® Hypéé;News lets

you separate
application and
interface design to
link a new interface
to an old application
with very little

programming.

Compléting
the Job of
Interface Design

JiM RUDOLF, Ergon Informatik
- CATHY WAITE, Turing Institute

ith today’s
powerful workstations and high-resolu-
tion bit-mapped displays, developers can
take advantage of windows, mice, and
menus to create a more friendly user in-
terface. Unfortunately, while the user’s
workload goes down, the developer’ goes
up. Graphical user interfaces can be com-
plex and require a surprising percentage
of the application’s total development ef-
fort." Moreover, people without pro-
gramming skills, like graphic artists and
cognitive psychologists, are becoming in-
volved in interface design, which requires
that the design be more accessible to non-
programmers.

User-interface management systems
are generally used to support the develop-
ment and execution of applications with
interfaces. UIMSs vary in the number and
applications with range of functions de-
scribed. Some give only runtime support;

others support the specification, design,
implementation, execution, and evalua-
tion of the interface.

In the old days, only programmers
could develop GUIs because develop-
ment was done exclusively with a textual
specification language, which was then
compiled and linked to the application. To
make matters worse, there was no run-
time support for communication or
graphics. Fortunately, things have
changed a great deal. Modern UIMSs
support rapid prototyping using direct
manipulation, so little textual program-
ming must be done. With the advent of
object orientation, newer generation

UIMSs now define widgets as objects that

can draw themselves and communicate

with each other. Thus, an entire complex-
ity layer is hidden from the interface de-

signer.2

HyperNews, whose development is

IEEE SOFTWARE

0740-7458,/92/1100/0011/$03.00 © IEEE

11

RootObject

I
GraphObject

BackGround

ControlObject
l

Bution
EdifText
Slider
PullDown
ColorSelect
Convas

Card Stack

Figure 1. The class hierarchy of HyperNews pre-
defined object types. Classes inwhite boxes are abstract
superclasses. Shaded boxes contain objects that can
exist in a user interface.

briefly outlined in the box on the facing
page, is one of these newer generation
UIMSs. HyperNews draws its design
model from HyperCard, following
HyperCard’s application structure of
stacks and cards. This structure simplifies
GUI design and produces an interface that
is easier for users to learn. HyperNews
differs from HyperCard, however, in a
number of ways:

¢ HyperNews was developed in
News, a network windowing system thatis
a superset of PostScript. As a result,
HyperNews has PostScript’s powerful,
device-independent graphics model. Post
Script’s graphics capabilities, important
for rendering on high-res-
olution bit-mapped dis-

access the Macintosh operating system,
which is not a trivial operation.

HyperNews supports the rapid pro-
totyping of GUIs by using specialization
levels to group changes according to com-
plexity. Many levels use direct manipula-
tion to reduce the emphasis on program-
ming, making quick, iterative design
possible.’ Thus, a variety of users can test
many alternatives in a short time.

Those who want the flexibility and
power to create more elaborate interfaces
can do so by writing scripts. HyperNews
incorporates a flexible interface-to-appli-
cation linking model that is suitable for a
range of applicadon requirements.

HyperNews can be used to implement
both the interface and the application, or
to define a new interface for an existng
Unix applicadon. Thus, the same environ-
ment can generate interfaces for new ap-
plications as well as for existing applica-
dons with a command-line interface.

The emphasis in HyperNews is on
flexibility. Interface developers with di-
verse skills can create GUIs using different
levels of customization, resulting in differ-
ent degrees of sophisticadon. GUI consis-
tency is encouraged, but not enforced. Like-
wise, a number of application linkage
models allow the use of a HyperNews inter-
face on a variety of programs requiring dif-
ferent levels of support from the interface.

CREATING THE INTERFACE

Much ofa HyperNews interface can be
designed without writing any code at all.
With direct manipula-

tion, you can design a

plays, are much greater NEEEEEESIEEENEEEEN GUJ simply by creating,
ﬁan thgse (;)f’ Hype.rT?lk, MUCh Of a HyperNeWS moving, at}?d resizinggb_

yperCards’s scripting . jects on the screen. Ex-
language. PostScript also InTerfUCe can be perimentaton with dif-

supports the importing
and exporting of device-
independent graphics in
ASCIL

¢ While both Hyper-
Card and HyperNews support C,
HyperNews also supports Prolog and
Lisp, languages used at the Turing Insti-
tute.

¢ In some instances, HyperCard must

designed without
wrifing any code af all.

ferent interface styles is
possible with less effort
in HyperNews com-
pared to specification
languages and tool kits,
and immediate feedback can result in ex-
tremely fast development.

Design model. The stack-based design

model consists of individual windows that

representa stack of items holding different
pieces of information. Itis not unlike a pile
of index cards, in which the top card is the
only one visible.

To display different informaton, the
cards are rotated to move a new card to the
top. Cards can share a background, which
holds elements common to each. A back-
ground might consist of graphics to be dis-
played for each card or labels shared by
text fields.

Objects used for interaction, like
menus and buttons, are called control ob-
jects. Control objects can reside on a card,
background, or stack (objects on a stack
are shared by all cards). Ifa label or graphic
will be shown for a subset of cards, it
should be placed on a background that the
cards in the subset share. Control objects

shown on every card, like a help button,
should reside on the stack.

