heap, the chunk is added to some free memory chunk list. 

The result is twofold: (1) most segments are 64K in size, and (2) the free 
list(s) criss-cross these large segments. When memory becomes over­
committed and some segments have to be moved to disk, entire 64K seg­
ments are swapped out (rather than a 2 or 4K page as in a Virtual Paging 
system). Worse, when mallocO is called (a frequent occurrence) and some 
free list is traversed, several 64K segments have to be swapped in and out 
several times. 

The result - the disk drive access light flickers on and off as it would in 
a system crash - is unacceptable. 

To deal effectively with this problem, it was necessary to rewrite the 
memory-management routines to use 4K segments,. with one free list per 
segment, and a single list of segments. If an extra-large chunk of memory 
needs to be allocated, a specially fitted segment is created by the memory­
management routine. The resulting change has been phenomenal: now, even 
when the system swap file becomes larger than the core memory space, 
there is almost no degradation of performance. 

9.4.4 Using NeWS in OS/2 

Although OS/2 and UNIX are similar in many ways, OS/2 features (and 
therefore OS/2 applications) are not always UNIX-like. For example, 
UNIX applications most often communicate through their standard I/O file 
descriptors: even when the applications are full-screen, they use ANSI-like 
serial protocols to manage their output. Under OS/2, however, and as a 
legacy from the unruly reign of DOS, character-based applications can use 
either standard I/O (as in UNIX), or an OS/2 character-based user interface 
library called VIO, which allows fast full-screen control through the use 
of function calls. 

Since the VIO library, however, expects direct access to the entire screen 
as well as control of the keyboard, it would obviously have to be replaced 
in a windowed environment such as NeWS. To deal with this problem, 
NeWS/2 provides an application called VIO-Term, which "registers" (that 
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is, selectively replaces) the VIO library. Since VIO is a DynaLink library, 
it is not attached to applications at link time but rather at load time, and 
thus can be replaced without having to relink the applications that use it. 
The VIO-Term opens a NeWS window, and the original VIO calls are trans­
lated into equivalent PostScript language code. 

This resulting VIO Window is interesting for at least three reasons. 
First, because VIO-Term is a DynaLink Library that attaches itself to client 
applications, no modifications to the NeWS server nor its initialization 
files are required. Second, character-based OS/2 applications, without the 
need for any modification, now become networkable a HI. NeWS. 

Finally, not only the VIO subsystem, but the entire Presentation Man­
ager, can be replaced. Hence, any Presentation Manager application could 
run unmodified in the NeWS environment. These PM applications could 
even have their output sent over a network to a Sun screen. 

Another OS/2 feature which becomes especially intriguing to the devel­
oper of NeWS-based applications is preemptive light-weight processes, or 
"threads", on the client side. 

The concept of having one thread reading and dispatching input from the 
NeWS server while another thread is collecting and sending output to the 
same server was so attractive that we adapted the cps library to this pre­
emptive environment. The adaptation involved a small semaphore-like 
operation in the PSIO code of the cps library, which was necessary to avoid 
untimely flushes of the output stream by the input thread. The result is 
totally transparent. 

Still, cps lacks features which would allow a multithreaded application 
to communicate freely with lightweight NeWS mechanisms. For example, a 
multithreaded environment cps would allow PostScript pipes to be multi­
plexed, or, at the very least, would allow one client to have several 
connections to the NeWS server simultaneously. As multithreading 
becomes widely used (under UNIX as well as OS/2), it will make sense for 
cps to grow in that direction. 

OS/2 also provides "sessions," a mechanism by which several applica­
tions can take full control of the screen. Each application has total control 
during the period of time it resides in the foreground of the screen. When 
the application is switched to the background (usually by a user command 
from the keyboard), OS/2 takes care of preserving both the screen hardware 
state and its contents. The application is only responsible for stopping out­
put while it resides in the background, or for holding that output in a 
separate "virtual screen," later restoring this virtual screen to the real 
screen when the user brings the application to the foreground again. The ses­
sion mechanism allows different user interface technologies such as NeWS 
and Presentation Manager to coexist on the same machine, without having 
to be aware of each other and without limiting each other. This versatility 
is a far cry from the days of DOS. 
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9.4.5 Future Enhancements and Conclusion 

Architech intend to keep NeWS/2 as closely compatible as possible with 
Sun's future releases, and will offer the Xll/NeWS server, described in the 
next chapter, as soon as feasible. 

Furthermore, although they hope that future Sun NeWS releases will 
include some preemptive process switching, they plan to incorporate the nec­
essary code on their own if Sun chooses not to. 

Architech's approach will involve semi-preemptive process switching via 
a simulated "pause" statement generated whenever some user-defined timer 
goes off. This will allow the user to set the context switching granularity, 
or even to remove it altogether. Also, such time-consuming operations as 
dithering, scaling, and the rotation of large pixrects will be done by back­
ground threads, while other NeWS processes keep running. 

Finally, Architech also intends to provide OPEN LOOK and the OPEN 
LOOK NeWS Development Environment (NDE) as soon as Sun and AT&T 
make them available. They see a NeWS-based OPEN LOOK user interface as 
an attractive choice for OS/2 users and developers. 
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XII/NeWS Design Overview 

" No group's talent 
Could be the equivalent 
Of mine and his combined; 
Total harmony between the cuts and the rhyme." 

LL Cool J, Dangerous 

10.1 Introduction 

The X window system development at MIT defined an important stan­
dard protocol for window system development: the Version 11 protocol. 
(The evolution and structure of the X window system are described in Chap­
ter 3.) The industry interest in XlI, the PostScript language, and NeWS 
resulted in the definition of a combined window server architecture: the 
Xll/NeWS merge. Combining the XII fixed protocol with an enhanced 
PostScript language, together with the dynamic development environment 
of NeWS, gives the applications developer a synthesis of standards, func­
tionality, and flexibility[ROBE88]. 

