Methods and Variables

ColorSelect Methods

/Action % color —--
/SetValue % color -—-

B-6

Unix Commands

drawps(1)
NAME

drawps

Convert HyperLook drawings to PostScript format.
SYNOPSIS

drawps [—epsf] [-scale £] [-hdr hdr] [file]
DESCRIPTION

drawps is a filter to translate HyperLook drawings produced with the

hyperdraw (1) graphics editor into PostScript or Encapsulated Post-
Script format.

Input is taken from the standard input, or from the specified file. The
output is produced on the standard output.

OPTIONS
—-apsf
Generate Encapsulated PostScript headers. These files can be
imported by other programs.

-scale £
Scale the drawing by the indicated factor. The factor must be a

floating point number greater than O.

-hdr hdr
Use this header when generating Encapsulated PostScript files.
Some programs insist on a particular header string. The default is:

!{PS—-Adobe-2.0 EPSF-1.2

EXAMPLES
To print a drawing at 50% magnification use:

drawps -scale 0.5 logo.draw | lpr -Plw

ENVIRONMENT
drawps requires that the $HLHOME environment variable is set.

Cc-2

FILES
$HLHOME/lib/ps/drawlib.ps

PostScript printer initialization file.

$HLHOME/lib/ps/lib.ps
Initialization file.

SEE ALSO
hyperdraw (1), hyperlook(1l).

inix Convnands

exithyperlook(1)

NAME
exithyperlook
Exit HyperLook.

SYNOPSIS
exithyperlook [—-f]
DESCRIPTION

The exithyperlook command exits the HyperLook system. The
ExitHyperLook stack is shown to let the user save stacks before really
exiting.

OPTIONS

-f
Exit without asking. The user gets no chance to save stacks.

EXAMPLES
To restart HyperLook quickly without asking the user:

exithyperlook —-f ; hyperlook -c

SEE ALSO
hyperlook (1).

Cc-4

hipath(1)

NAME
hlpath
Manage HyperLook resource directories.

SYNOPSIS
hlpath [—a] [-r] [-ra] dir ..
DESCRIPTION

The hlpath (1) command adds or removes user or application resource
directories to HyperLook. The default is to add user resource directories.

HyperLook resource directories are searched when looking for resources
such as stacks. The default user resource directory is ~/stacks.

OPTIONS
-a
Add the specified application resource directories.
-r
Remove the specified user resource directories.
-ar
Remove the specified application resource directories.
FILES
HyperInit.ps
This PostScript file is executed if it exists in the resource directory
when it is added to the HyperLook resource directory list. It allows
applications to perform initializations.
. /mono
When a resource directory is added when HyperLook is running on
a monochrome display, and the resource directory has a sub direc-
tory called mono, then this directory is added before the resource
directory itself. This allows you to design interfaces for both mono-
chrome and color screens.

SEE ALSO
hyperlook (1l).

{inix Commands

hipsh(1)
NAME

hlpsh
The HyperLook version of psh (1) .

SYNOPSIS
hlpsh [-s] [-1] file ...
DESCRIPTION

hlpsh uses psh (1) to interpret PostScript commands from the specified
files or from standard input. The PostScript environment is setup so that
the HyperLook dictionary is on the top of the dictionary stack.

If HyperLook is not running, it will be started.
OPTIONS

=S
Work silently. If HyperLook is not running, exit immediately.

-i
Run in interactive mode. Report errors to the current terminal
instead of the console.

EXAMPLES
This example illustrates the loading and displaying of a stack from Post-
Script:

hlpsh -i

Welcome to HyperLook version 1.5 (TNT 2.0)
/system FindStack dup =
dictionary[40/50000]

ShowStack

“D

SEE ALSO
hyperlook(l), psh(l).

C-6

hisend(1)

NAME
hlsend
Send a message to an object in HyperLook.

SYNOPSIS
hlsend object message arg

DESCRIPTION

hlsend uses hlpsh (1) to send a message to an object in HyperLook. The
object is specified either as a stack name, or as stackname: objectname.
The message is specified as a single word, without the leading slash. The
message arguments must be in PostScript format.

EXAMPLE
To move the system stack use:

hlsend system Move 100 100

To set the value of a field in a stack use:

hlsend SystemStatus:status SetValue " (Hello world)"

SEE ALSO
hyperlook (1), hlpsh(1l).

C-7

Unix Commands

hyperdraw(1)

C-8

NAME
hyperdraw
HyperLook graphics editor.

SYNOPSIS

hyperdraw [filename]

DESCRIPTION
HyperDraw is a PostScript graphics editor. It is part of the HyperLook
system.

The hyperdraw command starts HyperLook if needed. If a drawing file is
specified, it is loaded into the editor. The file name must end in .draw.

EXAMPLES
To edit a drawing from the HyperLook home directory use:

hyperdraw $HLHOME/draw/garfield.draw

SEE ALSO
hyperlook (1).

hyperlook(1)

NAME
hyperlook
install hyperlook
HyperLook startup script.

SYNOPSIS
hyperlook [-c] [-fix]
install_ hyperlook

DESCRIPTION
HyperLook is an object oriented PostScript based user interface develop-
ment system. It uses the stack and card model for the design of user
interfaces by direct manipulation. User interface components can be
programmed using PostScript as a scripting language.
The hyperlook command starts HyperLook; no action is taken if
HyperLook is already running. OpenWindows is started if it is not yet
running.
Use install_hyperlook(l) to install the HyperLook icons in the
filemgr (1) data base.

OPTIONS

-C
Startup quickly, not showing the introduction stack.

-fix
Restart and fix things when HyperLook has crashed (not that it has
ever happened).

C-9

c-10

Unix Commands

ENVIRONMENT
The hyperlook (1) startup script recognizes the following shell vari-
ables. Some of these are used when starting OpenWindows.

HLHOME
The HyperLook home directory.

OPENWINHOME
The OpenWindows home directory.

OPENWINOPTIONS
Options passed to OpenWindows at startup. See openwin (1).

DISPLAY
The display on which HyperLook should run. HyperLook will use

the color framebuffer if one is available.

FILES
~/stacks
The default directory where user resource files are saved. The most
common resource file is a .stack file containing a HyperLook
stack.

