Figure 166

Part of the mes-
sage log that is
printed on the
console when a

button is pressed.

Messages

Finding Out About Messages

It’s possible to print all messages on the console. See “Logging Messages”
on page 3-33 to find out how to switch this feature on. As you use the
system, you will see all the messages being generated.

ender
receiver

message

from Stack (Untitled-#1) to Button(#1l) --> OnMouse()
from Button (#1) to Button(#1l) --> Action (0)

from Button (#1) to Stack (Message) —-—-> Init ((Hello
world!))

7-15

Scripting

Writing Scripts

HyperLook objects know about certain messages. In this section exam-
ples are given of how to use the most common ones.

See also Appendix B, “Methods” for an overview of the most important
HyperLook methods which are discussed in this chapter.

The Action Method

/Action % value —-

The Action method is called when the action of the object should be per-
formed. This always happens after the user has changed the state of the
object. It happens, for example, when a button is pressed or when the
value of a slider is changed

The most common use of the Action method is to define the action of a
button. Try this out by creating a button and giving it the following
script!:

/Action { % number —— number (ignored)
beep
} def

When you press the button, the Action is executed and the beep oper-
ator causes the keyboard to beep.

Here is an example of how to use the Action message of a slider. Create
a slider and give it the following script:

/Action { % nr ——
50 gt {
(More than 50) ShowMessage
PoA
(Less than or equal to 50) ShowMessage
} ifelse
} def

1. The arguments and results of the Action method can be ignored safely.

7-16

Figure 167
A slider in action.

Figure 168
A field in action.

The ShowMessage function shows a pop up message window containing
the argument string. When you have applied the script try, changing the
value of the slider.

The Action message of text and field objects is called with a string as an
argument. Here is an example of an Action method for a field object:

/Action { % string --
(Hello) exch append ShowMessage
} def

When you type a string into the field and hit return, the Action method
is called, with the string that you typed as an argument, so a message is
shown.

7-17

7-18

Scripting

The following script can be used for any object. Try assigning it to a
PullDown object. It uses the DEBUG function to print a debugging mes-
sage on the console.

/Action { % string —-—
(SELECTED) DEBUG
DEBUG

} def

When you select an item from the pulldown menu a debug message is
printed on the console:

DEBUG: SELECTED
DEBUG: two

You can use the DEBUG function whenever you want to print debugging
information.

Manipulating Stacks

Now that you know how to program a button action, it is easy to show a
stack when a button is clicked. Let's say you want to show the
Buttonldeas stack when button is clicked:

/Action {
/Buttonldeas ShowStack
} def

The ShowStack function loads a stack (if it is not already loaded) and
shows it. You can hide the Buttonldeas stack using the HideStack func-
tion:

/Action {
/ButtonIdeas HideStack
} def

If you want to be really adventurous, you can hide the current stack. The
variable MyStack returns the current stack:

/Action {
MyStack HideStack
} def

Wxixing »-Scripts

See “Opening Stacks” on page 3-8 on how to open your stack again.

Sending Messages

The Send operator is used to send a message to an object. Sending mes-
sages is explained in more detail in “Messages” on page 7-12. It takes the
following arguments:

/Send % arg—array message target ——

Create a button and give it the following script:

/Action { $ number -- number(ignored)
[1 /IconifyStack Self Send
} def

When you press the button it will send a message called IconifyStack
to itself. Because a button does not know how to handle it, the message
is passed on to its parent. The stack is iconified because the message is
handled by the stack.

Messages can be sent directly to the stack or client by using the MyStack
or MyClient variables as a target. There are various other ways in which
messages can be sent:

[] /Message Self Send % to the object itself

[1 /Message MyStack Send % directly to the stack

[1] /Message ParentSend % to the parent of the object
[1 /Message ClientSend % directly to the client

[] /Message /name Send % to a named object

The target can be specified as a stack name or object name. Here is an
example of a button script that iconifies the system stack.

/Action {
[1 /IconifyStack /system Send
} def

7-19

Scripting

You can also send message between objects on the same stack. Create a
slider and call it Foo. A button on the same stack can now send a mes-
sage to the slider as follows:

/Action {
[50] /SetValue /Foo Send
} def

This sends a SetValue message to the slider called Foo. The message
has one argument, the number 50.

Addressing Objects

Every stack name in the HyperLook system must be unique. Every object
on a stack must have a name which is unique within that stack. This
makes the addressing of objects very easy!:

/system FindStack DEBUG
DEBUG: instance (class (Stack))

Finds the stack named system.

The FindObject function finds an object on a stack. It takes a stack
name and an object name as an argument. It provides you with an
unambiguous way to address an object:

/system /Exit FindObject DEBUG
DEBUG: instance (class (Button))

This finds the object called Exit on the stack called system.

The Send primitive uses the LookupObject function to address objects.
This function first tries to find the object on the current stack. If that fails
it assumes that you are addressing a stack. For example:

/system LookupObject DEBUG
DEBUG: instance (class(Stack))

1. The output of DEBUG will appear on the console.

7-20

Figure 169

A button can be
linked to any card
of the stack.

Writing Scripts

In this case it returned a stack. Addressing an object with LookupObject
is also possible. For example:

/CardNr LookupObject DEBUG
DEBUG: instance(class(Field))

Here is a button script that address an object unambiguously using
FindObject:

/Action {
[1 /Press /system /Exit FindObject Send
} def

The Press method only applies to buttons. It highlights the button and
performs the button action just as if the user had pressed it.