10.2 Goals 

The goal of the merge of XlI and NeWS is to produce a single server pro­
cess that supports the entire semantics of both the X 11 and NeWS 
protocols, allows a single window manager to control all windows, and 
supports portable XlI extensions. This server should be portable to a wide 
variety of hardware. 

If the XlI/NeWS server is to support both NeWS and XlI clients, it 
must correctly implement the semantics of both protocols. Some of the 
design challenges are discussed below. 

Applications built to both window protocols must run side-by-side on 
the screen and present an integrated interface to the user. Thus, a single win­
dow manager must manage all windows regardless of the protocol used to 
create them. A window manager that uses the NeWS protocol can manage 
windows that were created by either XII or NeWS clients. Window 
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managers written to use the X 11 protocol can manage windows created by 
XlI clients, but can only manage windows created by NeWS clients that 
follow the rules of the XII protocol. 

The XII protocol specification[sCHE87] defines a means of extending the 
XII protocol. The existing MIT sample server implementation provides a 
mechanism for implementing extensions, documented in the XII Server 
Extensions Engineering Specification[FIsH87]. While the latter mechanism is 
still under development, the intention is that extension implementations 
that use it will be portable across XlI server implementations. XlI/NeWS 
supports portable XII extensions in the following sense. The extension 
specification requires that a small set of include files and the source to one 
procedure be provided with the server. Without any other source, an exten­
sion supplier should be able to recompile a portable extension with the 
XlI/NeWS include files, link it with XlI/NeWS object libraries, and have 
the extension work. 

10.3 Architecture 

A server for either protocol must perform three major functions: 

Scheduling interpretation of protocol requests. 

Allocation of portions of the display. 

Distribution of input. 

Figure 10.1 shows the structure of the XlI/NeWS server, an architecture 
that provides these functions for both XlI and NeWS. If the XlI client 
and interpreter were omitted, this figure would illustrate the structure of 
the existing NeWS server. If the NeWS client and interpreter were omit­
ted, it would illustrate the structure of the XII sample server from MIT. 

In Figure 10.1, the boxes labelled X represent interpretation or genera­
tion of XII protocol, and the boxes labelled N represent interpretation or 
generation of NeWS protocol. The boxes in the area labelled window forest 
represent windows (called canvases in NeWS), which are portions of the 
screen on which clients can draw. The unlabelled windows in the diagram 
could have been created by either protocol; the protocol used to create them 
does not affect the structure of the window forest or the structure of the 
windows themselves. The boxes in the area labelled event queue represent 
events, and are likewise unlabelled because the protocol used by the recipi­
ent of the events is irrelevant to event queuing and distribution. 
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10.3.1 The Scheduler 

Given multiple clients of a window server, a way must be provided to 
fairly and predictably schedule execution of requests from each. Allocation 
of time between multiple clients is required of all XII servers, and all 
NeWS servers; therefore it is also required of the XII/NeWS server. 

NeWS schedules between lightweight processes. As described in Chapter 
5, a process is a thread of control; a lightweight process is a process which 
shares its address space with other lightweight processes. In NeWS, a con­
text switch may occur when a lightweight process blocks or explicitly 
gives up control. In contrast, X11 schedules between clients. In Xll, a con­
text switch may occur between any two requests, unless a client has 
grabbed the server. 

An Xll client is a source of a sequence of X11 requests. A sequence of 
XII requests is a linear thread of control. Since a linear thread of control is 
a subset of the possibilities offered by a process, the X11/NeWS server rep­
resents XII clients as lightweight processes. 

Context switching and scheduling are entirely internal to the Xll/NeWS 
server and are not dependent on the operating system. An X11/NeWS light­
weight process is represented as a context structure, whose contents include 
the protocol interpreter associated with that lightweight process, and the 
source of protocol to be interpreted. The source of protocol may be a client 
connection or downloaded code. 

Interpreters 

DD···D 
Event Queue 

D 
Display 

Keyboard Mouse 

Figure: 10.1. Xll/NeWS server architecture. 
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Running a lightweight process means calling the associated interpreter 
procedure and passing in the context structure for the lightweight process. 
The interpreter checks a single state field in the context structure to resume 
where it left off when it last gave up control. As it executes, the inter­
preter maintains state in the context structure. To give up control, the 
lightweight process saves a value in the state field that it checked earlier 
when it resumed execution, and returns to the scheduler. 

The scheduler makes no distinction with regard to the protocol inter­
preter associated with a lightweight process. A lightweight process runs 
until it gives up control, and is run again when it is ready. 

10.4 Windows and Graphics in XII and NeWS 

1004.1 Sharing a Screen 

NeWS and Xll are very similar in the way that they treat the screen. 
Both allocate portions of the screen on which a client can draw, called 
canvases in NeWS, and windows in XII. (From here on, these terms will 
be used interchangeably. Detailed discussion of canvases and their relation­
ship to windows is discussed in Chapters 5 and 6.) Both Xll and NeWS 
permit unlimited nesting and overlapping of windows. Both provide for 
expression of interest in events occurring on specific windows, including 
damage (exposure) and device input. 

The Xll/NeWS server has a tree of nested windows for each screen. The 
aggregate of these trees is called a forest. The server allows the cursor to 
roam across screens, in some device dependent geometry. An extension to 
the NeWS protocol for getting the list of screens is provided. 

The structure underlying a node in the forest is called a canvas for histor­
ical reasons. The forest of canvases in the Xll/NeWS server is 
homogeneous. The same canvas structure is used to represent both canvases 
created from NeWS protocol and windows created from Xll protocol. 
Since the forest is homogeneous, if a canvas is reconfigured to expose re­
gions of underlying canvases, damage will be detected on all of them 
whether they were created using NeWS or XII protocol. 

NeWS canvases and Xll windows do have some differences. They provide 
different attributes, imaging models, color models, and font models. A 
more detailed description of how these differences are resolved in the 
XII/NeWS server is given below. 