~/stacks/.hyperlook
The file where the HyperLook user preferences are saved.

~/stacks/.hyperlook-init
This file is executed at startup. It should only contain sh (1) com-
mands to show stacks and perform initializations.

~/stacks/HyperInit.ps
This PostScript file is executed when the ~/stacks directory is
added by the resource manager. See also hlpath(1).

SEE ALSO
exithyperlook (1), hidestack(1l), hlpath(1l), hlsend (1), hlpsh(1l),
hyperdraw (1), install hyperlook (1), showstack (1)
DIAGNOSTICS

Make sure that you don't have any dangerous files in your home direc-
tory when starting HyperLook. Remove .xinitrc, .startup.ps,
.user.ps, .init.ps, if you have problems starting HyperLook.

Start OpenWindows first and start HyperLook using the hyperlook (1)
command from the console, if all else fails.

C-11

inix Commands

showstack(1)
NAME

showstack
hidestack
Show and hide HyperLook stacks and objects.

SYNOPSIS

showstack stack
hidestack stack

DESCRIPTION

The showstack command displays a HyperLook stack (window) and
brings it to the front. If the stack is iconified, the icon is opened. The
hidestack command hides a stack.

The stack is specified either by its name (without the .stack file name
extension) or by using its file name. If the stack is specified as a name it
must be accessible by the HyperLook resource manager. If the stack is
specified as a file name its directory will be added to the user resource
directory list.

The stack is loaded from a resource directory if it is not already in mem-
ory. See hlpath (1) on how to add a resource directory.

SEE ALSO
hlpath(1l), hyperlook (1).

DIAGNOSTICS
The hidestack command loads the stack before hiding it.

C-12

Library Funclions

hl_alloc(3)
NAME

hl_alloc

hl destroy

hl use

hl_free

hl_constant

Manage hl_any data structures.

SYNOPSIS
#include <hyperlook.h>

void *hl_alloc (bytes)
int bytes;

void hl_destroy (ptr)
void *ptr;

void hl_use (any)
hl_any *any;

void hl_free (any)
hl_any *any;

void hl_constant (any)
hl any *any;

DESCRIPTION
The hl_alloc() and hl_destroy() routines are used for low level
memory management. You can redefine these routines in your program
to use your own memory manager.

The hl_use () routine increments the reference count of an hl_any data
structure. hl_free () decrements the reference count of an hl_any data
structure. If it reaches 0 the data structure is actually deleted. hl1_con-
stant () freezes the reference count of an hl_any data structure so that
it is never deleted.

SEE ALSO
hyperlook(l), hl any(3), hl_send(3).

hl_any(3)
NAME

SYNOPSIS

hl any

hl new_null

hl new_boolean

hl new_number

hl _new_string

hl new_string_ body

hl _new_name

hl new_array

hl new_array body

Create hl_any data structures.

#include <hyperlook.h>
hl_any *hl new_null()

hl_any *hl new_boolean(flag)
int flag;

hl any *hl new_number (n)
float n;

hl _any *hl new_string(str)
char *str;

hl_any *hl new_string body (len)

int len;

hl _any *hl new_name (str)
char *str;

hl_any *hl new_array (objo0,
hl _any *objO, ...;

hl_any *hl new_array body (len)
int len;

.7

NULL)

D-3

Library Functions

DESCRIPTION
The hl_new routines allocate hl_any data structures which are used to
represent data for communication with HyperLook. The hl_any data
structure is defined in the file include/hyperlook.h in the HyperLook
directory.

The hl new_null(), hl new_boolean(), hl new_number (),
hl _new_name (), hl_new_string() routines allocate a data structure
containing the appropriate data type.

hl new_string body () allocates a data structure containing a string of
length len containing ' \0’ characters.

hl new_array() allocates an array of hl_any objects. The members of
the array are specified in the argument list which must be terminated by
a NULL. hl_new_array_body () allocates an array of length len contain-
ing NULL pointers.

The hl_any data structure is defined as:

typedef struct hl_any {
hl any type type;
short 1len;
union {
double number;
int boolean;
char *string;
char *name;
struct {
int argc;
struct hl_any **argv;
} array;

D-4

The len field is the length of strings and names. The type field indicates
how the other fields are used. It is of type hl_any_type:

typedef enum {
hl number_ type,
hl boolean type,
hl string_type,
hl name_ type,
hl _array_type,
hl null type,

} hl_any_ type;

EXAMPLES
Create an array of objects which can be sent to HyperLook:

hl_any *a = hl_new_array(
hl new_number (30), hl_new_number (40.5),
hl new_name ("Dug"), hl new_string("Scoular"),
hl_pew_array(hl_new_boolean(l),NULL),
NULL) ;

The PostScript version of the array is:

[30 40.5 /Dug (Scoular) [true]]

Elements of the array can be accessed using the hl_any data structure:

printf("n $d\n",a->u.array.argc);

printf ("x $g\n",a->u.array.argv[0]->u.number) ;

printf("y = $g\n",a->u.array.argv[1l]->u.number) ;

printf ("name = %s %s\n",a->u.array.argv[2]->u.name,
a->u.array.argv[3]->u.string);

FILES
include/hyperlook.h
The include file containing all the HyperLook client interface defi-
nitions.
SEE ALSO

hyperlook(1l), hl_print(3), hl_free (3), hl_use(3), hl send(3).

D-5

Library Funciions

hl_exists(3)
NAME

hl_exists
Check the existence of a HyperLook object.

SYNOPSIS
#include <hyperlook.h>

int hl_pxists(target)
char *target;

DESCRIPTION
hl_exists () checks the existence of a HyperLook object. The object is
addressed in the same way as hl_send(3).

EXAMPLES

The following program checks for the existence of an object called
“name” on a stack called “entzy”.

if (hl_gxists("entry:nama")) {
/* it’s there! */

RETURN VALUES
If the object exists, 1 is returned. If not, or if the connection to HyperLook
is lost, 0 is returned.

SEE ALSO
hyperlook(l), hl_send(3).

hi_flush(3)

NAME
hl_flush
hl_ flush_input
Flush HyperLook input and output.