Linking Buttons to Cards

Now that you know how to send messages and how to address objects,
it is easy to link a button to a card. Here is the script of a “next card”
button. When the button is pressed the next card is shown:

/Action {
[] /GoNextCard ParentSend
} def

The following button script is an example of how a button can go to a par-
ticular card of a stack. Create a new card and call it HelpCard.

7-21

7-22

Seripting

You can now create a button (on another card) that shows the card
named HelpCard.

/Action {
[/HelpCard] /GotoCard ParentSend
} def

You can also open a stack at a particular card. This is done by first send-
ing a GotoCard message to the stack and then showing the stack using
ShowStack.

To try this out, assign the following script to a button. It will open the
ButtonIdeas stack at card number 2 (make sure the stack is hidden
first).

/Action {
[2] /GotoCard /ButtonIdeas Send
/ButtonIdeas ShowStack

} def

The SetValue Method

Every object has a SetValue method. The value of the object depends on
its type. The value of a text object is a string, while the value of a slider
is a number. Here a a list of the value types for the HyperLook objects:

e Button -- integer -- the state of the button.

e slider -- integer -- the value of the slider.

* Field -- string -- doesn't contain newline characters.

* Text -- string -- may contain newline characters.

e List -- array-of-strings -- one string per item.

* DrawTool -- drawing -- a drawing is a dictionary object.

®* ColorSelect -- color -- a NeWS color object.

Figure 170

The value of the
right slider is half
the value of the
left slider.

Writing Scripts

This button script sets the value of a text object called MyText.

/Action {
[(Hi There, \nhave a nice day!)]
/SetValue /MyText Send

} def

Note that the \n in the string inserts a newline in the text (see the Adobe
PostScript manual).

Below is an example of a script for a slider. Every time the slider is
changed by the user, it sends a SetValue message to a slider called
MyBrother, keeping it up to date with the same value:

/Action { % nr --
[exch] /SetValue /MyBrother Send
} def

Alternatively you can change the value before setting the other slider. In
this example the value is halved:

/Action { % nr --
[exch 2 idiv] /SetValue /MyBrother Send
} def

MyBrother

7-23

Scripting

Getting the Value of an Object

You may have noticed that the Send operator does not return values.
That means that you can't use it to access the value of an object. You
must use the send! operator to access the value of an object’s variable.

The definition of the send operator is as follows:

/send % ...args message object —-- results...

Note that the arguments are not in an array but simply on the stack. Also
notice that the send operator can return results.

In the following example a slider accesses the value of another slider in
the Action method:

/Action {
/Value /MyBrother LookupObject send SetValue
} def

It first uses the LookupObject function to address the other slider before
it gets the value of the slider using send. It then uses the SetValue
method to set its own value to be equal to the value of the other slider.

The result is that the slider does not let the user change its value. It
always resets itself to the value of the other slider.

The OnHelp Method

Section “Defining Help” on page 5-29 explains how to assign help text to
an object. It is also possible to perform an action when the user presses
the Help key over an object.

When this happens, an OnHelp message is sent to the appropriate object.
This object can respond with any action it likes. For example:

/OnHelp { % ——
(Sorry, no help today...) ShowMessage
} def

1.

7-24

Notice the difference in capitalization between Send and send.

Writing Scripts

Pressing the Help key over an object with this script will show the mes-
sage stack instead of the default help stack.

The Show and Hide Methods

Sending a Hide message to an object makes it invisible. Sending a Show
message shows it again. To illustrate this, you need to create a check box
and another object of arbitrary type called Foo.

Give the checkbox the following script:

/Action ({ % state —-

0 eq { ~
[] /Hide /Foo Send

} oA
[1] /Show /Foo Send
} ifelse
} def

Switching the checkbox on shows the Foo object, and switching the
checkbox off hides the Foo object.

The OnOpen and OnClose Methods

The onOpen method of an object is called when the object first becomes
visible. The OnClose method of an object is called when the object is
removed from the screen.

You can use the OnOpen method to perform some initialization that may
be needed. It can be used, for example, to give the object an initial value.

The following script for a field object sets the initial value of the field to
today’s date, this can be useful in database applications:

/OnOpen { § -
SystemDate SetValue
} def &

7-25

7-26

Seripting

The SystemDate operator returns a string containing today’'s date. The
use of the OnClose methods is illustrated in the following script:

/OnClose { % ——
(I'm leaving now!) ShowMessage
} def

You can use it for any object. It shows a message as soon as the object
disappears of the screen.

Defining Your Own Methods '

So far only system defined methods were discussed. You are not
restricted to using these alone. You can add new methods to objects
yourself.

Here is a script for a slider object that defines a method called
SetRootValue for the object:

/SetRootValue { % nr —--—
sgrt SetValue
} def

The new method sets the value of the slider to the square root of a num-
ber. You can invoke this methods by sending a SetRootValue message
to the object. For example, a button script may contain the following if
the slider is called Foo:

/Action { % -
[25] /SetRootValue /Foo Send
} def

Using IncludeScript

You may find that your script gets too long to edit efficiently with the
script properties editor. You can store the script in a file which you can
edit dith your favorite editor.