HyperNews objedts. Designers use a num-
ber of objects when building a GUI, some
of which are used often but are not trivial
to implement, even for seasoned pro-
grammers. These objects are reusable in
HyperNews, which keeps designers from
having to reinvent the wheel and design
common objects from scratch. The ob-
jects provide basic functions. If these are
not sufficient, you can create new objects
by modifying existing ones.

Figure 1 shows the predefined object
types in HyperNews. Each system object
represents a class, and the class hierarchy
defines class interrelationships.

The classes shown in white are abstract
superclasses that simply define behavior
and structure common to their subclasses.

¢ RootObject. Defines instance vari-
ables and nongraphic methods common
to all HyperNews object classes.

¢ GraphObject. The sole subclass of
RootObject, it defines graphical behavior
shared by all objects.

¢ ControlObject. Defines the behavior
shared by all the interface objects that can
exist on a stack. Its subclasses provide a set
of predefined objects that will satisfy the
basic needs of interface developers. Figure
2 shows sample control objects in the
NewObjects stack.

The nine shaded classes in Figure 1 rep-

12

NOVEMBER 1882

resent objects that can exist in a user inter-
face. These classes are likely to make up
the graphical porton of an interface; each
class has visual characteristics, and each
can respond to user input. They are

¢ BackGround. Defines behavior for
the background.

¢ Curd. Defines behavior for an indi-
vidual card.

¢ Stack. Defines behavior for a stack.

¢ Button. Objects in this class include a
pushbutton that inverts when you click on
it; a checkbox, which you can toggle on or
off; a drawing button, which can have one
or more HyperNews drawings pasted into
it; and a transparent button used to create
a transparent field that detects input.

¢ EditText. Represents text fields. You
can use objects in this class, which have
varying attributes, to create static text
fields and editable fields with or without a
scroll bar.

¢ Slider. Provides scroll bars and per-
centage-done indicators. '

¢ PullDown. Provides menus.

¢ ColorSelect. Defines the color for an
object’s attribute, such as the stroke and fill
colors for a button.

¢ Canvas. This class is a special case. Its
main purpose is to provide access to a re-
gion of the screen and to let existing appli-
cations incorporate a HyperNews inter-
face with few changes other than to the
application’s I/O routines. Unlike the
other subclasses of ControlObject, a Can-
vas object has very little predefined behav-
ior. The HyperNews terminal emulator is
an example of an application that uses a
Canvas object.

HyperNews’s inheritance between ob-
ject types is different from HyperCard’s
approach. In HyperCard, there is no in-
heritance, and similar methods are not
shared among types. HyperNews also in-
cludes more control object types and ab-
stract superclasses.

Implementing the inferface. To design a
HyperNews interface, you begin with a
stack. Essentially, a stack has the same role
as a window — to define a movable, possi-
bly resizable area of screen that represents
an application. A HyperNews application
will consist of one or more stacks, just as

other window-based applicatons will have
one or more windows.

To create a new stack, you simply
change an existing stack and save it with a
new name. A template called the Unttled
stack is provided as a suggested starting"
point. This template provides a shape for
the stack, a text field for the stack name, an
iconify button, and navigaton buttons to
move among cards. If you’d rather not use
it, you can create a different stack and copy

it just as easily.

Once you create a stack, you choose a
control object that has the desired appear-
ance and behavior. (If one doesn’t exist,
you'll have to choose the next best thing
and customize itlater.) It may reside on the
NewObjects stack or on some other, al-
ready created stack. You then copy that ob-
ject from the original stack and pasteitto the
new stack, where you can then change its
appearance or behavior if desired.

HYPERNEWS TO HYPERLOOK

HyperNews development began in 1987 at the Turing Institute, and the first internal
release was completed in 1988. A later release was made available for nonprofit use in
1990. It has been used for various commercial and research ventures, including at least

four ESPRIT projects.

HyperNews continued to evolve until spring of this year, when the Turing Institute
made it available commercially. The new product, called HyperLook, is a more robust
and commercial-quality version of HyperNews. A single-user license is $1,095.
Contact the HyperLook group, 44 (41) 552-6400 fax: 44 (41) 552-2985.

HyperNews was written entirely in the News windowing system. In the current ver-
sion, the kernel consists of roughly 11,000 lines of code, with an additional 10,000 lines
of code in the form of stacks. It requires OpenWindows; and runs on Sun Microsystems

workstations.

NewObjects

(Feel free to change or to add objects below)

[J CheckBox

The quick fox jumped over the lazy dog

| PullDown

1

[Single-line text field

Scrollable text field

&

el
y

Figure 2. The NewObjects stack.

IEEE SOFTWARE

13

EditTextInfo Systeminfo: EditText(StaticText)
\‘\\
Name:l StaticText l T 4
™
Fon:| Timeslalic || 18point || Left |
Value: [] Editable
Introduction [scrolibar
This stack lets you change B Transparent
HyperNews system parameters. These (] Boxed
have default values when HyperNews - D One line
is started.
. SetValue
Stroke: . Fill: D ScrollFill: D ScrollCol: .
Figure 3. The info stack for EditText objects.
/users/newsdev/Draw/robot .draw - /% i

@ El<RN0OI

e sErea5kE

Figure 4. The HyperNews drawing tool.

A control object pasted onto a stack will
always be placed on the current card. From
there, you can move the control object to the
background of the current card or to the
stack, where it will always be visible.