SYNOPSIS
#include <hyperlook.h>

void hl_ flush()

void hl_flush input()

DESCRIPTION
hl_ flush() flushes all pending output to HyperLook. Output is auto-
matically flushed before reading input (in hl_listen(3)).

hl_ flush_input () causes all pending input to be discarded.

SEE ALSO
hyperlook(1l), hl_start (3), hl_listen(3).

hi_get(3)
NAME

SYNOPSIS

Library Functions

hl get

hl_put
Access to instance variables.

#include <hyperlook.h>

hl_any *hl_get (target,param);
char *target, *param;

int hl_put (target, param, value);
char *target, *param;
hl any *value;

DESCRIPTION

hl_get () provides direct access to instance variables of HyperLook
objects. The target specifies the object in the same way as the first argu-
ment to hl_send(3) does.

The param argument is the name of the variable which is accessed.
hl_get returns an hl_any data structure containing the variable’s
value. This data structure must be de-allocated using hl_free (3).

hl_put () assigns a new value to an instance variable of a HyperLook
object. The new value is specified as an hl_any data structure which
must be de-allocated using hl_free (3) if it is not used again.

RETURN VALUES

hl_get () returns a NULL pointer when an error occurs or if HyperLook
is not started. It returns hl_null if the parameter does not exist.

hl_put () returns 1 on success, and 0 on failure. Failure only occurs if
the connection to HyperLook is lost.

EXAMPLES
Get the “Editable?” parameter of a text object called “name” on a stack
called “entry”:
hl_any *b = hl_get ("entry:name", "Editable?");

if ((b->type == hl_boolean type) &&
(b=>u.boolean != 0)) {

}
hl free(b);

Set the “Editable?” flag of the same object:

hl_any *b = hl new_boolean(l);
hl put ("entry:name", "Editable?",b);
hl free(b);

SEE ALSO
hyperlook(l), hl start(3), hl_send(3).
DIAGNOSTICS

hl _get () and hl_put() provide unrestricted access to HyperLook
objects. This means that they can easily be misused. Use them with care!

Library Funcrions

hi_listen(3)
NAME

D-10

hl listen

hl register

hl register_any

hl register_quit
hl_register_timeout

hl register_ioerror
HyperLook message handling.

SYNOPSIS
#include <hyperlook.h>

int hl_listen(delay)
int delay;

void hl_register (handler, obj, message)
int (*) () handler;

char *obj;

char *message;

void hl_register_ any(handler, match)
int (*) () handler;
hl_any *match;

void hl_register_ quit (handler)
int (*) () handler;

void hl_register_ timeout (handler)
int (*) () handler;

void hl_register_ iocerror (handler)
int (*) () handler;

DESCRIPTION

hl_listen() is the main HyperLook event loop. It reads messages from
HyperLook and calls the appropriate handlers.

hl register(), hl_register_any(), hl_register_timeout (), and
hl register_ iocerror() install handlers for incoming messages. The
handlers are called when a message is received from HyperLook.

The delay argument to hl_listen is a delay in milliseconds (1000ms is
1 second). If no input is received for delay milliseconds, an hl_timeout
message is generated. You can use hl_forever, to make it never time
out.

hl_listen doesn't return upon timeout. It calls the timeout handler.
Any handler can return -1 to cause hl_listen to return.

The handler argument to the hl_register() and hl_register_ any()
is a function returning an integer. Here is an example of a handler func-
tion:

int button_pressed(message, argc, argv)

hl any *message;

int argc;

hl_any *argv[];

{

return 1;

}
When handler returns 0 the message is matched against other handlers.
The handler should return 1 if the message is handled and no other han-

dlers should be considered. When the handler returns -1 the
hl_listen() event loop returns to its caller.

The obj argument of hl_register () specifies which object the message
responds to. The object can be specified as follows:

ANY -- any object

"*" —— any object

"x" —— stack x

"x:*" —-— any object on stack "x"

"x:y" —-— an object "y" on stack "x"

"*¥:y" —— any object called "y"

"Button(*)" —— any button

"Button(y)" —-- any button called "y"
"x:Button(*)" == any button on stack "x"
"x:Button(y)" -- a button called "y" on stack "x"

In the above examples Button is used as an object type. You can use
other object types like Field and Slider, too.

D-11

D-12

Library Funclions

The message argument of hl_register() specifies which message is
allowed. Any message is matched if you specify the message as ANY.

hl register_any() lets you register for any type of input data. The
match data structure is matched against the input. Any part of the data
structure may contain ANY which matches anything.

hl register_quit () lets you register a handler for h1_quit messages.
An hl_quit message is generated when the connection with HyperLook
is lost.

hl_register_ioerror() lets you register a handler for hl_iocerror
messages. An hl_ioerror message is generated when invalid data is
read from HyperLook.

RETURN VALUES

hl_listen() returns 1 on normal exit. When an hl_iocerror is found it
returns -1.

EXAMPLES

SEE ALSO

This is an example of a handler for a Field object. It is registered as:

hl_register (search_ handler, "*:Field(x)", "Action");

The Action message of a field has one argument (the string). The string
is accessed through the hl_any data structure.

int search handler (message, argc, argv)
hl any *message;
int argc;
hl_any *argv[];
{
char *s = argv[0]->u.string;
/* start search */

return 1;

hyperlook (1), hl_start(3).

DIAGNOSTICS
hl_listen() generates an hl_quit message when the connection with
HyperLook is lost. An hl_ioerror is generated if an I/O error occurs.

D-13

Library Functions

hi_path(3)
NAME
hl_path
Register a resource directory.
SYNOPSIS

#include <hyperlook.h>

int hl_path(dir)
char *dir;
DESCRIPTION

hl_path() registers an application resource directory with the
HyperLook resource manager. Once registered, the application can
access resources (stacks) in the directory.

The argument dir is the full path name of the resource directory. It can
be NULL, meaning the current directory.

EXAMPLES
The following main program shows a stack which has been saved in the
directory from which the program is executed.
#include <hyperlook.h>
main ()
{
hl_start ("myclient");
hl_path (NULL) ;
hl_show("mystack");
hl_stop();

RETURN VALUE

hl_path() returns 1 on success, 0 if the connection to HyperLook is
lost.