1004.2 Properties 

Each Xll window has a property list. NeWS canvases do not currently 
have property lists, but will benefit from such an addition. Canvases appear 
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to NeWS programs as PostScript dictionaries; fields of a canvas appear as 
keys in the dictionary that represents it. NeWS programs can access the 
property list for a canvas through a new key in the canvas dictionary. 

XII Properties are quadruples - name, type,format, data: 

name and type 

format 

data 

Both of these elements are XII atoms, which map well onto 
the PostScript language name type. 

The format describes the unit size of data, which can be 8, 16, 
or 32 bits. 

This element consists of data that is handled but not 
interpreted by the server. It is represented by a NeWS string, 
which is essentially an array of 8-bit bytes. 16 and 32 bit 
format are implemented by having a string that is a multiple 
of 2 or 4 bytes long. 

A property is constructed by combining the above elements into a four 
element array of in the order of name, type, format, and data. 

A property list is an unordered set of properties. The most convenient 
data type in PostScript language for unordered sets is a dictionary, which is 
essentially a hash table. The property name serves as the key to a property. 

10.4.3 Display Attributes 

Although XII and NeWS have many display attributes in common, there 
are a number of display attributes that are only accessible through one pro­
tocol or the other. 

For example, X 11 windows have borders, background, and gravity. These 
attributes allow an XII server to immediately tidy the screen after a change 
to the window hierarchy without the overhead of a server-client round trip. 
In NeWS, downloaded PostScript code is used to perform display update 
functions that need instant response like these, and NeWS has no need of 
these attributes. In X l1/NeWS , the window attributes are implemented by 
enhancing the canvas data structure and operations. 

For another example, NeWS protocol provides access to a canvas' arbi­
trary shape, which is not necessarily rectangular. As Xl1 core protocol 
defines only rectangular windows, it only provides access to a canvas' 
bounding box. If an Xl1 client gets a handle on a non-rectangular canvas 
and inquires about the size and origin, it receives the bounding box of the 
canvas in the reply. If an XlI window is exposed by an operation on an 
occluding non-rectangular canvas, the exposed region is approximated (to 
the resolution of the display) by some number of rectangles. 
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10.4.4 Colonnap Access 

Although NeWS attempts to hide the details of the workstation's dis­
play hardware from clients, XII tries to describe them. The XII connection 
setup protocol specifies the pixel depth and colormap models available for 
each screen on the workstation in terms of visual types. One screen may 
have more than one visual type. For example, a framebuffer containing 8-bit 
deep color and an overlay plane offers a single screen with two visual types, 
one 8-bit PsuedoColor and one I-bit StaticGray. 

Each visual type supports the request CreateColormap. For static visual 
types (StaticColor, StaticGray, and TrueColor) , CreateColormap returns 
the single static colormap provided by that visual type. For dynamic visual 
types (PseudoColor, GrayScale, and Directeolor) , it returns a newly­
created colormap. Each visual type has a default colormap, whose initial 
popUlation of colors is not defined in the X 11 protocol specification. 

For devices that offer a hardware colormap, the Xll/NeWS server popu­
lates part of the default colormap with read-only, sharable colors in the 
form of a colorcube whose axes are red, green, and blue. Doing so allows 
NeWS and Xll applications that do not require dynamic colormap access to 
share the colorcube. XII applications needing dynamic colormap access 
either allocate colors from the rest of the default colormap, or allocate 
their own colormaps. An extension to NeWS provides dynamically modifi­
able colors in the rest of the colormap as well. 

Each screen has some number of colormaps installed. When a colormap is 
installed, primitives drawn using pixels assigned from that map appear in 
their correct colors. When any application installs its own colormap, and 
the combined set of allocated colors overflows the hardware colormap, 
other applications (both NeWS and Xll) appear wrong until their color­
maps are reinstalled. The incorrect appearance is a problem in any 
implementation of XII colormaps. 

10.4.5 Imaging Model 

NeWS is based upon the stencil-paint imaging model offered by the Post­
Script language. The stencil-paint imaging model reveals no notion of 
pixels, and allows a PostScript program to set up an arbitrary 2-D coordi­
nate system (called world coordinates), whose units may be fractions of 
pixels. Even the default coordinate system need not be in units of screen 
pixels, as the PostScript language defines the default units to be 1/72 of an 
inch. Due to the arbitrary coordinate system, neither the stencil-paint imag­
ing model nor the PostScript language make any guarantees about which 
pixels are touched when rendering the graphics primitives. (Sections 4.8 
through 4.14 go into more detail about the way in which the PostScript lan­
guage and NeWS implement the stencil-paint imaging model.) 
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Raising the level of abstraction from pixel coordinates to world coordi­
nates has some advantages. If an image is described in world coordinates, 
switching from a low resolution to a high resolution device affects only im­
age quality, not image size. This means that PostScript and NeWS programs 
transfer easily among radically different devices and the image quality mere­
ly increases as the devices increase in resolution or color capacity. Yet 
pixel, or actual device coordinates are still accessible by setting the trans­
formation matrix to be the identity matrix, that is, by setting the world 
coordinate space to be the same as the device coordinate space. However, de­
ferring the transformation of world coordinates into pixel coordinates to 
the server allows the server to utilize matrix multiplication hardware. 
Making no guarantees about which pixels to touch when rendering an image 
allows the server to utilize polygon, vector, and anti-aliasing hardware. 

In contrast to NeWS, XlI specifies a pixel-based imaging model. Pixel 
coordinates are used throughout the XII drawing operations. With the ex­
ception of narrow lines, (i.e., lines specified to have a width of zero), the 
XII protocol specification describes rendering algorithms for all drawing 
primitives that guarantee pixel accuracy. 