The process of copying and pasting

objects to create new ones is often referred
to as prototyping.” The existing object is
considered a prototype on which a new
object will be modeled. Prototyping dif-
fers from instantiation, in which a message
callec ‘Bv” is sent to a metaclass to create

a new object. For many users new to ob-
ject-oriented philosophy, the concept of
prototyping is easier to comprehend than
instantiation. To create a new scroll bar,
just select one, copy it, and paste it.

Thus, HyperNews lets you duplicate
objects across stacks. You can transfer pre-
viously developed interfaces and their ob-
jects from one stack to another in a
straightforward manner. Using objects
from an existing stack, you can create a
similar look for the new stack, you provid-
ing consistency simply through copy-and-

paste operations.

Spedalization without programming. A cop-
ied and pasted objectis considered to be in
the same class as the prototype object until
you modify it. Once you do, the new ob-
ject becomes specialized and effectively
defines a new object class, which is a sub-
class of the original object. In this way, you
can make an object specialized and then
prototype it many times to create multiple
copies of an object class you define.

Although you need some program-

| ming knowledge for more elaborate

stacks, you can do a surprising amount of

'\ specialization without programming. Dif-

ferent ways of modifying an object are

| broken into specialization levels. At the
~ higher levels you can use direct manipula-
. tion without programming; at the lower

| ones, you must use the scripting language

. (PostScript).

Editing the stack. The highest specialization

level is simple stack editing, which in-

. volves deleting or adding objects or
- changing their appearance. When a stack

is in edit mode, you can create or delete
new cards and backgrounds, add new con-

| trol objects, or delete or modify existing

control objects by moving or resizing
them with the mouse.

Changing object afiributes. 'The next level of
specializatdon involves changing the values
of object attributes. accessible via an
object’s “info stack.” Every object has a
number of attributes that affect its appear-
ance. Typical attributes include the
object’s color and the font style and size
used for displaying its text.

14

NOVEMBER 1982

Figure 3 shows the infostack for Edit Text
objects, called the EditTextInfo stack. It has
anumber of flags that determine if the field
is outlined with a box, if it has a scroll bar,
and if a user can edit the text. It also has
four ColorSelect objects along the bot-
tom, which define the colors used to dis-
play different areas of the EditText object.
Other info stacks display similar object at-
tributes that you can modify with a mouse
click or a few keystrokes.

The info stack concept is similar to that
used by HyperCard, except that you can
specify a link in a HyperCard button’s info
dialogue. By pressing a button, the user
can then create a link to another card. In
HyperNews, you must write a one-line
script to make a link to another card.

Haborate visual changes. You can use an
object’s info stack to modify certain visual
attributes, but the changes you can make
from the info stack are limited. To make
more elaborate changes to the appearance
of stacks and buttons (at the next level of
specializaton), you need the HyperNews
drawing tool, called HyperDraw, which is
shown in Figure 4.

HyperDraw, a direct-manipulation
graphical editor, is used to create all the
graphics in HyperNews. It provides facili-
des for creating text and graphics using the
mouse and keyboard. Besides being a
complete drawing tool, HyperDraw con-
nects the interface to the graphical world
outside HyperNews. It can export graph-
ics into a PostScript file and import digi-
tized images and graphical descriptions in
a number of formats. Once graphics are
imported into HyperDraw, you can use
them for the same purposes as any drawing
created within it.

In HyperCard, graphics arc created
with a paint tool, implemented as a tear-off
menu that can be visible atall imes. While
some of its operations are more sophisd-
cated than those offered by the drawing
tool, it cannot easily import or export
other graphics formats.

(reating stack graphics. At the next level of
specialization is the creation of stack
graphics. To create graphics for a stack ob-
ject, you develop them in HyperDraw and

then paste them into the stack. The new
graphics replace the existing stack
graphics, and the new stack shape is de-
fined by the outline of the new graphics.

To alter the appearance of a stack, you

may only want to change
the color scheme, or you

Figure 5 shows another example of a
nonrectangular stack. To define this stack,
you first create four rectangles with a hor-
izontal line near the top within
HyperDraw. You then copy the drawing

to the Clipboard stack

and paste it into an exist-

may want to do much [i TR L | ing stack. Finally, you add
more, such as adding text using EditText ob-
complex graphics and HypefNeWS Iets you ~ jects, and add graphics by
char;(ginTg thz zhape oliFhe fransfer previously gasting quwings into
stack. To a raphics, . utton objects.

you create them i Oeveloped inferfaces i outtine of the
HyperDray, copy them ﬂnd The"- 0b|eCTS from stack is defined as the
to the Clipboard stack, outer boundary of the
and then paste them into (1€ ST(]CI(to ﬂnomer graphics that make up the

the stack being modified.
You are not reswricted

to a rectangular stack shape. Unlike most
other windowing systems, News supports
canvases, and thus HyperNews stacks, of
arbitrary shape. The EditTextInfo stackin
Figure 3, for example, could not have been
implemented in most windowing systems
because of its protruding buttons in the
lower left corner.

stack. Using this tech-
nique, you can create a
variety of unique stack shapes.