To do this, you must create a file containing the script in a resource
directory. Usually this would be the same directory as the one where you
save the stack containing the object. Now put the following in the script
of the object:

(myfile.script) IncludeScript
This will read the object’s script from the file myfile.script when you

press the Apply button on the script property stack. You must apply the
script every time you've made changes to the file.

Remember to keep the object and the script file together. The script file
must be accessible when the object is loaded. The object will be loaded
incorrectly if the script cannot be found.

7-27

Seripting

Scripting Examples

This section contains a simple example and two more advanced exam-
ples.

Fahrenheit and Celsius

In this example two sliders are programmed to represent temperatures
in Fahrenheit and Celsius. When either of the sliders is changed the
other slider’s value is updated to the corresponding value.

For this example you need to create a stack containing two vertical bar
sliders. Name the one on the left Celsius, the one on the right Fahren-
heit. Set the range of the Celsius slider to be =100 to 100. The range of
the Fahrenheit slider should be the same.

Figure 171

The Temperature
example stack.

Assign the following script to the Celsius slider:

/ConvertValue (% val —— str
($C) sprintf
} def

/Action {% val --

[exch 1.8 mul 32 add] /SetValue /Fahrenheit Send
} def

7-28

. Scri‘btigg..éxam;:!es

The ConvertValue method lets you modify the string that is displayed
in the slider. The sprint£! operator is used to convert the integer value
to a string and append a C for Celsius. The action method sets the value
of the Fahrenheit slider to C*1.8+32.

The script of the Fahrenheit slider is very similar. It sets the value of the
Celsius slider to (F-32)/1.8:

/ConvertValue {% val —-— str
($F) sprintf
} def

/Action (% val -—-

[exch 32 sub 1.8 div] /SetValue /Celsius Send
} def

You can now modify one slider, and the other slider will be automatically
updated to the corresponding value.

Let's make a small modification to the SetValue method so that the
updating of the sliders happens immediately instead of when you release
the mouse. Add this definition of SetValue to both scripts.

/SetValue (% val —-
round dup Value ne {
/SetValue super send
[Value] /Action Self Send

} {pop} ifelse
} def

The SetValue method is called continuously when you are changing the
value of the slider. It now sends an Action method to itself to update the
other slider every time its own value changes.

1. See the NeWS programmer’s manual.

i 7:29

Hyperlogk scripins

Figure 172

The MailList
example stack.

7-30

Let’s make one last change to SetValue method of the sliders, to make
them change color when the temperature is below freezing. Change the
SetValue method in the script of the Celsius slider to:

/Freezing 0 def
/Red 1 .5 .5 rgbcolor def
/Blue .5 .6 1 rgbcolor def

/SetValue {% val —-—
round dup Value ne {
Value Freezing gt {Red} {Blue} ifelse
/ValueColor exch def
[Value] /Action Self Send

} {pop} ifelse
} def

Change the script of the Fahrenheit slider accordingly (you need to
change the Freezing variable to 32 instead of 0).

Listing Mail Messages

In this more advanced example, a button is programmed to read the out-
put produced by the Unix program called from. This standard Unix
program lists the messages in your mail box.

From projectfca.chartatiniscs Wed Jun 3 20:32:53 199
From dug@uk.ac.turing Wed Jun 10 17:;33:05 19932

| Button

, 7

. | update]

For this example you need to create a stack containing a button labelled
Update and a list object called MailList.

Scripting Examples

Now give the Update button the following (rather horrible) script:

/Action ({
[(from) pipe pop {
dup 256 string readline {exch} {
pPop pop exit
} ifelse
} loopl]
[exch] /SetValue /MailList Send
} def

The script uses the pipe operator to fork a £rom process. It then pro-
ceeds by reading one line of output until the end of file is reached. The
resulting strings are left on the stack to form an array of messages which
is then assigned to the MailList object using the Setvalue method.

If you press the Update button the list of incoming mail messages is
updated from the output of the £rom program.

Animated Slider

In this advanced example the OnOpen and OnClose methods are used to
start and stop a timer which is called at regular intervals to increment
the value of a slider. Create a bar slider and give it the following script:

/Timer null def
/Delay ScrollThresh def
/OnOpen { % —
/Timer {
Value 1 add MaxValue mod SetValue
} Delay StartTimer def
} def
/OnClose { % -
Timer StopTimer
/Timer null def
} def

The ScrollThresh variable used to initialize the Delay variable. It is
done this way because the time format varies between versions of
OpenWindows.

7-31

Scripting

In the OnOpen method, a timer is started using StartTimer, which
increments the value of the slider periodically. The OnClose method
stops the timer.

7-32

Dealing with Errors

When the script is applied to the object, it is evaluated by the PostScript
interpreter. If an error occurs when the script is applied. the PostScript
error stack is shown (see also “Report Errors” on page 3-33).

Figure 173

The . -
PostScriptError . ////ﬁ/%/
stack. - . .

trace

7 process(ox%t’:ile, 'Exac sa:ip:', Tl
ViError: /syntaxermr
Comand: .psparse taoken’
Os:ack. -inatance(clags (Taxt)) fxlu

rLarray exec cont’ {/syntaxe;
? . psparse token’ f£ile (2, R«ECE.
! carray_exec cont! {fcript ¢

Pay attention to the trace when an error occurs!. It tells you the name of
error and the name of the operator that caused the error. The Receiver
field indicates in which context the error occurred.