The XII imaging model can be thought of as a precise specification of the 
pixels involved in drawing operations when the current transformation ma­
trix is the identity matrix. If a graphics accelerator uses a different 
rendering algorithm from the algorithm specified by the XII protocol, the 
XII protocol specification requires the server to bypass the accelerator. If 
the server device drivers ignore the accelerator, both XII and NeWS draw­
ing operations can use the same rendering algorithms without loss of 
correctness or precision. 

Operations defined in the XlI protocol, but not in NeWS, include ras­
terops, tiling, and stencilling. Similar operations are needed to implement 
the PostScript language imaging model on a bitmap display; they have been 
enhanced to support the XII imaging model in the XII/NeWS server. 

10.4.6 Fonts 

Both NeWS and XlI currently support fonts described in Adobe Charac­
ter Bitmap Distribution Format (bdf). These fonts are provided as ASCII 
files containing information about the family and face of the font followed 
by specific information and bitmaps for each of the characters in the font. 
NeWS and XlI each have a mechanism for converting these ASCII font 
files into a machine-dependent format suitable for efficient processing by 
the window system server. Figure 10.2 shows all the font files and utilities. 

In the case of NeWS, ASCII font files are pre-processed by the dump­
font utility to create binary font files consisting of a font structure 
followed by an array of structures, one for each character. For each font 
family, there also exists an ASCII font family description file, which is 
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pre-processed by the bldfamily (build-family) utility to create a binary font 
family file. NeWS handles outline and stroked-font ASCII formats as well 
as bitmap fonts. 

XII uses a similar scheme to pre-process ASCII font files for subsequent 
loading in response to client requests, using the f c font compiler utility. 
These files consist of data structures containing font information, the 
glyphs themselves, and a number of font properties. 

In X ll/NeWS , both NeWS and Xll font requests are processed through 
an enhanced version of the existing NeWS font machinery. In the case of 
Xll, font and glyph information, as derived from binary font files and 
maintained in NeWS data structures, are mapped to Xll data structures to 
be passed to the X 11 interpreter as font requests are serviced. The 
Xll/NeWS font file format and font compiler are upgraded to Version 2.1 
of Adobe's Character Bitmap Distribution format. They are also enhanced to 
include X 11 font information. 

X 11 assigns no format rules for font names, although it does follow cer­
tain naming conventions for groups of fonts. From the font name, the OS­
dependent code generates the font file name for the file that contains the 
font. Any incompatibilities between NeWS-style and Xll-style font names 
and font file names are resolved there. 

But NeWS understands more than bitmap fonts. Fonts can be scan con­
verted from intelligent spline outlines, or drawn by pieces of PostScript 
code. When an XII application asks for a font, X11/Ne WS parses the name 
by stripping off a trailing digit string, using it for a size, and interpreting 
the rest as a font name. So the XII font "Times-Roman12" is interpreted as 
though it had been generated by the PostScript code fragment "/Times­
Roman findfont 12 scalefont". This technique allows XII applications to 
access a much wider selection of fonts under the merge. 

10.5 Events 

The primary difference between the Xll input model and the NeWS input 
model is that NeWS event distribution consists of message passing between 
lightweight processes within the server; whereas XII event distribution 
consists of sending information to external clients. In the following discus­
sion the term client is a lightweight process in NeWS and a client-side 
program in XII. 

In spite of the major difference in input models, there are many points on 
which NeWS and Xll agree: 

Events are collected from devices and timestamped as quickly as possible. 

Events from all devices are serialized. 



Events are normally delivered to clients in the order generated. Exceptions 
are XII grabs and NeWS events whose timestamps are not the same as 
the time at which they were generated. 

Clients indicate classes of events they wish to receive. 

Events propagate up the window tree, but may be stopped explicitly by 
windows. Exceptions are XII grabs and NeWS global interests. 

Focus for keyboard events can be set explicitly. 

Default mouse and keyboard input distribution follows the mouse. 
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Additionally, there are areas where XU event distribution is a subset of 
NeWS event distribution: 

NeWS events are perceived by PostScript programs as dictionaries; one event 
dictionary can carry all the information needed for XII events. 

NeWS interests are templates of the events or sets of events that match 
them. Such a template may be constructed for any set of events 
corresponding to any X 11 interest mask bit. 

10.5.1 Delivering Events to XII Clients 

In NeWS, PostScript programs form a bridge between the receipt of a 
NeWS event and the delivery of the information in that event to an external 
client. A PostScript program extracts relevant information from a NeWS 
event and writes it to the appropriate external connection. 

In XU/NeWS, events are delivered to an XU client by a lightweight pro­
cess that waits for a NeWS event, then writes it in the form of an XU 
event to its connection. As NeWS provides no mechanism for a lightweight 
process to block on two things at once, the lightweight process that blocks 
on a NeWS event is not the same one as the XU interpreter lightweight 
process, which blocks on a connection read. The lightweight process that 
waits for events is called the input agent. The input agent is a NeWS pro­
gram that runs in the server, but calls XII-specific primitives. 

The conversion of NeWS events to Xll events has several advantages. 
First, an event may be put into the queue with no pre-established expecta­
tion of how it will ultimately be distributed. Second, both NeWS 
lightweight processes and XII clients can receive the same events, improv­
ing the overall integration of the system. 

Given that events are distributed to the input agent lightweight process, 
rather than the XII interpreter lightweight process, interest in those events 
must be expressed by the input agent lightweight process. However, the 
XII interpreter process receives the requests that set the client's interest. 
To reconcile this, the XU interpreter process keeps a pointer to the input 
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agent process, and adds appropriate interests to the input agent's interest 
list. 

10.5.2 Event Distribution Within the Server 

In NeWS, a lightweight process expresses interest in receiving particular 
events by creating a template event, known as an interest. Event distribu­
tion consists of searching the interests, using them as patterns to match the 
event against. For each interest matched by the event, a copy of the event is 
placed on the local queue of the lightweight process that expressed the 
matched interest. The NeWS awaitevent operator returns the top element, 
or the head, of the local queue. 