Button graphiss. Another way HyperDraw
can be used to modify the appearance of a
GUL is to create button graphics. As you
do for stack graphics, you paste a drawing
created in HyperDraw into a button via
the Clipboard stack. The drawing can con-

Online directory

Home address
and phone

Main Index

(Click on the figure to access the information)

“

Work address
and phone

System
information

1

I

1

Figure 5. A specialized stack shape.

IEEE SOFTWARE

15

%

[A]

[B]

[C]

Figure 6. Specialized buttons. () Drawing, (B) sequence of drawings, and (C) sequence of images.

sist of encapsulated PostSeript or digitized
images that have been imported, as well as
graphics created within HyperDraw.

Figure 6 shows examples of drawing
buttons. Figure 6a shows different buttons
with single drawings, including resize but-
tons used in the corners of resizable stacks
and an iconify button.

Figure 6b shows examples of two
groups of drawings that can be pasted into
the same button for a cy-
cling effect when the but-
ton is clicked on. By past-
ing multiple images into a
button, you can generate
an animated sequence.
Figure 6¢ shows three
digitized images that can
be pasted into a drawing
button in a sequence sim-
ilar to that for drawings.

In contrast, Hyper-
Card graphics are created on cards and
backgrounds using the painttool. The pri-
mary way to customize a button is to asso-
ciate an icon with it. If the set of icons
provided with the system is not sufficient,
you must use Macintosh resources outside
HyperCard.

Spedalization with programming. To make
more substantial changes to an object’s
appearance or to add behavior, you must
write a script that will define new meth-
ods for the object. An object’s scriptis a

L

HyperNews lefs you
customize both object
behavior and
appearance.

setof methods written in PostScript. The
methods are local to the object and are
invoked when the object receives a mes-
sage of the same name.

PostScript is a stack-based language
with a postfix syntax. In HyperCard,
scripting is done with HyperTalk, an easy-
to-learn language with a flexible syntax.
However, although PostScript is more dif-
ficult to learn, it has built-in graphics op-
erators that can create so-
phisticated graphics to let
you customize object ap-
pearance. Tt also has con-
ventional operators for
customizing behavior.
HyperTalk lets you
customize only behavior.

Appearance. By redefin-
ing the routine that deter-
mines how an object is
drawn, you can dramatically alter an
object’s appearance. To do this, you
redefine the Draw method, defined in
every class and invoked by HyperNews
when the object must be redrawn.

For example, the drawing routne for a
pushbutton object draws a rectangle with
rounded corners and a centered label. You
can override this method by defining a
Draw method in the object’s script. If you
wanted to, you could write a method that
reads an instance variable denoting tem-
perature and use that method to deter-

mine what shade of red or blue to redraw
the button.

Behavior. The behavior of most control
objects is initiated when you click on the
mouse. Behavior is determined according
to the ways the object responds to user
input. When you click on a control object,
HyperNews sends the Action message to
the object. If you do not define an Action
method for the object, the message is ig-
nored.

You can change an object’s behavior or
supplement it by adding methods to its
script. Generally, object responses fall in
two categories, semantic and feedback. By
design, HyperNews provides only feed-
back. An example is a button inverting ora
menu expanding when you click on it.
HyperNews acknowledges user action but
does not act on it. Semantic actons are left
for you to define in the Action method,
because each object will most likely have
application-specific behavior beyond the
scope of HyperNews.

Adding system attributes. You can create new
methods and instance variables in Post-
Script to specialize an object type. The
new structure and behavior are readily ac-
cessible from the script, but only if you
have some programming experience.

Since a new attribute defined in an ob-
ject will probably be represented by an in-
stance variable, you should be able to
modify the instance variable using a mouse
click. But this will require a more powerful
type of specialization when you define a
new object class whose object attributes
can be set using direct manipulation
through the info stack.

To illustrate, suppose a programmer
defines a new Boolean instance variable
called HalfSize for a subclass of Button
that would render the object at halfits nor-
mal size. The Draw method is redefined to
check this attribute and draw the object at
half size if the instance variable is true.

This feature would be easy to use, ex-
cept that a graphic designer would have
trouble accessing the attribute’s settng.
To remedy the situation, the programmer
could copy the ButtonInfo stack, renamed
perhaps HalfSizeButtonInfo, and then

186

NOVEMBER 1882

specialize it. An additdonal checkbox could
represent the current state of the HalfSize
instance variable, which a designer could
read and modify using the mouse. Future
users will not know if the system defined
this object class or if it is a specialized sub-
class. Thus, any system extensions will be
seamless. As the system evolves, changes
will be completely integrated.

By combining the two specialization
techniques of direct manipulation and
scripting, HyperNews provides a flexible
and extensible interface development sys-
tem. Not only can you design much of the
interface without programming, but you
can define new object types with new attri-
butes that can be modified through direct
manipulation alone.

COMMUNICATION CAPABILITIES

Once you have designed the interface,
you can run the resulting stacks in
HyperNews. At runtime, HyperNews
provides communication capabilities
among all HyperNews objects, such as
control objects, cards, backgrounds, and
stacks. Also, each stack can communicate
with a client — a Unix application in C,
Prolog, or Lisp — through HyperNews’s

high-level-language interface.

Communicating among objects. Objects in
HyperNews communicate by passing
messages. When an object receives a mes-
sage, it tries to execute a method with the
same name as the message. Standard
methods are defined for each object, and
you can define new methods using scripts.
HyperNews translates input events, such
as keyboard presses or mouse clicks, into
messages and passes them on to the appro-
priate object.