Before you can apply the script correctly, the error must be fixed. So
press Done on the PostScript error stack and edit the script until the
problem is solved.

The properties or the script of either the Sender, the Target or the
Receiver of the message can be shown by pressing the corresponding
Props or Script button.

1. See the NeWS Programmer’s Manual for more information.

& 733

Figure 174

The sender of a
message is not
affected when an
error occurs at the
receiving end.

7-34

Seripting

Syntax Errors

A common error, when writing scripts, is to leave “{” and “}” or “(” and
“) " brackets unbalanced, this results in a syntaxerror. When this error
occurs, press Done. Fix the unbalanced brackets in the script before

applying it again.

Invalid Names

The PostScriptError stack warns you about invalid names which are
used in the script. You are not allowed to redefine PostScript operators
or HyperLook functions.

Use the documentation browser to find out about HyperLook functions.

Execution Errors

Errors may occur when you are using the system. As soon as an error
occurs, the PostScriptError stack is displayed and the current message
context is discarded. Execution continues in the context of the sender of
the message.

execution execution
continues stops

=

PostScriptError

The PostScript execution trace can help you find the cause of the prob-
lem. Only the most recent error is displayed if multiple errors occur.
Switch the Report Errors check box off to stop errors from being dis-
played in the PostScriptError stack.

 Unix Scripting Utilities

Unix Scripting Utilities

HyperLook provides some Unix utilities which give you control over
objects from the Unix shell.

The HyperLook PostScript Shell

The hlpsh program (see hlpsh(1l) on page C-6) lets you execute Post-
Script commands in the HyperLook environment. For example, type the
following in a Unix shell:

hlpsh -i .
Welcome to HyperLook
(Hello World!) ShowMessage
A

D

This uses the ShowMessage function to display a string in the message
window.

You can use the hlpsh program to create new HyperLook Unix com-
mands. The following sh program iconifies all HyperLook stacks:

#!/bin/sh
hlpsh << EOF
StackDict {
[1 /IconifyStack 3 -1 roll Send

pop
} forall

EOF

Sending Messages from the Shell

The hlsend program (see hlsend (1) on page C-7) is used to send mes-
sage from a Unix shell to HyperLook objects. The format of the command
is:

hlsend object message args....

7-35

Client Programming

The HyperLook Client Interface

Figure 175

Interfacing
HyperLook to the
real world.

8-2

HyperLook objects live in the OpenWindows server. The HyperLook client
interface allows Unix processes (called “clients”) to connect to
OpenWindows via the network, and communicate with HyperLook
objects.

Clients can send messages to HyperLook stacks and objects. A client can
also receive and respond to messages received from HyperLook. The way
messages are passed to the user is discussed in “Messages” on

page 7-12.

Hamburger Network Unix Device Real
Stack Connection Process Driver World

High Level Message Passing

HyperLook clients communicate at a high level by passing messages and
arguments back and forth to HyperLook. This insulates your application
from the look and feel, so you can easily reconfigure the user interface of
your application without modifying the client, even while it's running.

Clients need not worry about details such as layout, drawing, and mouse
tracking. They need only know about the high level messages which are
relevant to the task at hand.

The ﬁype}rl.oek‘.Ciimt;_tn&grface

Because of this clean separation between HyperLook and the applica-
tion, you can create a highly interactive graphical user interface before
writing a line of code. The user interface will always be easy to change
later on. In fact, the same client can run with any number of different
user interfaces.

Client interface programming is very easy. There are only a few routines
that you need to know about. Making an application respond to or send
a message only requires a few lines of code.

Appendix D, “Library functions” contains a complete list of all client
interface library routines.

Client Programming

Client Interface Overview

Below is the skeleton of a HyperLook client program!. It is explained in
more detail in the rest of this section.

#include <hyperlook.h>

int handle_message (msg, argc, argv)

hl_any *msg, *argv[];

int argc;

{
hl_sendo("stackName:ObjectName","Massage",NULL);
return 1;

}

main ()
{
if (!hl_ptart("ClientName")) {
fprintf (stderr, "Cannot connect to HyperLook!\n") ;
exit (1) ;
}
hl path (NULL) ;
hl_connect ("StackName") ;
hl_show("StackName") ;
hl register (handle_message,
"StackName :ObjectName", "Message") ;
hl listen (hl_forever);
hl stop();

Initializing the Client Interface

Before communicating with HyperLook, a client must connect to the
OpenWindows server and initialize the interface by calling the function
hl start().

1. The source to this example can be found in “demos/client/skeleton.c” in the HyperLook directory.

Client interface Overview

The function hl_path () is called to tell HyperLook where to find the
application’s resources (see “The Resource Manager” on page 3-23).
Passing NULL means that the resources are found in the directory where
the client was started.

Before the client exits, it calls hl_stop() to clean up and disconnect
from HyperLook.

Connecting to Stacks

To receive messages from a HyperLook stack, the client must be con-
nected to it. A stack is connected to a client using hl_connect (). The
hl_show() function displays the stack and connects it to the client.

Any number of stacks can be connected to one client, but each stack can
have at most one client.

Receiving Messages from HyperLook

In order to receive messages from HyperLook, a client must register mes-
sage patterns and handlers with hl_register (). A handler is called
when a message matching a requested pattern is sent to the client.