SEE ALSO
hyperlook (1), hl_start(3), hl_show(3).

D-14

hl_print(3)

NAME
hl_print
Print an hl_any data structure to a file.

SYNOPSIS
#include <hyperlook.h>

void hl_print (fp, any)
FILE *fp;
char *prog;

DESCRIPTION }
hl_print () prints the hl_any data structure specified in any to the £p

file in human readable format. This function should be used for debug-
ging only.

SEE ALSO
hyperlook(l), hl_verbose(3).

D-15

Library Functions

hl_ps(3)
NAME
hl ps
Execute raw PostScript in HyperLook.
SYNOPSIS

D-16

#include <hyperlook.h>

int hl_ps(code)
char *code;

DESCRIPTION

hl_ps () sends a string containing PostScript commands to HyperLook
to be executed in the server. You need to call hl_flush(3) to flush the
output stream after calling hl_ps ().

EXAMPLES
The following PostScript example shows the system stack using Post-
Script only (you can also use hl_show(3)).

hl ps("/system FindStack ShowStack");

RETURN VALUES
hl_ps () returns 1 on success, 0 if the connection to HyperLook is lost.

SEE ALSO
hyperlook (1), hl_flush(3).

hi_send(3)

NAME

hl_send

hl_send0

Send messages to HyperLook objects.
SYNOPSIS

#include <hyperlook.h>

int hl_send(target,message, args)
char *target, *message;
hl_any *args;

int hl_sendO (target,message,arg0,....,NULL)
char *target, *message;
hl_any *arg0, ...;

DESCRIPTION
The hl_send() and hl_send0O() routines send a message to a
HyperLook object. The message argument is the name of the message.
The target argument is the name of the object to which the message
should be sent. For example:

"x" - a stack called "x"
"x:y" - an object "y" on stack "x"

The arguments to hl_send () are specified in args as an hl_any array.
The array can be allocated using hl _new_array (3) . The argument array
must be de-allocated, after sending the message, using hl_free (3).

The arguments to hl_sendo0 () are specified in the argument list which
must be NULL terminated. The arguments are de-allocated by
hl _send0O () using hl_free().

Usually you should use hl_send0 () to send messages to objects. It uses
a more compact notation and it requires no explicit freeing of data struc-
tures. If you want to send the same message frequently, or if you want to
avoid repeated memory allocations, the you should use hl_send().

D-17

D-18

Library Functions

RETURN VALUES

Both hl_send() and hl_send0 () return 1 if the message is sent suc-

cessfully. They return 0 if HyperLook was not started or if the target is
invalid.

EXAMPLES
Set the value of a text object called “name” on stack “entry”:
hl any *a = hl new_array(
hl new_string("Some text"),
NULL) ;

hl_send("entry:name","SetValue",a);
hl free(a);

The same message can be sent using hl_send0 as follows (note that the
argument string is deallocated automatically):

hl send0 ("entry:name", "SetValue",
hl new_string("Some text"),
NULL) ;

SEE ALSO
hyperlook(1l), hl_any(3).

hl_show(3)

NAME

hl_ show

hl_hide

hl_connect

Show and hide stacks and objects, and connect to stacks.
SYNOPSIS

#include <hyperlook.h>

int hl_show (target);
char *target;

int hl_hide (target);
char *target;

int hl_connect (target) ;
char *target;

DESCRIPTION
The hl_show() and hl_hide() routines let you show and hide
HyperLook objects and stacks. The argument is the name of a stack, like
“mystack”, or an object, like “mystack: £ield”. Hiding a stack removes
its window from the screen. Hiding an object makes it invisible.

hl_connect () connects the client to a stack directly (without showing
it). h1_show () implicitly connects to the stack before it is shown. A client
must be connected to a stack if it wants to receive messages from the
stack. You can't connect to an object.

A client can be connected to any number of stacks. A stack can be con-
nected to only one client.

RETURN VALUES

On success the routines return 1, on failure 0. Failure only occurs if the
connection to HyperLook is lost.

D-19

D-20

Library Functions

EXAMPLES
To show a stack called “entry” use:

hl_show("entry");

To connect to the same stack without showing it:

hl connect ("entry");

To hide an object called “search” on stack “entry” use:

hl hide("entry:search");

SEE ALSO
hyperlook(1l), hl_start(3), hl_send(3), hl_path(3).

DIAGNOSTICS
Stacks must be accessible by the resource manager before they can be
shown. See hl_path(3).

hil_start(3)

NAME
hl_start
hl_stop
hl verbose

Connect to HyperLook.

SYNOPSIS
#include <hyperlook.h>

int hl_start (prog)
char *prog;

int hl_stop()

int hl_verbose;
DESCRIPTION

hl_start () attempts to establish a connection to HyperLook. It should
be called before any other HyperLook client interface routine is used.
prog is the name which is used by HyperLook to identify the client.

hl_stop () terminates the connection with HyperLook.

The hl_verbose flag lets you monitor message as they are received. If this
flag is non zero message are printed to stderr. The default value is 0.

RETURN VALUES

hl_start () returns 1 when a connection is successfully established, it
returns 0 otherwise.

hl_stop() always returns 1.

D-21

Library Functions

EXAMPLES
This is an example of a skeleton main program.

#include <stdio.h>
#include <hyperlook.h>

main (argc, argv)
int argc;
char *argv([];

{

hl _verbose = 1;

if (!'hl_start(argv([0])) {
fprintf (stderr, "$s: cannot connect to\
HyperLook\n",

argv[0]);
exit (1) ;

}

/* main program */

hl _stop();
exit (0);

ENVIRONMENT
The HyperLook client interface is build on top of the NeWS wire service.
The following environment variables are significant.

HLHOME
The HyperLook home directory.

DISPLAY
The display to which the client connects.

FILES
include/hyperlook.h
The include file containing all the HyperLook client interface defi-
nitions.
SEE ALSO
hyperlook(l), hl_register(3), hl_listen(3).

DIAGNOSTICS
hl_start () starts HyperLook. It does nothing if HyperLook is running.

D-23

Library Functlions

libhl.a(3)
NAME

libhl.a
HyperLook client interface library.