An event may contain a canvas. In NeWS, when an event is expressed as 
an interest, if it contains a canvas, it is placed on that canvas' interest list, 
otherwise it is placed on a global interest list. The canvas hierarchy deter­
mines the order of the interest search during event distribution. When an 
event is distributed, if the event contains a canvas, only the interest list for 
that canvas is searched. Otherwise, the global interest list is searched, then 
the interest list of each canvas from the canvas under the mouse to the root 
is searched. The search is terminated: 

If an exclusive interest is matched. 

If an interest is matched on a canvas that consumes matched events. 

If a canvas whose interest list was searched consumes all events. 

The bottom-up distribution rule corresponds well to XII device input 
distribution for most cases. The global-interest list serves active grabs 
well. However, the rules for XlI passive grabs (described later) correspond 
better to top-down distribution. Given the possibility of passive grabs, the 
event distribution rules have been generalized in Xll/NeWS. 

Root 

Child of root 

Canvas under pointer-iii. 

Child of root 

} 

Pre-child interests 
stop search on exclusive match. 

stop search on exclusive match 
or on canvas consume. 

Root 

} 

Post-child interests 

----------------~ 
Figure: 10.2. Xll/NeWS event distribution process. 



209 

In Xll/NeWS, each canvas has two interest lists, called pre-child and 
post-child interest lists. To distribute an event that specifies a canvas, the 
server searches the pre-child interest list of each canvas from the root to 
that canvas, then searches the post-child interest list of that canvas. To dis­
tribute an event that does not specify a canvas, the server searches the pre­
child interest list of each canvas from the root to the canvas under the 
mouse, then searches the post-child interest list of each canvas from the can­
vas under the mouse to the root. Only a match of an exclusive interest can 
terminate the search on the way down. The old rules for terminating the 
search still apply on the way up. The global interest list is replaced by the 
pre-child interest list on the root canvas. Figure 10.2 illustrates the distri­
bution process 

The application of this general event distribution scheme to the various 
XII input concepts is described below. 

10.6 High Level XII Concepts 

The X 11 protocol includes a number of concepts that are omitted from 
NeWS. These omissions stem from the expectation that similar capabilities 
can be added as PostScript programs downloaded to the server. In fact, 
NeWS is currently distributed with a set of PostScript programs that im­
plement most of these capabilities. These PostScript programs are not 
distinguished from other PostScript programs by the server, but they are 
special in that they perform functions that are generally considered to be 
system functions. 

Server Process 
pointer, 

Server 
window crossing 

Focus Manager 
events 

focus 
events 

X11 InterpreterLlwp 

events 

xRequests xEvents 

Client Process 

Figure: 10.3. Event flow in Xll/NeWS. 
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Examples of functions included in the XII protocol but not built into 
NeWS are: 

Keyboard Focus. 

Grabs. 

Selections. 

Cursor confinement to a window. 

Shift-modifiers, key mapping, and mouse button mapping. 

One of the PostScript programs that provides system functions 'is called 
the focus manager. It manages the keyboard focus according to the focus 
model chosen by the user. There is only one incarnation of this program at 
anyone time. The focus manager is responsible for maintaining the current 
input focus, and for sending F ocusln and F ocusOut events when it changes. 

Figure 10.4 is a high-level diagram of the flow of representative events 
among the server, the focus manager, the XlI interpreter, and the input 
agent lightweight processes. Arrows within the server process denote 
source and destination of events. Arrows between server and client process­
es denote source and destination of interprocess communication. Both of 
these arrows represent the same network connection; they are shown sep­
arately in order to distinguish the flow of data. The focus manager also 
distributes events to NeWS lightweight processes, but this is not shown. 

10.6.1 Focus 

In NeWS, lightweight processes that want keystrokes to go to particular 
canvases register those canvases with the focus manager. These canvases are 
called focus clients. When a focus client is notified of getting the focus, it 
expresses a pre-child interest in keystrokes on the root. When it is notified 
of losing the focus, it revokes that interest. 

In XlI, the focus is not the destination of keystrokes; rather it is a ceil­
ing on bottom-up keystroke distribution. That is, if the focus window does 
not contain the mouse, then only the focus may get the keystrokes. How­
ever, within the focus window, keystrokes are distributed bottom-up. The 
focus window itself need not be interested in key presses or releases. 

In Xll/NeWS, when a window owned by an Xll client gets the focus, 
its input agent expresses an exclusive pre-child interest in keystrokes on the 
root, and also expresses an exclusive post-child interest on the focus win­
dow. When it loses the focus, it revokes those interests. When an event 
matches the first interest, the input agent looks in a dictionary maintained 
by the focus manager to see whether the focus contains the pointer. If the 
focus does not contain the pointer, the input agent specifies the focus canvas 
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in the event; otherwise it specifies no canvas in the event. The input agent 
then redistributes the event, which may match XII key press and release in­
terests. If there are none, the interest search is terminated by the exclusive 
post-child interest on the focus window. 

10.6.2 Active Grabs 

XII allows a client to actively grab the keyboard or the pointer. Events 
from the grabbed device always go to the grabbing client. A grab can spec­
ify synchronous or asynchronous mode for either or both devices. 
Synchronous mode for a device results in freezing that device until either a 
request explicitly or an event implicitly thaws it. 

The input agent for a grabbing client expresses pre-child interest on the 
root canvas for the device it is grabbing and for the other device if the grab 
specified synchronous mode. When an event matches this interest, the input 
agent calls an X II-specific operator that buffers events for frozen devices, 
checks pointer events against the pointer grab event mask, translates grabbed 
events into XII events, and delivers them to the grabbing client. 

10.6.3 Passive Grabs 

An XII grab specified for a key or a button is a passive grab. A passive 
grab is specified relative to a grab-window. Pressing a mouse button acti­
vates the matching button grab on the highest grab-window between the 
root and the canvas under the mouse, if any exist. Pressing a key activates 
the matching key grab on the highest grab-window between the root and 
either the focus or the canvas under the mouse, depending on whether the 
focus contains the mouse. 