In order to process messages, you call h1_listen (). Any messages that
can't be handled by stacks to which you're connected are sent from
HyperLook to the client, and are matched against its registered message
patterns. If any patterns match, the appropriate handler functions are
called with the message arguments, otherwise unmatched messages are
ignored.

When a message is received, the handlers for the message are called in
the same order as they were registered. Only the handlers that match the
message and object name are called. Each handler has a chance to
examine the message and arguments and decide whether or not to han-
dle it.

If a handler returns 0 the next matching handler is called. If a handler
returns 1, then no other handlers are called. If a handler returns -1, no
other handlers are called and hl_listen () returns.

8-6

Client Programming

Sending Messages to HyperLook

Clients can send messages to HyperLook objects by calling hl_send0 ().
This function takes a name identifying the target object, a message
name, and any number of message arguments (terminated by NULL).

The message is sent from the client to HyperLook, and it is delivered to
the appropriate object using HyperLook message passing (See “Mes-
sages” on page 7-12).

The message arguments passed to the C handler functions and
hl_sendO() are hl_any structures. These structures represent Post-
Script data structures such as names, strings, numbers and arrays. The
HyperLook client interface provides a number of functions to create
these data structures in C.

Client Interface Overview

PostScript Data Structures in C

The hl_any data structure is declared in hyperlook.h as follows (see
hl_any(3) on page D-3 for a more detailed description)®:

typedef enum {
hl number_ type,
hl boolean_type,
hl_string_ type,
hl name type,
hl array_ type,
hl null type,

} hl_any type;

typedef struct hl_any ({
hl_any type type;
short 1len;
union {
double number;
int boolean;
char *string;
char *name;
struct {
int argc;
struct hl_any **argv;
} array;
}ou;
} hl_any;

This data structure is used to represent the PostScript messages and
arguments that are received from HyperLook. The same data structure
is used to construct arguments to messages which are sent back to
HyperLook.

There are a number of convenient library routines that let you create
hl_any data structures. Using these routines you can create the same
data structures that you can in PostScript. This lets you use PostScript
methods (described Chapter 7, “Scripting”) from C.

1. The complete include file is found in “include/hyperlook.h” in the HyperLook directory.

@ 8-7

Client Programming

The Hamburger Client

This section gives a complete example of how to program the HyperLook
client interface. It explains the client interface in detail®.

The application is very simple. It is a program to ask whether you would
like a hamburger. The application exits when you accept the offer.

Creating the Hamburger Stack

A client needs to connect to a stack to receive messages, so the first thing
to do is to build a stack (see Chapter 5, “Editing Stacks”).

Figure 176 show a picture of the stack called Hamburger. It has a text
object asking the question, and two drawing buttons. The left button is
named yes and the right is named no.

Figure 176

The Hamburger
stack.

1. The source to this example can be found in “demo/client/hamburger.c” in the HyperLook directory.

8-8

Called when the
no button is
pressed. It shows
a message win-
dow.

Called when the
yes button is
pressed. It
returns -1 so
hl_listen will
terminate.

Set hl_verbose
so that messages
are printed on
stderr.

Connect to
HyperLook.

The Hamburger
stack is loaded
from the current
directory.

Process messages
until yes ()
returns -1, then
clean up.

The Hamburger Client

The Hamburger Code

Here is the complete listing of the Hamburger client program.

#include <hyperlook.h>

int no()

{

hl_sendO(”Méssage ", "Init",
hl new_string("Please reconsider my offer!") ,NULL) ;
return 1;

}

int yes()
{
hl send0 ("Message", "Init",
hl new_string("Have a nice day!"),6NULL);
return -1;

}

main (argc,
int argc;
char *argv[];
{

argv)

hl verbose = 1;

if (!hl_start (argv[0])) {
fprintf (stderr, "Cannot connect to HyperLook!\n");
exit (1);

}

hl path(NULL) ;

hl_connect ("Hamburger") ;

hl_show ("Hamburger");

hl register(no, "Hamburger:no", "Action");
hl register(yes, "Hamburger:yes", "Action");
hl listen(hl_forever);

hl hide ("Hamburger") ;
hl stop();

8-9

8-10

Client Programming

The Hamburger Code Explained

The first thing that the client must do is to initialize of the interface. It
calls hl_start () and passes it the name of the client. This client will be
known by that name to HyperLook.

It then adds the current directory to the client resource path, by calling
hl_path(). HyperLook can now find the Hamburger stack which is
located in the same directory as the program.

Next, it connects to the stack, and shows it. It is not necessary to call
hl_connect () because hl_show () also connects to the stack. Now the
Hamburger stack is displayed.

Before calling hl_listen () to process incoming message, the client reg-
isters two message handlers, yes () and no (), which will be called when
the corresponding buttons are pressed. Finally it calls hl_listen() to
process incoming messages.

When you click one of the buttons, a message named Action is sent to
the button. In this example, neither the buttons, the card, the back-
ground, nor the stack have Action handlers. So the Action message is
passed on to the client, and the corresponding message handler is called.

The handler sends a message to the HyperLook Message stack, telling it
to display a string to the user. When the user finally presses the yes but-
ton, the yes () message handler is called. This handler returns -1 which
causes hl_listen() to terminate.