The route that messages take when
they go unanswered is defined by the
HyperNews message hierarchy, shown in
Figure 7. If an object doesn’t understand a
message, it passes the message ro its par-
ent, as defined by the message hierarchy.

The hierarchy follows a front-to-back

order, with control objects to the front,
and the stack (or a client, if one exists) the
farthest back.

For example, if a button gets a message

it doesn’thave a method for, it will pass the
message on to the card. Likewise, the mes-
sage will be passed on to the background,
the stack, and the client (when one exists),
until a receiver for the message is found. If

none of the objects in the hierarchy can .|

process the message, it is discarded. This
technique is called unreliable message
passing, because there is no guarantee that

a message can be handled by an object.

Because a message that goes unhandled
will not raise an error condition, you can |
include message sends to objects that do
not exist (or a client yet to be imple-
mented), without constructing test stubs.
“When you add the new objects (or attach

the client), the messages will automatically
be handled.

BackGroung]

Figure 7. The HyperNews message hierarchy.

Figure 8. The HyperCard message hierarchy.

IEEE SOFTWARE

17

Interface-management system
Dialogue Application- Application
User Presentation control interface functionality
model o

T

Bypass

Figure 9. The Secheim Model of a user-interface management systen.

Figure 8 shows the HyperCard mes-
sage hierarchy, which is similar to
HyperNews’s structure; a message travels
front to back until an object can handle it.
However, HyperCard does not support
unreliable message passing. All messages
must be handled, or an error is reported.
Additionally, the HyperCard application
is at the top of the message hierarchy, with
clients (in the form of external functions),
between the stack and HyperCard.

Communicating with clients. Although you
can develop an applicaton completely
within HyperNews, interfaces in Prolog,
C, and Lisp are also provided for applica-
tions not suited to- PostScript, for pro-
grammers not willing to learn PostScript,
or for communicating with clients. These
interfaces provide an effective way for the
different parts of the application to com-
municate with the HyperNews interface.

Each HyperNews stack can have one
client — a Unix process — associated with
it, and a client can be connected to mult-
ple stacks. When the clientis connected to
a stack, it can communicate with any ob-
ject in the HyperNews address space by
specifying the names of the receiving ob-
ject and the stack on which it resides. Ob-
jects can communicate with another
stack’s client by sending the stack a mes-
sage that it cannot process. Clients are typ-
ically activated when the associated stack is
loaded. However, a client can load a stack
and create a link to it atany time, as long as
IyperNews is active.

After connecting to the HyperNews

environment and a stack, a client will reg-
ister interest in receiving certain messages
from the stack. Registering interest means
that an application function, or callback,
will be called whenever the registered
message is received from the stack. If an
unregistered message is received, it will be
ignored. This policy is in keeping with the
way HyperNews handles unreliable mes-
sages.

While not responding to a message
from HyperNews, the client waits for
events from the stacks to which it is con-
nected, and executes the associated call-
back when a message is received. When
more than one callback routine is regis-
tered with each message, the routines are
executed in the order in which they were
registered.

Sending a message from a client to an
object is similar, except that the message
need not be registered. The client speci-
fies the HyperNews object by specifying
the stack name and the object on the stack,
the message to be sent, and the arguments
to be sent with it.

LINKING TO THE APPLICATION

Figure 9 shows the Seeheim model® of
a UIMS, which defines the logical struc-
wure of the UIMS’s runtime component
and hence models how the UIMS com-
municates with the applicaton functions.
Presentation deals with the external pre-
sentation of the interface, and generates
the images that appear on the screen. It
also deals with the input devices, convert-

ing raw user input into forms other inter-
face components can use. Dialogue con-
trol defines the structure of the dialogue
between the user and the application. De-
pending on input from the presentation or
application, dialogue control defines the

state of this interaction or dialogue.

The third and generally least devel-
oped component of the Seeheim model is
the application-interface model. This
component mediates between application
functions and dialogue control. It lets you
explicitly specify the communication proto-
col between the UIMS and the application.

The fourth component, sometimes
called the bypass, lets the application-in-
terface model and presentation communi-
cate directly. The bypass is used only
under exceptional circumstances, and
many believe that dialogue control should
not be short-circuited in this manner.
Doing so can create fuzzier borders be-
tween components and make it harder for
the design to be modular. For this reason,
we do not describe the bypass further.

With these components, you can link
HyperNews interfaces to internal applica-
tions, which were developed within
HyperNews, to external applicatons, or
to existing applications developed without
HyperNews. You can also link to more
than one application.

Linking is done primarily through the
application-interface model. The model
can be only a conceptual link of applica-
tion and interface, or it can be an indepen-
dent runtime component that mediates
between the two. How much you can sep-
arate the interface from the application
depends on how concrete the application-
interface model is.° The more concrete
the model, the easier it is to develop the
interface and applicadon independently.

Notall applications benefit from being
separate from the interface. In some appli-
cation domains, such as drawing tools, the
application #s the interface, and system
performance may decrease if you were to
separate the two. For the most part, how-
ever, there are many advantages to main-
taining a strict separation. One is that de-
signers without programming skills can
design interfaces, while programmers de-
sign and implement the application. If the

18

NOVEMBER 1982

application-interface model is concrete
with a well-defined communication pro-
tocol, designers can experiment with and
develop several interfaces for the same ap-
plication, freely interchanging them.