DESCRIPTION

The C library 1ibhl.a can be linked with any C program to communicate
with HyperLook. It contains library routines which are defined in the file
include/hyperlook.h.

See hl_start (3) and hl_listen(3) for information on how to use the
main functions in this library.

EXAMPLES
To compile a C program called try.c you need to specify some include
flags and library flags in the makefile:

CFLAGS= -I$ (HLHOME) /include \
—I$ (OPENWINHOME) /include/wire \
—-I$ (OPENWINHOME) /include/NeWS \
-I$ (OPENWINHOME) /include
LDFLAGS= -L$ (HLHOME) /1ib -1hl

cc -o try try.c $(CFLAGS) $ (LDFLAGS)
The three OpenWindows include directories are not all necessary. This

combination is chosen because it works for all OpenWindows versions.

FILES

include/hyperlook.h
The include file containing all the HyperLook client interface defi-
nitions.

lib/libhl.a
The library file containing the HyperLook client interface.

SEE ALSO
hyperlook(l), hl_start(3).

D-24

index

Again
function key 3-12, 3-35
Align
graphics editor font menu 4-36
graphics editor menu 4-37
graphics editor menu choices 4-37
stack editor menu choices 5-39
aligning objects 5-18
alternating drawing buttons 6-10
animation 7-31
application resources 3-24
Arrange
graphics editor menu 4-36
arrow keys
and text editing 3-15
auto indentation
text property 6-16

BackGround
properties 5-27
Background Info
stack editor menu choice 5-38
background layer 5-25
backgrounds 5-24
using 5-26
black and white stacks 5-32
Browse Mode
stack editor menu choice 5-37
browse mode
cursor 5-3
getting into 5-3
stack menu 3-36
Button
alternating drawing buttons 6-10
checkboxes 6-10
drawing buttons 6-10
properties 6-8
push buttons 6-9
transparent buttons 6-9
using 3-13

C

Card
properties 5-25
stack editor menu 5-38
Card Info
stack editor menu choice 5-38
card layer 5-25
cards 5-24
adding to stack 5-25
copying 5-26
deleting from stack 5-25
selecting background 5-26
stacks and 3-7
Center
graphics editor menu choice 4-36
text adjustment property 6-16
Checkbox
using 3-13
classes 7-8
browsing 7-10
Clear
graphics editor menu choice 4-35
stack editor menu choice 5-36
stack menu choice 3-36
client interface 8-2
addressing 8-12
allocating hl_any data structures
D-3
allocating memory D-2
cleaning up 8-14, D-21
compiling 8-14, 8-18, D-24
connecting to HyperLook 8-4,
D-21
connecting to stacks 8-5, D-19
data structures 8-7, D-3
debugging 8-11, D-21
existence of objects D-6
flushing data D-7
getting object attributes 8-18, D-8
hamburger example 8-8
handling messages 8-5, D-10
hiding stacks D-19
hl_any data structures 8-7
hl_verbose variable D-21
hyperlook.h 8-7, 8-10
include files 8-10

initializing 8-4, 8-11, D-21

library libhl.a D-24

message handlers 8-13

messages 8-2

monitoring messages D-21

notification 8-12

overview 8-4

PostScript D-16

printing hl_any data structures

D-15

receiving messages 8-5

registering handlers 8-12, D-10

resource directories D-14

sending messages 8-6, D-17

showing stacks D-19

skeleton program 8-4

UserName example 8-15
client interface routines

hl_alloc D-2

hl_any 8-6, 8-7, D-3

hl_connect 8-5, 8-10, 8-11, D-19

hl_constant D-2

hl_destroy D-2

hl_exists D-6

hl_flush D-7

hl_flush_input D-7

hl_free D-2

hl_get 8-18, D-8

hi_hide 8-10, 8-14, D-19

hl_listen 8-5, 8-10, 8-12, 8-18,

D-10

hl_new_array D-3

hl_new_array_body D-3

hl_new_boolean D-3

hl_new_name D-3

hl_new_null D-3

hl_new_number D-3

hl_new_string 8-13, D-3

hl_new_string body D-3

hl_path 8-5, 8-10, 8-11, D-14

hl_print D-15

hi_ps D-16

hi_put D-8

hl_register 8-12, D-10

hl_register_any D-10

hl_register_ioerror D-10

hl_register_quit D-10

hl_register_timeout 8-12, D-10
hi_send D-17
hl_send0 8-6, 8-13, D-17
hl_show 8-5, 8-10, 8-11, D-19
hl_start 8-4, 8-10, D-21
hl_stop 8-5, 8-10, 8-14, D-21
hl_use D-2
hl_verbose variable 8-11, D-21
clipboard
multiple pages 3-18
using 3-18
Clipped Group
graphics editor menu choice 4-37
Close
stack menu choice 3-36
close button
in stacks 3-11
color
black and white stacks 5-32
changing 3-20
color pallet 3-20
OpenWindows cubesize 3-21
problems with 2-11
user colors 3-20
ColorSelect
and the ColorPallet 3-17
properties 6-25
using 3-17
console
logging messages 7-15
messages on 2-8, 3-33
constraint editing 5-17
converting drawings
drawps C-2
Copy
function key 3-18, 3-35, 4-22,
5-20
graphics editor menu choice 4-35
stack editor menu choice 5-36
stack menu choice 3-36
copy
using the clipboard 3-18
Copy Card
stack editor menu choice 5-38
Copy Object as Drawing
stack editor menu choice 5-36

. index

Copy Object Props

stack editor menu choice 5-36
Copy Stack as Drawing

stack editor menu choice 5-36

stack menu choice 3-37
copying

cards 5-26

object properties 5-22

objects 5-20

objects and stacks as drawings

5-23

Create from Class

stack editor menu choice 5-39
creating new objects 5-12
-cubesize

OpenWindows option 2-11
cursors

in edit mode and browse mode 5-3
Cut

function key 3-18, 3-35, 4-23,

5-21

graphics editor menu choice 4-35

stack editor menu choice 5-36

stack menu choice 3-36
cut

using the clipboard 3-18

D

Delete Card

stack editor menu choice 5-38
deleting objects 5-21
documentation browser 7-10
double click

using the mouse 3-4
Double Poly Points

graphics editor menu choice 4-37
Draw

button in system stack 2-5
drawing buttons 6-10
drawings

creating from objects and stacks

5-23

mailing to other users 2-10
drawps

Unix command 4-7, C-2

DrawTool
graphics editor object 4-2
properties 6-26
Duplicate
graphics editor menu choice 4-35
stack editor menu choice 5-36
duplicating objects 5-21