Finally, the client calls h1_hide () to remove the stack from the screen,
followed by hl_stop() to clean up and break the connection with
HyperLook.

HyperLook Include File

#include <hyperlook.h>

In order to use the HyperLook client interface, you must include the
“hyperlook.h” include file. You'll find it in the “include” sub directory of
the HyperLook directory.

The Hamiimrgeziciient

Debugging
hl verbose = 1;

Setting the hl_verbose flag causes diagnostics to be written to the cli-
ent's stderr file. The diagnostics include a log of all messages sent to the
client. A typical message looks like this:

hl _dispatch: message (Hamburger:Button (no) ,Action, [0])

The above means that an Action message is received with a single argu-
ment, the number zero. The target of the message is a Button object
named no on the Hamburger stack.

Initialization

if (!hl_start(argv[O])) {
fprintf (stderr, "Cannot connect to HyperLook!\n");
exit (1);

}

This initializes the client interface, connects to OpenWindows server, and
loads HyperLook if necessary. The argument is the name of the program,
which identifies the client to HyperLook. If hl_start () returns O it
wasn't possible to connect with HyperLook.

hl path (NULL) ;
HyperLook needs to know where to find the client’s resources (the Ham-
burger stack in this case), so hl_path() is called with an argument of

NULL, to add the current directory to the client resource path. The argu-
ment to hl_path () can also be a string with an absolute directory name.

hl_connect ("Hamburger") ;

This connects the client to the Hamburger stack, loading it from the
resource directory if necessary. Once a client is connected to a stack, any
messages the stack can't handle are sent to that client.

hl_show("Hamburger") ;

8-11

Client Programming

This shows the Hamburger stack on the screen. It also implicitly con-
nects the client to the stack, if it's not already connected!.

Registration

hl_register(no, "Hamburger:no", "Action") ;
hl register (yes, "Hamburger:yes", "Action");

The above code registers the no() and yes() message handlers, so
they're called whenever an Action message is received from the yes or
no buttons on the Hamburger stack.

The message address is specified as “stackname:objectname”. In this
example the stack is called Hamburger and the buttons are called no and
yes.

Notification

hl listen(hl_forever);

Calling hl_listen() enters the HyperLook notifier, which processes
incoming messages and calls the appropriate handlers. hl_listen()
exits when a handler returns -1.

The argument specifies how long the notifier should wait before calling
the timeout handler. In this case we aren't interested in a timeout, so we
pass hl_forever, so the timeout handler? is never called.

1. Strictly speaking, it is not necessary to call hl_connect in this example.
2. Use the hl_register_timeout(function to register a timeout handler.

8-12

~ The Hamburger Client

Message Handlers

int no()

{
hl_send0 ("Message", "Init",
hl_pew_string("Please reconsider my offer!") , NULL) ;
return 1;

}

This message handler is called in response to an Action message, when
the no button (with the picture of the crossed out hamburger) is pressed.
It doesn’t care about the message arguments. so they're not declared. It
sends an Init message to the HyperLook Message stack (part of the
HyperLook system), with one argument: a string to display to the user.

The message arguments passed to hl_send0() are of type hl_any
(which is what hl_new_string() returns). A small message window is
shown displaying the string. The Message stack is a facility provided by
HyperLook to display messages.

The C message handlers return an integer to let hl_listen() know
whether the message was handled. The no message handler returns 1,
which means that it was able to deal with the message and that no other
handlers should be considered. Had it returned 0, other matching han-
dlers would have been given a chance.

int yes()
{
//4///////////5 hl_send0 ("Message", "Init",

—
.

hl new_string("Have a nice day!"),NULL);
return -1;

}

The yes handler is similar to the no handler, except for its return value,
which is -1. This causes hl_listen () to stop processing messages and
return to its caller.

8-13

8-14

Client Programming

Cleanup

hl hide ("Hamburger") ;
Once the user presses the yes button, hl_listen returns, and the Ham-
burger stack is removed from the screen using hl_hide().

hl_stop();

Calling hl_stop disconnects the client from the OpenWindows server
and terminates the HyperLook connection.

Compiling the Hamburger

The source to this example is found in “demo/client/hamburger.c”.
You can compile the program (if you have write permission in this direc-

tory) by typing:
make hamburger

You can run the program, once the program has been successfully com-
piled, by typing:
hamburger

The program is compiled as follows. First hamburger.c is compiled to
hamburger.o:

cc -c hamburger.c -I$HLHOME/include \
-ISOPENWINHOME /include/wire \
—ISOPENWINHOME /include/NeWS \
—-ISOPENWINHOME /include

The -1 flags are used to specify the directories where the C preprocessor
should find the include files. Then the program is linked with the follow-
ing command:

cc -0 hamburger hamburger.o -L$HLHOME/lib =-1hl

This creates a binary called hamburger. The -L and -1 flags are needed
to link the HyperLook client interface library into the program.

The UserName Client

This section discusses a more sophisticated example. The program pro-
vides a simple interface which lets you access information from the Unix
password database’.

When you enter a user name followed by return, the information about
the user is displayed in the stack. The getpwnam (3V) Unix function call
is used to access the information from the Unix password database.

Figure 177

The username
stack.

The password is shown encrypted. If the Secure checkbox is marked, it
should show the string “(secret)” instead of the encrypted password.

The program exits when you press the Done button.