Internal applications. When the applica-
don and interface are linked only concep-
tually, you can implement the application
entirely in HyperNews. You add functions
to HyperNews objects merely by wridng a
script. The application-interface model
exists only as the set of methods that define
the functional core. Figure 10 shows
HyperDraw as an example of an internal
application-interface model. Each object
in HyperDraw has scripts added to define
its behavior. Most of the functionality is in
the Canvas object, which knows how to
draw, manipulate, and save PostScript
graphics.

A dghty coupled application and in-
terface is good for applications like draw-
ing tools because an effective drawing tool
is highly interactive and provides instanta-
neous user feedback. The performance of
the system would decrease dramatically if
the interface had to communicate with an
external client while the user is interac-
avely resizing or moving a component.

One way you could improve the per-
formance of such applications is to add
more information to dialogue control so
that it knows about the drawing objects
and is able to resize or move them without
communicating with the application.
With an interactive drawing tool, how-
ever, you would have to move virtually all
applicadon information into the interface
because the interactive aspects more or
less consdrute the entre applicadon. The
application would be left with only the
functions of saving the drawings to, and
reading from, external files.

Thus, to develop a drawing tool in
HyperNews, you would want to write it
directly in PostScript. Although by doing
so, you can’t physically separate the inter-
face and the application, neither can you
separate them conceptually, so physical
separation would not be wise anyway.

You can also define an application in-
ternally in HyperCard by adding scripts
(in Hyper'Talk) to objects. For an internal

application-interface model, HyperNews

and HyperCard actin much the same way.

External applications. The internal appli-
cation-interface model requires program-

mers to learn PostScript and work in'.

HyperNews. When this is not desirable or
possible, interfaces can be built using the
client interface without programming in
HyperNews atall.

These external models sacrifice some
efficiency because all interactions must be
passed from the GUI to the application
and back again. But the reward is a cleaner
separation between the applicadon and in-
terface, which means that interface de-
signers have a much easier job. By using
direct manipuladon and being aware of
the messages sent when the user interacts
with each object, they can construct an
interface. There is no need to learn a new
programming language or have in-depth
knowledge of HyperNews. Moreover, the
sacrifice in efficiency is not serious; the

results are certainly adequate for pro- |
totyping a design. ;

Figure 11 shows the external applica-
tion model. The structure reflects the de-
velopment of the Optimist system,’ which |
was funded by an oil company to assist
geologists in oil exploration. The applica- |
tion-interface model, a Unix process, ex- |
ists outside HyperNews and is bundled
with the application functions. The model |
again exists conceptually —not asa set of |
methods, as in HyperDraw — but as the
mapping from HyperNews messages to |
application functions within the applica- |
tion process. !

Optimistis a cooperative expertsystem |
that acts as a colleague. The user and Op-
timist interact to assess the probability of |
finding oil at a prospective site. The sys- |
tem argues its case on the basis of consis- |
tency with previous decisions, and the user |
supplies extra knowledge.

These discussions are highly interac-
tive, making a good user interface essen- |

News HyperNews
} Dialogue Application- Application
User Presentation mm?ol interface ~ |e—s— fuﬁfﬁonalﬁy
model -
Figure 10. HyperDrauw: the internal application model.
News HyperNews Unix process
) Dialogue Applicuﬁon- Application
User Presentation control interface | functionality
model

Figure 11. Optimist: the external application model.

IEEE SOFTWARE

19

HN Chess

%

8§ RN B Q KB NR 8 R N B Q KB NR
7 PP PP PP PP 7 PP PP = P P P
6 — * — & — & — % 6 — % — * — k -~ %
S % - % - %k * - 5§ % - % * o= %
4 - * - * — *® = % A U T R
3 0« - % - ok — k= 3 x - * - k = %
ZpppPpPPPCPP 2 -ppPPPPPTP
1 r n b g kDb nr 1 n b q kb n r
a b c d e f g h a-b ¢cd e f g h
[A] [B] [C]

Figure 12. (A) The Berkeley Unix chess interface, (B) the same interface after the user and the system bave moved once, and (C) the HyperNews interface. With the
contmand-line interface, the user must type letters and numbers to move; the HyperNews interface is much more intuitive and enjoyable.

tial. The developers of Optimist’s inter-
face used only direct manipulation editing
and attribute specification. They did not
add any behavior to objects (did no script-
ing). They exploited HyperNews’s mes-
sage-handling approach to communicate
with the client, a Prolog program that
handled all messages either by executing
some application code or by sending mes-
sages to other HyperNews objects. Be-
cause all sent messages move up the mes-
sage hierarchy and, if not handled, end up
being passed to the client, the developers
could simply name objects to program the
client. Fven the Action message, sent
when the user clicks on a button, works its
way up the hierarchy to the client.

This ability to link to an external model
is a feature unique to HyperNews. In
Hypercard, for example, external applica-
ton functions are implemented as external
functions or commands — single routines
in C, Pascal, or assembly language. (In
HyperNews, you can’t write single rou-
tnes and access them as stack methods)
The designer registers routines as re-
sources with either the stack or the
HyperCard application itself, using a tool
such as ResEdit. Conceptually, these rou-
tines are additional methods and must be
executed in the HyperCard environment.
Even though these external routines look
like and are invoked in the same way as

HyperCard’s own functions, they are not
considered stand-alone applications. A
group of routines may form an
application’s functional core, but the rou-
tines are independent with no shared state
OT process.