A passive grab is expressed as a pre-child interest on the grab-window. 
Pointer events are always sent with no canvas specified in the event. There­
fore, the highest pre-child interest in the ancestry of the canvas under the 
pointer matches, so the highest button grab gets the event. Keyboard events 
will always match the pre-child interest on the root corresponding to the 
focus. However, when the event is redistributed, the pre-child interest 
search is continued, so the highest key grab above either the focus or the can­
vas under the mouse gets the event. 

When an interest for a passive grab is matched, the input agent calls an 
Xll-specific operator, which caches the event for replay, activates the grab, 
and goes through active grab processing. 
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10.6.4 AllowEvents 

The XII AllowEvents request has many modes. The replay modes redis­
tribute the cached event that activated the grab, giving lower passive grabs a 
chance to match. The other modes re-send buffered events, replacing them 
on the event queue. The event queue is ordered by timestamp. The times­
tamps of the buffered events are left untouched, so they are likely to be the 
earliest on the event queue. If the AllowEvents mode was synchronous, the 
first of these resent events to match the active grab will refreeze the device, 
starting the buffering all over again. 

10.6.5 Crossing Events 

XII keyboard focus and window-border crossing events include more in­
formation about the relationship between the windows that the focus or 
cursor is exiting and entering than do analogous NeWS events. The pointer 
crossing code in Xll/NeWS has been enhanced to put this additional infor­
mation in the crossing events. In response to getting a focus event, the input 
agent calls an XII-specific operator, which goes through the pointer cross­
ing code to determine the details to send the XII client. 

10.7 Selections 

In general, there are two popular selection models found in various win­
dow systems: the request model, and the buffer model. In the request 
model, a selection service keeps track of the clients holding the various 
classes of selection. When a client requests information about a class of 
selection, the service passes that request on to the holder of the selection, 
or returns some means by which the requestor and the holder can communi­
cate directly. In the buffer (clipboard) model the entire contents and 
attributes of a selection are transferred to the selection service, which 
answers requests about selections directly. The request model is more gener­
al, and handles huge selections better than the buffer model, but at the cost 
of client complexity and interprocess communication overhead. 

Xll offers both models, provided that a convention exists whereby a 
client that wishes to inquire about a selection can determine which model is 
in use. NeWS offers a selection service implemented as a PostScript pro­
gram, which provides both models transparently to an inquiring client. To 
preserve the ability of NeWS to support both models transparently, the 
selection service continues to be implemented as a PostScript program. 

In XII/NeWS, the XII interpreter implements SetSelectionOwner, 
GetSelectionOwner, and ConvertSelection requests by sending an event to 
the input agent, which then goes through the standard NeWS selection 
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interface. In NeWS, set and get the selection owner are implemented by set­
ting and getting values in a dictionary. When an X 11 client becomes the 
selection owner, its input agent acts as the selection holder on its behalf. 
To implement XII ConvertSelection requests, the input agent looks in the 
dictionary for the requested selection. If the requested selection does not 
exist, then the input agent delivers an XII SelectionNotify event with prop­
erty None to its client. If the selection exists, but is buffered, then the 
input agent delivers an XII event with the requested contents to its client. 
Otherwise, the input agent sends a NeWS SelectionRequest event to the 
holder, which may be the input agent of an XlI client. The holding input 
agent converts the NeWS SelectionRequest event to an XlI 
SelectionRequest event and delivers the event to the holding client. It is the 
responsibility of the holding client to send an XlI SelectionNotify event to 
the requestor. Note that because NeWS and XII share the selection mecha­
nism, cut and paste between NeWS and XII applications is possible. 

Since an XlI selection is always associated with a window, but a NeWS 
selection does not have to be, an XII GetSelectionOwner request may re­
turn null even if a selection exists. However, XII ConvertSelection 
requests still return useful information, so this discrepancy does not seem 
to be worth resolving. 

The XII protocol has the concept of confining the cursor to one window, 
while NeWS does not. The XlI/NeWS server cursor code is enhanced to 
implement this function for XII only. 

10.8 Modifiers 

XlI clients cannot set the state of a modifier key, but NeWS clients can, 
which results in events being sent to XlI clients as if the hardware modifi­
er really changed state. The set of XII modifiers is restricted to 8, but 
NeWS clients may use more. The first three modifiers have a globally 
defined meaning for XII: Shift, Lock, and Control. Names for shift, lock, 
and control are provided so that NeWS clients may interpret these modi­
fiers the same way as XlI clients. 

Note that by expressing interest in both key presses and releases, and by 
inquiring the state of the keyboard on Focusln and EnterNotify, an XII cli­
ent may keep track of the state of any keys, and therefore can interpret any 
number of keys as modifiers. However, only the state of the 8 modifiers is 
reported with each key press or release, and only the 8 modifiers can be used 
to qualify key grabs. 
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10.9 Memory Management 

NeWS offers garbage collection as a form of storage management (See 
Section 5.8). When a lightweight process creates an object, it gets a direct 
reference to it. When an object ceases to be referenced, it is destroyed and 
its memory reclaimed. X 11 uses a resource database to maintain an extra 
level of indirection. When an XU client creates an object, a reference to it 
is stored in a resource database indexed by resource ID, and subsequently the 
ID is passed around. If the object is destroyed and its memory reclaimed, its 
resource ID will then refer to null. As long as the implementation of a 
request checks for null return values from resource ID look-ups, this is a 
robust approach. 