The stack is called UserName, and it contains several fields and a button.
The name field at the top right is the only editable one. The other fields
are called realname, dir, shell, and passwd. The checkbox is called
secure. The button is called done.

1. The source to this example can be found in “demo/client/username.c” in the HyperLook directory.

D 815

Client Programming

The UserName Code
The complete username program is listed below.

#include <pwd.h>
#include <hyperlook.h>

int request (msg,argc,argv)
This function is hl_any *msg, *argv[];
called when the int argc;
user has entered {
a name. struct passwd *pw;
hl _any *secure;

Call getpwnam to if (pw = getpwnam(argv[0]->u.string)) {
get the user info. hl_send0 ("UserName:realname", "SetValue",
hl new_string(pw—>pw_gecos) ,NULL) ;
hl send0 ("UserName:dir", "SetValue",
hl new_string(pw—>pw_dir), NULL) ;
hl_sendO ("UserName:shell", "SetValue",
hl new string(pw—>pw shell), NULL);
Show the pass- secure = h.i__get ("UserName: secure" , "Value") ;
word if it can be if (secure->u.number != 0)
disclosed. hl_send0O ("UserName:passwd", "SetValue",
hl new_string(" (secret) "), NULL);
else
hl sendO ("UserName:passwd", "SetValue",
hl new_string(pw->pw_passwd) , NULL) ;
hl_ free(secure);

Clear the fields if } else {
the user is not hl_ send0 ("UserName:realname", "SetValue",
found. hl new_string("-- not found --"),NULL) ;

hl sendO ("UserName:dir", "SetValue",
hl _new_string(""),NULL);
hl_sendO ("UserName:shell", "SetValue",
hl new_string(""),6 NULL);
hl send0 ("UserName:passwd", "SetValue",
hl new_string(""),NULL);
}

Select the name hl_send0 ("UserName:name", "SelectAll", NULL) ;
that the user return 1;
typed. }

8-16

This function is
called when the
Done button is
pressed.

Connect to
HyperLook.

Show the stack.

Register message
handlers.

“The UserName Client

int done ()

{

return -1;

}

main (argc, argv)
int argc;
char *argv[];

{

hl verbose = 1;

if (!'hl_start (argv[0])) {
fprintf (stderr, "Cannot connect to HyperLook!\n");
exit (1);

}

hl path(NULL);
hl_show ("UserName") ;

hl register(request,ANY, "Action");
hl_register(done,"UserNams:done","Action");
hl listen(hl_forever);

hl_hide ("UserName");
hl stop();

The UserName Code Explained

The structure of the program is very similar to the previous example. The
client shows the UserName stack (automatically connecting to it), and
registers two message handlers.

The request () handler is called when a Action message is received
from the name field. The handler uses the string argument of the message
and looks up the user name in the password database.

If the name is found, SetValue messages are sent to the data fields of
the UserName stack.

8-17

8-18

Client Programming

Before the passwd field is set, the value of the Secure checkbox is exam-
ined to determine whether the encrypted password should be displayed.
The program uses the hl_get () routine to get the value of the checkbox.

The program exists when an Action message is received from the done
button.

Message Handler Arguments

When hl_listen() calls a handler, it passes three arguments to the
handler.

int request (msg, argc, argv)
hl_any *msg, *argv[];
int argc;
{
/* message handler */
}

The first argument, msg, is an hl_any data structure which contains the
complete message that hl_listen () received from HyperLook. The argv
argument is an array of length arge, containing pointers to hl_any data
structures, which are the arguments to the message.

The request () handler is called in response to an Action message from
a field object. It has one argument, the string that the user typed. The
string data can be accessed as follows:

argv[0]->u.string

Compiling the UserName client

The source to this example is found in demo/client/username.c. You
can compile the program (if you have write permission in this directory)

by typing:

make username

You can run the program, once the program has been successfully com-
piled, by typing:

username

AR

i

X checkbox

Glossary

Background
A place holder for components on a stack. Every card has at least
one BackGround. A BackGround can be shared by several cards.
Therefore objects on a background can be visible on more than one
card. The parent of a BackGround is the stack.

Button
A user interface component that performs an action when it is
pressed. Buttons can have different styles, for example: push but-
ton, checkbox, drawing button, etc.

Card
A card is like a page in a book. Every stack contains at least one
card. Only one card of a stack can be visible at any time. You can
flip between cards like turning the pages of a book. The parent of a
card is a BackGround.

Checkbox
A checkbox is a user interface component that can either be on or
off. It is on when it is crossed. It is just another style of button.

Class
A class contains the code describing an object type. Classes inherit
functionality from their super classes.

Client
A client is a Unix process that is connected to HyperLook. It can
communicate with stacks and objects by sending and receiving
messages.

Client Interface
A set of C routines which let you write client programs that com-
municate with HyperLook.

Clipboard
A place holder for data when it is moved between stacks and appli-
cations. It can contain graphics, text, images, etc.

Color:

SR

7
]

& _is a Field

ColorSelect
A user interface component that lets you select a color from a color

pallet.

Component
A user interface object such as a button, field or slider.

Desktop
The OpenWindows user interface metaphor for the screen. It con-
tains windows and icons to represent files and applications.

Drawing
A HyperLook PostScript graphics object that can be edited using
the HyperLook graphics editor. It can be translated to Encapsu-
lated PostScript format.