In HyperNews, on the other hand, all
methods have access to the News address
space, in which a shared state can reside.
We are not saying that you can’t access
application functions from HyperCard;
you just can’t connect a separate applica-
tion to a HyperCard stack. As an alterna-
tive, you can invoke external functions
written in a high-level language and im-
plement all the application functions
using these external commands. The
messages sent to buttons, fields, etc. will
be passed up the message hierarchy and
handled by the external functions. Thus,
as in HyperNews, you don’t have to
write scripts when using external func-
tions.

Existing applications. In the previous ap-
plicadon-interface models, the application
had to have extensive knowledge of the
interface, either because it was imple-
mented in HyperNews (like HyperDraw)
or because it implemented the behavior of
each HyperNews object (as in Optimist).
In both cases, this knowledge was neces-
sary because the application-interface

model existed only conceptually, rather
than as a distinct concrete module.

The same low degree of applicadon-
to-interface coupling also makes it possi-
ble to link a HyperNews interface to an
existing application with a command-line
interface — which represents a concrete
application-interface model — without
changing the application. Although this
link is not as efficient as one in which the
interface and application are designed to
converse with each other, it is certainly
feasible to retrofit existing applicaton in-
terfaces in this way.

As an example, consider the Berkeley
Unix chess application, which has a fairly
primitive, command-line interface. The
application displays the chess board as
shown in Figure 12a.

The user indicates moves in a strict for-
mat, such as a2a4, which denotes moving
the piece from square a2 to square a4. If
the incorrect format is used (such as a2—
a4), the application responds with “eh?” If
a string is entered that can be interpreted
by the application as a move, but is an
illegal move, the application responds
with “Illegal move.” If a correct move is
entered, the application accepts the input,
echoes the move to confirm it, and prints
out its own move:

l.a2a4 [User’s move]

l....c7e5 [System’s move]

20

NOVEMBER 1982

The user can press the carriage return
key atany time to view the current state of
the chess board: Figure 12b shows the cur-
rent state after the above exchange.

This interface is difficult to use, for two
reasons: it has a rigid input syntax, and it
poorly represents the state of the board.
Users have problems not only mapping
their intentions onto the required input
format, butalso evaluating the system’s ac-
tions. In this case, it does not matter how
good the application’s chess strategies are,
users are apt to judge the application more
on the intuitiveness of the interface. With
HyperNews, you can fita graphical inter-
face onto this application without chang-
ing the application at all. In fact, that is
precisely what the developers did.

Figure 12¢ shows the HyperNews
chess interface after two moves. The user
makes a move by dragging the appropriate
piece to a new location. The interface re-
sponds by moving the outline of the piece
to the location indicated by the user. This
is translated into the format expected by
the chess application. If the application
echoes the move, the interface moves the
piece to the new location; otherwise, the
user will see “Illegal move.” When the ap-
plication makes a move, the interface up-
dates the board accordingly.

With the graphical interface, the appli-
cation is easier to use..Making moves is
more intuitive to the user, and the repre-
sentation makes it easier to evaluate
moves. It is also impossible to make syn-
tactic errors, like using the wrong format
for the moves, which removes the need for
the information-less “eh?” response from
the applicaton. The user can stll make
semantic errors, such as moving a piece to
an illegal square. However, the interface
uses the application to verify the move,
only moving the piece when the applica-
don has confirmed it, and displaying a
meaningful message otherwise.

As Figure 13 shows, the application in-
terface model in this case is a separate Unix
process that communicates with Hyper-
News using the C client interface. The
model communicates with the chess appli-
cation, another separate Unix application,
by way of a Unix pipe. As far as the chess
application is concerned, it is reading and

writing from its standard 1/0) channels.
The application-interface model takes the
character output from the chess applica-
tion and converts it into messages, which
are sent to the HyperNews stack. The

stack then relays the messages to the ap--

propriate HyperNews object, removing
the need for the application-interface
model to know about the objects in the
interface. In turn, messages from
HyperNews objects are sent to the stack,
which converts them to the appropriate
character sequence as required by the
chess applicaton.

In this example the interface has no
knowledge of the application in that it
does not understand how to play chess.
The only knowledge it has of chess is its
own graphical representation of a chess
board and the locadons of the pieces. In
addition, the application has no knowl-
edge of the interface representation being

used. It is easy to see how a different inter-
face could be linked to the same applica-
tion by changing the stack that the appli-
cation-interface model communicates
with. Alternatively, the stack could be used

| as the interface to a different application

by linking it to a different application-in-
terface model/application pair.

In HyperCard, you cannot link to an
existing application because HyperCard
does not support the concept of an exter-
nal application, only the use of individual
external functions. Even if it did support
external applications, it still could not link
to an existing application because the Mac-
intosh operating system does not support
the notion of pipes (found in Unix), which
let you redirect the application’s /O.

Linking to multiple applications. You can also
link a single HyperNews interface to more
than one application. Although the

News HyperNews Unix process Unix process
) | Dialogue APP"‘“““"' Application
User Presentation control interface functionality
model

Figure 13. Chess: the existing application model.