In the XU/NeWS server, the resource database is implemented as a hierar­
chy of PostScript language arrays and dictionaries. To free resources after a 
client process has quit or "died", the dictionaries for the client's resources 
are removed from the resource database, normally causing them to cease to 
be referenced, and thereby destroyed. However, another NeWS lightweight 
process, most likely a system lightweight process such as the focus 
manager, may have obtained ,a valid reference to some objects in the resource 
database. In order to allow these other references to be flushed, the notion 
of a soft reference is introduced. An operator is provided which takes a ref­
erence to an object from the operand stack and replaces it with a soft 
reference to that object. When the only remaining references to an object are 
soft, an Obsolete event is sent. Any lightweight process that sets references 
to an object to be soft expresses interest in the Obsolete event for that 
object, and responds to a match on that interest by flushing all its refer­
ences to the object. 

XlI objects that may be interesting to NeWS lightweight processes are 
stored in the resource database as NeWS objects. For example, window and 
pixmap resources are represented by canvases. XII objects that are un­
interesting to NeWS lightweight processes or that do not map to NeWS 
object types, notably extension objects and fake objects, are stored in a new 
type of NeWS object, called the opaque type. An opaque object may be 
pushed and popped on and off the stack, saved in dictionaries and arrays, but 
not directly manipulated in any way. 

NeWS lightweight processes are not required to associate resource IDs 
with the objects they create. But since the resource database consists entir­
ely of PostScript language objects, a NeWS lightweight process has the 
option of creating resource IDs and associating its objects with them. By 
doing so, it makes its objects accessible to XII clients. This approach is 
especially useful if a NeWS canvas might be managed by an XlI window 
manager. If a NeWS lightweight process creates an object with no resource 
ID, no XII client can ever find out about it. 
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10.10 Connection Management 

In NeWS, the loop that listens for new connections is implemented as a 
PostScript program, which blocks waiting for a new connection. When a 
connection occurs, the listening lightweight process forks a new light­
weight process, which executes the file representing the connection. An 
XlI connection is implemented the same way, except that instead of execut­
ing the file, the listening lightweight process forks two more lightweight 
processes: the input agent and the XII interpreter. The input agent is writ­
ten as a PostScript program; it sits in a tight loop waiting for NeWS 
events, converting them to XII events, and sending them to the XII client. 
The XlI interpreter process is like a NeWS interpreter process except that 
instead of calling the PostScript exec primitive on the connection file, it 
calls a new primitive, xinterp. The xinterp primitive substitutes the XII 
interpreter for the NeWS interpreter and then proceeds to execute the re­
quests coming in on that connection. When the interpreter process dies, its 
parent lightweight process "kills" the input agent, cleans up, and dies. 

10.11 Authentication 

It is currently possible for the PostScript program that accepts connec­
tions to discover the name of the host the connection originated from, and 
to complete the connection only if that host is in a dictionary of authorized 
hosts. This is the level of protection offered in XII. The XlI access con­
trol requests manipulate the dictionary of authorized hosts. 

10.12 Reset 

The Xll protocol specifies that the server is completely reset whenever 
the number of its clients goes to zero, and the last client disconnects with 
mode set to Destroy. However, in NeWS, many lightweight processes may 
be active without the benefit of a connection. These processes are treated as 
having open connections, and some never die. For example, if the 
lightweight process that listens for connections died it would be impossible 
to connect to the server; therefore at least that process must survive. 

10.13 X11/NeWS Server Differences 

In most cases, XII/NeWS can operate identically as a stand-alone XII 
server and as a stand-alone NeWS server, as well as allow clients of both 
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protocols to function in perfect harmony with each other. However there 
are some differences between the merged server and stand-alone servers, 
most of which are invisible to the application. 

10.13.1 XII Differences 

XlI clients do not see any difference between the XlI/NeWS server and a 
stand-alone XII server. Requests are interpreted exactly according to speci­
fication, events are reported exactly according to specification. However, 
NeWS lightweight processes that do not procure client IDs and associate re­
source IDs with the canvases that they create effectively hide canvases from 
XII query requests. Furthermore, since some lightweight processes never 
die, it was considered unnecessary to reset the server after the death of all 
XII clients. XII clients cannot ever detect that the server does not reset. 

10.13.2 NeWS Differences 

As a side effect of the work that needed to be done to support XII, some 
new capabilities have been added to NeWS: 

The color model for NeWS has been extended to provide modifiable 
color objects. 

The underlying graphics system generates visibility, gravity, and unmap 
notification in addition to damage notification. 

Pre-child interests replaced global interests. 

Window crossing and focus events contain more information than 
they used to. 

The notion of soft references has been added. 

There is a minor incompatibility between previous versions of NeWS and 
XlI/NeWS introduced by pre-child interests. In NeWS 1. 1 , if a canvas was 
specified in a sent event, then the global interest list was not searched when 
distributing that event. In XlI/NeWS, the pre-child interests of the ances­
tors of the canvas specified in a sent event are always searched. Window 
crossing and focus events are also not backwards compatible. Other than 
this, the changes are upwardly compatible. 
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10.14 Summary 

The XII/NeWS server design takes advantage of the great degree of com­
monality between the requirements of the XII protocol and the 
requirements of the NeWS protocol. In X ll/Ne WS, one scheduler allocates 
time between clients of both protocols. One homogeneous window forest 
allocates screen resources between windows created by both protocols. One 
homogeneous event queue provides orderly distribution of events between 
clients of both protocols. One window manager is provided that presents an 
integrated user interface for manipulating all windows created by clients of 
both protocols. One keyboard focus manager is provided that presents an 
integrated user interface for directing keystrokes among clients of both pro­
tocols. One selection service provides exchange of data between clients of 
both protocols. Programs written to use either XU protocol or NeWS pro­
tocol run unmodified, coexisting in an environment that presents an 
integrated interface to the user. 
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Description of the Plates 

Plate 1. 

Plate 2. 

Plate 3. 

Plate 4. 

All 8 plates are screen dumps from NeWS or Xll/NeWS run­
ning on various color workstations. 