DrawTool
A user interface component that lets you edit graphics interac-
tively. It is HyperLook graphics editor in a single object.

Encapsulated PostScript
A standard format which is used when PostScript files are trans-
ported between applications. Most desktop publishing and
graphics editing applications know how to import and export this
format.

Field
A user interface component that lets you edit a single line of text.

Grid
A grid defines the accuracy at which editing operations are per-
formed.

Group
A group is a set of graphical objects which can be manipulated as
if they are a single object.

Icon
A small graphical representation of a stack or an application.

A-3

Glossary

Message
Messages are passed between HyperLook objects and clients as a
means of communication.

Method-
A method is a function which is defined in a class or script. The
function is executed in the context of the object.

News
Network extensible Windowing System. This is the name for the
PostScript interpreter which is part of OpenWindows.

Object Oriented
A way to structure programs and data. Each object has a class
which defines its functionality. Classes are organized in a hierar-
chical structure that allows for inheritance of functionality.

OPENLOOK®
A user interface “look and feel” using lots of bevelled edges!. This
is the default “look and feel” of OpenWindows.

OpenWindows
The environment in which HyperLook runs. It manages the win-
dows and icons which you normally see on the screen.

Operator
A PostScript function.

Pallet
A set of things from which you can choose. For example, a color

pallet.

Polygon
4 A polygon is a graphical object made of straight lines only.

PostScript ,
An interpreted language that was especially designed for graphics.

1. OPENLOOK is a registered trademark of Unix systems Laboratories Incorporated.

e -

| The quick
'brown fox
|jumps over
| the lazy

PullDown
A button with a menu associated to it. When the button is pressed,
the menu is shown and you can select an option.

Resource
A file used by HyperLook. Resources are accessed using the

resource manager.

Script
A script contains code that customizes an object. Each HyperLook
object can have a script. Scripts contain method and variable defi-
nitions that can redefine and extend the default behavior of objects.

Scrollbar
A scrollbar is a user interface component that is used to view data.
Its value reflects which data is visible.

Slider
A slider is a user interface component that lets you select a
numeric value from a range.

Spline
A spline is a smooth polygon.

Stack
A HyperLook window. It contains components, cards and back-
grounds.

Text
A text object is a component that lets you edit multiple lines of text.
It is a simple text editor.

Unix
The operating system which runs on Sun computers. It is the soft-
ware that supports all programs on your computer.

Glossary

Window
An area of the screen usually dedicated to a single application.
Windows can be moved and resized. You can turn them into icons
if they take up too much screen space.

Zoom
The magnification at which graphics are displayed. Zooming in
means that the graphics are enlarged. Zooming out means that
they get smaller.

A-6

Methods and Variabies

HyperLook Methods and Variables

B-2

This Appendix briefly mentions the most important functions, methods
and variables which are used by HyperLook. The list is by no means com-
plete. Use the documentation browser (“The Documentation Browser” on
page 7-10) to examine the full list of documented methods and variables.

These methods are defined in the HyperLook class and are always avail-

able.

/DEBUG
/ShowMessage

/ShowStack
/HideStack

/FindStack
/FindObject
/LookupObiject

/Send
/ParentSend
/ClientSend

oe

anything --
string|array-of-strings --

stack|stackname ——
stack|stackname-—-

stackname -- stack|null
stackname objectname -- object|null
name ——- object|stack|null

array—-of-arg message target -—-—
array-of-arg message —-—
array—-of-arg message -—-—

. stack Methods

Stack Methods

These methods can only be used in the script of a stack, or sent to a
stack.

/Move %
/ToFront %
/ToBack %
/IconifyStack % -
/DeIconifyStack %
/FlipIconifyStack %

/GoHomeCard %
/GoLastCard %
/GoNextCard % -
/GoPreviousCard %
/GotoCard %

B-3

Methods and Variables

Card Object Methods and Variables

These variables can be referenced in the script of every card object, e.g.
Buttons, Sliders etc:

/Value % —— value
/Width % —=— number
/Height % —— number
/Color % —— color
/FillColor % —— color
/FontName % —— name
/FontSize % —— number
/MyStack % —— stack
/MyClient % —— file
/MyCanvas % ——- canvas

These methods can be used in the script of every card object, e.g. But-
tons, Sliders etc:

/Draw % —
/Damage

oP
|
|

/Move
/Reshape
/Show
/Hide

xy ——
x y width height --

@ oP o° o
|
|

/OnAscii
/OnMouse
/OnHelp
/OnOpen
/OnClose

o oP of o o
|
|

Button Methods

/Action
/SetValue
/Path
/Press

P P dP o
|
|

Card Object Methods and Variables

Field Methods

/Action % string —-
/SetValue % string —-
/Selection % —— string
/SelectAll % —

Text Methods
/Action % string --
/WordAction % string --
/SetValue % string —--
/Selection % -- “string
/SelectAll % —

List Methods
/Action % array-of-strings --
/SetValue % array-of-strings ——
/Select % array-of-strings --
/Selected $ —— array-of-strings

PullDown Methods

/Action % string --
/SetValue % string|array-of-strings --

Slider Methods

/Action % number --
/SetValue % number —--—
/SetRange % min val max --
/ConvertValue % number —-- string

DrawTool Methods

/Action % drawing ——
/SetValue % drawing --
/GetValue % —— drawing

B-5