E

Edit
graphics editor menu 4-35
stack editor menu 5-36
stack menu 3-36
Edit Mode
stack menu choice 3-37
edit mode 5-3
cursors 5-3
customizing 5-33
getting into 5-3
grid 5-33
invisible objects 5-34
stack menu 5-36
editing
customizing 5-33
Editor Info
stack editor menu choice 5-37
Encapsulated PostScript 4-7, 4-30
End
function key 3-7, 3-35
environment
DISPLAY variable 2-12
HLHOME variable 2-11
OPENWINHOME variable 2-11
OPENWINOPTIONS variable 2-11
path variable 2-11
settingup 2-10
errors
PostScript trace 7-33
syntax errors 7-34
turning on or off 3-33
Exit
button in system stack 2-5
exithyperlook
Unix command C-4
exiting HyperLook 2-6

F

Field
numeric fields 6-13
properties 6-12
using 3-14
File
graphics editor menu 4-34
file dialog 3-27
changing directories 3-27
opening files 3-27, 3-28
saving files 3-29
selecting a director 3-30
short cuts 3-30
file manager
OpenWindows tool 2-9
Fixed position
Stack property 5-9
Flip
graphics editor menu choices 4-38
Flip Poly and Spline
graphics editor menu choice 4-37
Focus Number
property 6-13
Font
function key 3-35
graphics editor font menu 4-35
fonts
changing list of 3-31
Front
function key 3-10
front to back order of objects 5-18
Front/Back
stack menu choice 3-36
function keys 3-35

G
graphics
onastack 6-10
pasting into a stack 5-22
graphics editor
aligning objects 4-16
arrow heads 4-19
changing the size of objects 4-13
clipped objects 4-32

constraint editing 4-15

converting image formats 4-29

copy 4-22

creating multiple objects 4-12

creating objects 4-11

cut 4-23

deleting objects 4-23

duplicating objects 4-22

Encapsulated PostScript 4-6

Encapsulated PostScript objects
4-30

fill color 4-17

font of text objects 4-24

free hand drawing 4-27

front to back order 4-20

grid 4-15

grid lines 4-15

grouping objects 4-20

holes in objects 4-32

hyperdraw Unix command C-8

icons 4-4

image filters 4-29

images 4-29

line color 4-17

line width 4-18

loading drawings 4-6

magnification 4-5, 4-8

menus 4-34

moving around 4-8

moving objects 4-13

opening drawings 4-6

paste 4-22

pie objects 4-25

points in polygons and splines 4-27

polygons 4-26

printing drawings 4-7

rotating objects 4-14

rounded corner rectangles 4-26

saving drawings 4-6

saving Encapsulated PostScript 4-6

scaling text 4-25

selecting multiple objects 4-10

selecting objects 4-9

sizing objects 4-13

smooth curves 4-28

snap to grid 4-15

solid objects 4-31

splines 4-28
starting 4-4
text objects 4-24
tool pallet 4-5
triangle, creating 4-31
undo 4-23
using the clipboard 4-22
zooming 4-8
Grid
graphics editor menu 4-36
Group
graphics editor menu choice 4-37

H
Help

function key 3-3, 3-35, 5-29
help

defining 5-29

editing help text 5-30

locating help text 5-30

using help 3-3
hidestack

Unix command C-12
hiding stacks

hidestack Unix command C-12
hlpath

Unix command 3-24, 5-32, C-5
hipsh

Unix command 7-35, C-6
hlsend

Unix command 7-35, C-7
Home

function key 3-7, 3-35

stack menu choice 3-36
home card 3-7
hyperdraw

Unix command 4-4, C-8
HyperLook

exiting 2-6

home directory 2-3

icons 2-9

installing 2-3

quitting 2-6

starting 2-2
.hyperlook

parameter file 3-31
hyperlook

Unix command 2-3, C-9
hyperlook.h

client interface include file 8-7

|
Import
graphics editor menu choice 4-34
-includedemos
OpenWindows option 2-11
Info
button in Introduction stack 2-4
stack editor menu choice 5-39
.init.ps
PostScript file 2-8
input focus
order 6-13
install_hyperlook
Unix command 2-9, C-9
invalid names error 7-34
invisible objects 6-6
editing 5-34

L

layer
object property 6-5
Left
text adjustment property 6-16
levers 6-11
List
exclusive 6-18
non-exclusive 6-18
properties 6-18

using 3-16
loading a stack 3-8
logging
switching on or off 3-33
Jogin
unix file 2-10
Look
stack menu 3-36

lpr
Unix command 3-32

M

mail tool
OpenWindows tool 2-10
memory
usage 2-6
menus
accelerators 3-6
function keys 3-6
graphics editor menu 4-34
in edit mode 5-4
New, installing sub menus 5-13
stack menu 3-5, 3-9
stack menu in browse mode 3-36
stack menu in edit mode 5-36
using 3-5
messages 7-12
hierarchy 7-13
hlsend Unix command C-7
logging 7-15
logging, switching on or off 3-33
mono
resource directory 5-32
monochrome stacks 5-32
mouse
use of buttons 3-4
using 3-4
moving objects 5-16
moving stacks 3-9
multiple screens
running HyperLook on 2-12
multiple state buttons 6-10

New
graphics editor menu choice 4-34
stack editor menu 5-38
New Background
stack editor menu choice 5-38
New Card
stack editor menu choice 5-38
new objects 5-13
Next
stack menu choice 3-36
None

text adjustment property 6-16
-nosunview

OpenWindows option 2-11
Nudge

graphics editor menu choices 4-35

stack editor menu choices 5-37
numeric fields 6-13

o

Object

stack editor menu 5-39
object name

object property 6-4
object warehouse 5-13

customizing 5-34
Objects

stack editor menu 5-39
objects

aligning 5-18

changing size 5-17

constraint editing 5-17

copying 5-20

copying properties 5-22

deleting 5-21

duplicating 5-21

front to back order 5-18

moving 5-16

pasting 5-20

pasting properties 5-22

selecting 5-15

selecting multiple 5-15
Open

button in system stack 2-5

function key 3-11, 3-35

graphics editor menu choice 4-34

stack editor menu choice 5-37
opening a directory 3-30
opening files 3-27, 3-28
opening stacks 3-8