News HyperNews

Dialogue
User l,= Presentation gomgol

Application- Application
interface fe—s| functionality
model

Unix process

Application- Application
interfoce fe—nr functionality
model

Figure 14. Integrated Fault Management Environment: the multiple-application model.

IEEE SOFTWARE

21

Seeheim model links to only one applica-
ton core, there is no restriction to the
number of applications that can be con-
nected to a UIMS. For each application
core, however, there must be an associated
application-interface model.

HyperNews has been used in this way
in the Integrated Fault-Management En-
vironment,® an environment for building
a qualitative model of an engineering sys-
tem that must be diagnosed. There are
two stages to the diagnosis: generating a
model of the system, and executing the
model to analyze it.

IFME, whose model is shown in Fig-
ure 14, is an example of a single interface
that drives two separate application cores.
The interface is connected to an applica-
tion written within HyperNews that can
be used to graphically construct the
model. It is then compiled into an external
application, which can be accessed with
the same interface used to execute the
model. From the user’s point of view,
interacting with two application cores is
seen as two modes within the one applica-
tion. The obvious advantage here is that
the user has to learn only one set of inter-
face concepts.

HyperCard is not flexible enough to
support this model because it neither per-
mits communicaton between stacks and
an external application, nor supports mul-
tiple clients linked to one application or
vice versa. HyperNews’s flexibility, on the
other hand, lets you develop interfaces for
a range of applications, from simple to
complex. This generality is what sets it
apart from other UIMSs. Although
HyperCard is popular as a prototyping
environment for interface design, itis best
suited to applications thatare interface-in-
tensive and have little functional core.

yperNews has accomplished its pri-

mary development goal, which was
to take some of the effort out of creating
interfaces. GUI designers with back-
grounds in graphic design or cognitive
psychology instead of programming have
a powerful UIMS that doesn’t make them
write programs. Instead they can use a
copy-and-paste technique to intuitively
construct an interface. Notonly s it possi-

ble to generate and experiment with dif-
ferent interfaces to new applications, but
within the same environment, GUIs can
be generated for existing applications.
Thus, applications need not be discarded
if they have outdated user interfaces.

Through environments like Hyper—

News, contemporary interfaces can be
added to existing applications to take ad-
vantage of the growing knowledge in in-
terface design and user requirements. In
the process, designers will produce a sys-
tem that they find easier to use and more
relevant to their task, whether or not the

underlying application has changed.

As UIMSs continue to evolve,
HyperNews should prove to be extensible
enough to incorporate innovative new
forms of interaction. Once HyperNews
has been modified to provide a new type of
interaction, designers should still be able

‘to retrofit applications to exploit new in-

teraction techniques without drastically
changing the applicaton. We feel this
flexibility is due in large part to the flexibil-
ity on both sides of the interface: the side
that involves GUI design and the side that
links it to the application. *

ACKNOWLEDGMENTS

mented by Arthur van Hoff.

REFERENCES

4

Conf., IEEE CS Press, Los Alamitos, Calif., 1986.

Practice and Experience, Jan. 1992.

bridge University Press, Cambridge, UK, 1990.

Noordwljk, The Netherlands, 1991.

The principle architects of HyperNews are Arthur van Hoff and Tim Niblett. HyperNews was imple-

1. B. Myers, Creating User Interfaces by Demonstration, Academic Press, Boston, 1988.

2. D. Hix, “Generations of User-Interface Management Systems,” IEEE Software, Sept. 1990, pp. 77-87.

3. E. Hutchins, J. Hollan, and D. Norman, “Direct Manipulation Interfaces,” in User Centered System Design,
D. Norman and S. Draper, eds., Lawrence Erlbaum Assoc., Hillsdale, N.J., 1986.

. A. Borning, “Classes Versus Prototypes in Object-Oriented Languages,” Proc. IFIPS: Fall Joint Computer

5. H. Hartson and D. Hix, “Human-Computer Interface Development: Concepts and Systems for Its Man-
agement,” ACM Computing Surveys, Mar. 1989, pp. 25-92.
6. C. Wood and P. Gray, “User Interface — Application Communication on the Chimera UIMS,” Softuware:

7. P. Clark, “Representing Knowledge as Arguments: Applying Expert System Technology to Judgemental
Problem-Solving,” in Research and Development in Expert Systems, I5l. 7, T. Addis and R. Muir, eds., Cam-

8. N. Ward, “Al and KBS for Space Applications,” Proc. European Space Technology Center Workshop, Estec,

this article was being done.

~wm Jim Rudolfis a user-interface developer at Ergon Informatik. His research interests in-
clude graphical user interfaces, object-oriented programming, computer-supported coop-
erative work, and hypermedia. He was at the Turing Institute when the work described in

Rudolf received a BS from California Polytechnic University and an MS from Ore-
gon State University, both in computer science. He is a member of the IEEE Computer

Society, ACM, and SIGCHL

applications.

at the University of Glasgow.

turing.com.

Cathy Waite is a member of the research staff at the Turing Institute, where she is work-
ing on the development of X Window System interfaces for interactive vision-processing

Waite holds an MSc in computer science from Strathclyde University. She is regis-
tered for a PhD in the application of design theory to user-interface design environments

? Address questions about this article to the HyperLook group, The Turing Institute,
- George House, 36 North Hanover St., Glasgow G1 2AD, UK; Internet hyperlook@

22

NOVEMBER 1982