NeWS running on the Parallax Graphics Viper display, as 
described in section 9.2, can display live video in NeWS win­
dows. The windows showing the space shuttle and the Viper 
board itself are live video windows; note how they overlap and 
are overlapped by normal NeWS windows, such as the pop-up 
menu controlling the video. 

A Silicon Graphics IRIS running the NeWS-based 4sight win­
dow system. The server supports normal NeWS clients, such as 
the calculator, and also clients using SGl's GL library to access 
the display hardware directly, such as those drawing in the tri­
angular and oval windows. The server uses the IRIS clip 
hardware to restrict these high-performance 3D programs to 
drawing within the NeWS windows using the techniques 
described in section 9.3.2. Note the window borders, showing 
SGl's "house style" implemented as a sub-class of LiteWindow. 

This and the next plate show the NeWS-based human interface 
of a well log interpretation workstation. They are reproduced 
by permission of Schlumberger Technology Corporation. All 
the windows are described declaratively in a Lisp-based system 
that generates code to send to the NeWS server at run-time, 
using Schlumberger's multiple-inheritance extensions to the 
class mechanism of Chapter 6. 

The green window (top-left comer) shows a "map" of the oil 
wells from which data is available. The user clicked on the 
icon to select a well, and the beige window showed its charac­
teristics and the trips (one in this case) made to gather data 
from it. The upper white window shows general information 
about the trip, and the blue window shows the five times in­
struments were lowered into the hole. The lower white 
window shows details of one of the instruments. 

These windows show the data gathered by various instruments 
as they were lowered into the hole. The right-most region 
shows the entire depth interval for which data was collected, 
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Plate 5. 

Plate 6. 

Plate 7. 

Plate 8. 

with the scroll bar showing in orange the area displayed in de­
tail in the rest of the window. Various scrolling modes, 
including continuous, page, and thumb, are implemented entire­
ly in NeWS. The user selected a curve (the left-most blue one) 
which caused a graphic attributes editor to appear (yellow win­
dow). Clicking on an item (the color of the curve) pops up an 
appropriate menu (the color menu) to modify the selected 
graphic attribute. 

This and the next plate show the NeWS Cookbook, a hypertext 
containing NeWS reference material and examples implemented 
in NeWS by Pica Pty. Ltd of Woolloomooloo in Australia. 
The spiral-bound notebook (note the spiral-shaped window) 
can be read sequentially, or the index tabs at the side allow 
quick selection of topics, or the user can click on any text in 
italic to follow a link to another page. Pages can be "tom off" 
and left visible for easy reference. 

The window at the top left is the cookbook itself, open to the 
contents page, but the other two pages have been tom off (note 
the top edge). The user clicked on the words Fob Watch to 
start the "Tempus Fugit" clock client, part of whose cps code 
is visible in the lower right page (see Chapter 7). 

The cookbook is open to a page describing a factory simulation 
example. Below is a control panel for the simulation, imple,.. 
mented with the Lite/tern sliders and switches described in 
Chapter 6. The lower left window shows the progress of the 
simulation, with dynamically updated images of the valves and 
tanks, and graphs. 

AT&T's OPEN LOOK graphical user interface specification has 
been implemented. in a number of ways. These three NeWS 
applications use OPEN LOOK sub-classes of Lite. The two 
lower windows are the main window of a paint program imple­
mented entirely in NeWS, and the property sheet that sets the 
size and color of its brush. Lon Chaney appears courtesy of a 
NeWS-based hypertext browser - the contents of each card can 
be either text or PostScript programs. The spline curves outlin­
ing parts of the face in the top right window are generated by 
an experimental drawing program; they allow the user to trace 
parts of an image by adjusting the control points of the 
splines, and output PostScript programs generating the shapes. 

The Xl1/NeWS server, described in Chapter 10, runs both X 
and NeWS applications. The user is unaware of the protocol 
used by an application; the window systems coexist completely. 
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The characters on the screen, drawn by both NeWS and X, were 
scan-converted on-the-fly from outlines. Open Fonts Type­
maker makes it easy for font suppliers to generate 
"intelligent" outlines in the F3 format, like the New Century 
Schoolbook and Snell Roundhand examples here, which can be 
read by TypeScaler in the Xll/NeWS server. The window with 
the grid shows an expanded view of an outline A, and the 
result of TypeScaler scan-converting it 20 pixels high. The win­
dow at the right shows New Century Schoolbook Roman in a 
range of sizes. These, and the "Text Sample" windows, were 
drawn by NeWS applications. 

To the lower left is Fileview, a Xll directory browser imple­
mented using Sun's XView XII toolkit. This too uses outline 
fonts generated by TypeScaler. 

The window borders for both X and NeWS applications are 
provided by an OPEN LOOK window manager written entirely 
in NeWS. It provides NeWS clients with a class, similar to 
LiteWindow, from which they can subclass their top-level win­
dows. And it behaves like a normal XII window manager, 
intercepting a client's attempt to map its top-level window 
and reparenting it to be a child of a decoration canvas. 
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Plate 1. 

Plate 2. 

Live video of the space shuttle launch and of the Parallax 
Graphics Inc. Viper board on which pNeWS is running. 

II 

Silicon Graphics IRIS running 4sight, with high-performance 
3D graphics in triangular and oval NeWS windows. 



Plate 3. 

Plate 4. 

Top-level human interface of Schlumberger well log interpreta­
tion workstation. 

A lower level of the Schlumberger interface, showing data 
from instruments lowered into the well. 
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Plate 6. 

-­
~ ----

The NeWS Cookbook, open to the contents page, 
torn-off pages describing the Fob Watch example. 
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Another page from the NeWS Cookbook, describing the 
factory simulation running in the lower two windows. 

and two 



Plate 7. 

Plate 8. 

OPEN LOOK applications implemented in NeWS. 

OPEN LOOK applications implemented in both X and NeWS, 
on Xll/NeWS, all using Open Fonts outline font technology. 
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