* in pulldown menu 3-9
OpenWindows

color cube size 2-11

function keys 3-35

mutiple screens 2-12

options 2-11

index

starting 2-8
visual modes 2-12

P

pageview
OpenWindows PostScript previewer
3-32
Paste
function key 3-18, 3-35, 4-22,
5-20
graphics editor menu choice 4-35
stack editor menu choice 5-36
stack menu choice 3-36
paste
using the clipboard 3-18
pasting graphics
in edit mode 5-22
pasting object properties 5-22
pasting objects 5-20
pasting text
in edit mode 5-22
PgDn
function key 3-8, 3-19, 3-35
PgUp
function key 3-8, 3-19, 3-35
pop up menus 3-5
PostScript
converting drawings with drawps
C-2
documentation 7-7
hipsh PostScript shell 7-35
hlpsh Unix command C-6
language 7-5
manuals 7-7
postfix notation 7-5
Previous
stack menu choice 3-36
Print
graphics editor menu choice 4-34
printing
class documentation 7-11
drawings from the graphics editor
4-7
previewing the output 3-32
specifying a printer 3-32

programming clients 8-2
properties 6-15
BackGround 5-27
Button object 6-8
Card 5-25
color 6-7
ColorSelect object 6-25
DrawTool object 6-26
editing generic 6-4
Field object 6-12
focus number 6-13
font 6-7
generic 6-3
glue 6-5
layer property 6-5
List object 6-18
object name 6-4
position and size 6-6
PullDown object 6-20
Slider 6-23
Stack 5-8
stack editor 5-33
visible 6-6
pull right menus 3-5
in pulldown objects 6-21
PullDown
properties 6-20
pull right menus 6-21
using 3-17
push buttons 6-9

Q

quitting HyperLook 2-6

R

Receiver 7-14
redrawing stacks 3-12
Reduce Poly Points

graphics editor menu choice 4-37
Refresh

stack menu choice 3-36
Request

button in Introduction stack 2-4
requesting more information 2-4
resizable stacks 5-11

-

resize corner
adding to a stack 5-11
in stacks 3-11
resizing stacks 3-11
resource directories
mono 5-32
specifying using hlpath C-5
resources
adding directories 3-24
locating 3-25
mono, sub directory 5-32
removing directories 3-24
resource manager 3-23
Retained
Stack property 5-9
Revert
graphics editor menu choice 4-34
stack editor menu choice 5-37
Right
text adjustment property 6-16

S

Save

graphics editor menu choice 4-34

stack editor menu choice 5-37
Save as...

graphics editor menu choice 4-34

stack editor menu choice 5-37
Save EPS...

graphics editor menu choice 4-34
SaveBehind

Stack property 5-9
saving files 3-29
Scale

graphics editor menu choice 4-38
Script

stack editor menu choice 5-39
scripting 7-9

Action method 7-16

addressing objects 7-20

animating slider 7-31

Button Action 7-16, 7-18

Button methods B-4

CardObject methods and variables

B-4

celsius slider example 7-28

Checkbox Action 7-25

class tree 7-8

classes 7-8

ColorSelect methods B-6

communicating Sliders 7-23

custom methods 7-26

customizing help 7-24

DrawTool methods B-5

editing scripts 7-3

errors 7-33

example of a script 7-4

examples 7-28

fahrenheit slider example 7-28

Field Action 7-17

Field methods B-5

getting the value of an object 7-24

go to card script 7-22

Hello world example 7-4

hiding a stack 7-18

hiding the current stack 7-18

iconifying a stack 7-19

including scripts 7-26

invalid names error 7-34

linking buttons to cards and stacks
7-21

List methods B-5

mail messages example 7-30

message formats 7-19

message hierarchy 7-13

messages 7-12

methods and messages 7-12

methods and variables, overview
B-2

next card script 7-21

OnClose script 7-25

OnOpen script 7-25

printing class documentation 7-11

PullDown Action 7-18

PullDown methods B-5

Receiver 7-14

Sender 7-14

sending messages 7-19

setting the value of a slider 7-20

setting the value of an object 7-22

SetValue 7-22

showing a stack 7-18

index

Slider Action 7-16

Slider methods B-5

Slider, setting the value of 7-23
Stack methods B-3

stacks, showing and hiding 7-18
super classes 7-9

syntax errors 7-34

Target 7-14

Text methods B-5

Text, setting the value 7-23
values, of objects 7-22

writing scripts 7-16

scripting methods and variables 7-25

Action 7-16

Button method B-4
ColorSelect method B-6
DrawTool method B-5
Field method B-5

List method B-5
PullDown method B-5
Slider method B-5

Text method B-5

ClientSend, operator 7-19, B-2
Color, CardObject variable B-4
ConvertValue, Slider method 7-28,

B-5
Damage, CardObject method B-4
DEBUG, operator 7-18, B-2
DelconifyStack, Stack method B-3
Draw, CardObject method B-4
FillColor, CardObject variable B-4
FindObject, operator 7-20, B-2
FindStack, operator 7-20, B-2
FliplconifyStack, Stack method B-3
FontName, CardObject variable B-4
FontSize, CardObject variable B-4
GetValue, DrawTool method B-5
GoHomeCard, Stack method B-3
GolLastCard, Stack method B-3
GoNextCard, Stack method B-3
GoPreviousCard, Stack method B-3
GotoCard, Stack method 7-22, B-3
GotoNextCard, Stack method 7-21
Height, CardObject variable B-4
Hide, CardObject method 7-25,

B-4
HideStack, operator B-2
IconifyStack, Stack method B-3
IncludeScript, operator 7-26
LookupObject 7-20
LookupObject, operator B-2
Move
Stack method B-3
Move, CardObject method B-4
MyClient, CardObject variable B-4
MyStack, CardObject variable
7-19, B-4
OnAscii, CardObject method B-4
OnClose, CardObject method 7-25,
B-4
OnHelp, CardObject method 7-24,
B-4
OnMouse, CardObject method B-4
OnOpen, CardObject method 7-25,
B-4
ParentSend, operator 7-19, B-2
Path, Button method B-4
Press, Button method 7-21, B-4
Reshape, CardObject method B-4
Select, List method B-5

SelectAll

Field method B-5
Selected

List method B-5
Selection

Field method B-5

Text method B-5
send operator 7-24
Send, operator 7-19, B-2
SetRange, Slider method B-5
SetValue

Button method B-4
ColorSelect method B-6
DrawTool method B-5
Field method B-5

List method B-5
PullDown method B-5
Slider method B-5
Text method B-5

SetValue, Slider method 7-20
Show, CardObject method B-4
ShowMessage operator 7-35
ShowMessage, operator 7-17, B-2
ShowStack, operator B-2
SystemDate, operator 7-25
ToBack, Stack method B-3
ToFront, Stack method B-3
Value, CardObject variable B-4
Width, CardObject variable B-4
WordAction, Text method B-5
Scrollbar
using 3-14
scrollbar
as a Slider object 6-23
scrolling
setting the speed 3-32
scrolling list
using 3-16
Select
graphics editor menu choices 4-35
stack menu choices 3-37
Select All
stack editor menu choice 5-36
selecting a directory 3-30
selecting colors
using ColorSelect objects 3-17
selecting multiple objects 5-15
selecting objects 5-15
Sender 7-14
sh, shell scripts with hlpsh 7-35
shape of stacks
changing 5-10
Show Warehouse
stack editor menu choice 5-38
Show, CardObject method 7-25
showing stacks
showstack Unix command C-12
showstack
Unix command C-12
Size
graphics editor font menu 4-36
sizing objects 5-17
Slider
properties 6-23

using 3-14
Slider object

scrollbar 6-23
Solid Group

graphics editor menu choice 4-37

Special
graphics editor menu 4-37

Stack
properties 5-8
stack editor menu 5-37

stack
BackGroundProps 5-27
Buttonldeas 5-14
ButtonProps 6-8
CardProps 5-25
ClipBoard 3-18
ColorPallet 3-20
ColorSelectProps 6-25
Confirm 5-7
DocBrowser 7-10
DrawToolProps 6-26
ExitHyperLook 2-6
FieldProps 6-12
Help 1-7, 3-3, 5-29
HelpProps 5-30
HyperDraw 4-4
Introduction 2-2
ListProps 6-18
Notepad 1-4
ObjectProps 5-2, 6-3
OpenDir 3-30
OpenFile 3-27
OpenStack 3-8, 5-5
PostScriptError 3-34, 7-33
PrinterQueue 3-32
PullDownProps 6-20
ResourceMgr 3-23
SaveFile 3-29
SaveStack 5-6
ScriptProps 7-3
SliderProps 6-23
StackEditorProps 5-33
StackMgr 3-22
StackProps 5-8
system 2-5
SystemProps 3-31
SystemStatus 2-6

11

12

indeyx

TextProps 6-15
Untitled 5-5
Warehouse 5-13
Stack Info
stack editor menu choice 5-37
stack layer 5-25
stack manager 3-22
stack menu 3-5, 3-9
in browse mode 3-36
in edit mode 5-4, 5-36
Stack Script
stack editor menu choice 5-37
stacks
black and white 5-32
bringing to the front 3-10
cards and 3-7
cards, adding and deleting 5-25
changing the shape of 5-10
close button 3-11
creating 5-5
creating new style 5-34
creating object warehouse 5-34
designing shape of 5-10
designing your own 5-2
editing 5-5
editing help text 5-31
editor properties 5-33
iconifying 3-11
layers 5-25
mailing to other users 2-10
making resizable 5-11
monochrome 5-32
moving 3-9
moving in edit mode 5-3
new 5-5
opening 3-8
redrawing 3-12
resize corner 3-11
resizing 3-11
reverting 5-6
saving 5-6
structure of cards and back-
grounds 5-24
throwing away changes 5-7
Untitled, creating copy of 5-5
zapping from memory 3-22
zapping from the screen 3-12

starting HyperLook
hyperlook Unix command C-9
.startup.ps
PostScript file 2-8
Style
graphics editor font menu 4-35
sub classes 7-9
super classes 7-9
switches 6-11
syntax errors 7-34

System
stack editor sub menu 5-39

system colors 3-20
system properties 3-31
system resources 3-24

T

Target 7-14
Text
graphics editor menu 4-35
properties 6-15
using 3-14
text
editing 3-14
editing keyboard commands 3-15
text editing
key board commands 3-15
text justification
Text property 6-16
Text object 6-15
To Back
graphics editor menu choice 4-36
stack editor menu choice 5-39
To Front
graphics editor menu choice 4-36
stack editor menu choice 5-39
Tools
pulldown menu in system stack 2-5
transparent buttons 6-9
trash
stack manager 3-22
trouble shooting 2-8
Alan Turing 1-11
The Turing Institute 1-11

typing
input focus 6-13

U

Undo
function key 3-35, 4-23
graphics editor menu choice 4-35
Ungroup
graphics editor menu choice 4-37
Unix commands
drawps 4-7, C-2
exithyperlook C-4
hidestack C-12
hlpath 3-24, 5-32, C-5
hlpsh 7-35, C-6
hisend 7-35, C-7
hyperdraw 4-4, C-8
hyperlook 2-3, C-9
install_hyperlook 2-9, C-9
showstack C-12
Untitled stack
customizing 5-34
user colors 3-20
user resources 3-23

.USer.ps
PostScript file 2-8

Vv

View
graphics editor menu 4-36

w

warehouse 5-13
Wrap
text adjustment property 6-16

X

Xxinitrc
OpenWindows initialization file 2-8

y 4

Z2img

image decompression filter 4-30
Zap

stack menu choice 3-12, 3-36
zapping stacks 3-12
zapping stacks from memory 3-22

Zoom
graphics editor menu choices 4-36

13

14

