Customizing Your Editing Environment

Customizing Your Editing Environment

Figure 122

The editor proper-
ties of a stack.

HyperLook lets you customize your stack editing environment in a num-
ber of ways. You can define new types of stacks, new types of object, and
you can customize the stack editor.

This is very useful, for example, if you want to impose a company style
on all stacks and objects.

Stack Editor Properties

Selecting Editor Info from the Edit menu shows the editor properties
for the stack. Each stack has its own editor properties. This means that
you can configure each stack differently.

Stack Editor Properties Explained

The Grid numeric field lets you set the grid size which is used when
dragging and resizing objects in the stack.

The Border numeric field defines how big the resize corners of selected
objects are. The wider the resize corners, the easier it is to resize objects.

5-33

Hypertook

Figure 123

Creating your own
style of stack.

5-34

Editing Stacks

The Edit Invisible checkbox specifies whether invisible objects can be
selected and edited.

The Select Color, Resize Color, Drag Color, and Center Color
color selectors let you choose various colors which are used by the editor
to draw the selection borders etc.

Creating Your Own Untitled Stack

HyperLook lets you re-define the Untitled stack This means that you
can create your own style of stacks.

Create a stack to your own specification, then save it using Save As ...
from the Stack menu, with the name Untitled.

Now when you press the New button in the OpenStack stack a new copy
of your Untitled stack will be used!

You can define several generic stacks and use them as templates when
creating new stacks. Let's say you've created a stack called Template. To
create a copy of this stack, use the OpenStack dialog (see “Creating a
New Stack” on page 5-5), type Template in the Name field and press New.

Creating Your Own Object Warehouse

When designing your own systems with HyperLook, you may want to cre-
ate your own set of object templates. To create your object warehouse,
create a stack with template objects. Each card of the stack should hold
a set of related objects.

i

Customizing Your Editing Enviromment

The names of the template objects should reflect what they do, since the
name will be used as a menu item (see “Object Name Property” on
page 6-4 on how to set the object name). Objects that have a name which
starts with “#” are not considered as template objects.

Copy the Install button from the Warehouse stack and paste it into

your warehouse stack. Now you are ready to install the template objects
in to the New menu.

5-35

Editing Stacks

Edit Mode Menus

Some of the menus explained here provide different choices depending
on whether no object is selected, one object is selected or several objects
are selected.

Look

The Look menu is explained in “The Stack Menu” on page 3-36.

Edit

Select All
Select all the object on the stack, current background and current
card (see “Selecting Objects” on page 5-15).

Cut

Copy

Paste

Clear

Duplicate

Clipboard editing operations. Only Paste is available when no
objects are selected (see “Copying and Pasting Objects” on
page 5-20).

Copy Object Props
Copy the properties of an object to the clipboard (see “Copying and
Pasting Object Properties” on page 5-22).

Copy Object as Drawing
Copy Stack as Drawing

Copy an object (if one object is selected) or copy the stack to the
clipboard as a drawing (see “Copy as Drawing” on page 5-23).

6 -

Edit Mode Menus

Nudge Up

Nudge Down

Nudge Left

Nudge Right

Nudge the selected objects in the indicated direction (see “Moving
Objects” on page 5-16).

Editor Info
Show the editor properties of the stack (see “Stack Editor Proper-
ties” on page 5-33).

Browse Mode
Switch the stack out of edit mode (see “Edit Mode” on page 5-3).

ook = Stack

Open
Show the OpenStack dialog (see “Opening Stacks” on page 3-8).

Save
Save as...
Save the stack (see “Saving Stacks” on page 5-6).

Revert
Revert the stack to the previously saved version (see “Reverting
Stacks” on page 5-6).

Stack Info
Show the stack properties (see “Stack Properties” on page 5-8).

Stack Script
Show the stack’s script (see “Scripting” on page 7-1).

5-37

Editing Stacks

Card

Card Info
Show the properties of the current card (see “Card Properties
Explained” on page 5-26).

New Card
Create a new card (see “Adding and Deleting Cards” on page 5-25).

Copy Card
Copy the current card to the clipboard (see “Copying Cards to the
Clipboard” on page 5-26).

Delete Card
Delete the current card (see “Adding and Deleting Cards” on
page 5-25).

Print Card
Print the current card (see “Printing Cards” on page 5-7).

Background Info
Show the properties of the background of the current card. See
“BackGround Properties” on page 5-27.

New Background
Give the current card a new background (see “Using BackGrounds”
on page 5-26).

New

Show Warehouse
Show the object warehouse (see “Using the Object Warehouse” on
page 5-13).

5-38

Edit Mode Menus

Create from Class
Create an object from a resource class (see “Scripting” on page 7-1).

System
Create a new system object (see “Creating New Objects” on
page 5-12).

More submenus can be added to the New menu (see “Using the Object
Warehouse” on page 5-13).

Object(s)

Info
Show the object properties. This menu item is only available if a
single object is selected (see “Object Properties” on page 6-1).

Script
Show the script of the selected object. This menu item is only avail-
able if a single object is selected (see “Scripting” on page 7-1).

To Front

To Back

Send objects to the front or to the back (see “Front to Back Order”
on page 5-18).

Align Center

Align Left

Align Right

Align Top

Align Bottom

Align Vertical

Align Horizontal

Align multiple objects. This menu item is only available when more
than one object is selected (see “Aligning Objects” on page 5-18).

5-39

K Editing Stacks

This chapter explains the properties of the HyperLook user interface
objects. In Chapter 5, “Editing Stacks” you found out how to create and
edit objects interactively.

In this chapter you will find out how to change an object’s properties so
that it looks just the way you want it to. You have the freedom to change
object properties such as, color, font, shape and size. Every HyperLook
object has properties which can be changed.

Figure 124

Every object has
properties.

Before reading this chapter, you should be familiar with Chapter 3,
“Using HyperLook” and Chapter 5, “Editing Stacks”.

6-2

_ Generic Properties

Generic Properties

When editing a stack you can edit the properties of an object by selecting
the object and then choosing Info from the stack’s Object menu. You
can also double click on the selected object or press the Props function
key on the keyboard, while the object is selected. This shows the object’s
property stack.

Figure 125 Object type

The properties ofa Object name
Button object. .

Generic
Properties

Specific
Properties
(Button)

The property stack is divided into two sections. The top half contains
properties that apply to every object in the system (generic properties).
The bottom half contains the properties that apply only to the type of
object which you have selected (specific properties).

The generic properties are explained next. After that you'll find out about
the specific properties of each type of object.

6-3

Figure 126

Somebody tried to
create a second
object called
ExitButton.

6-4

Obiect Properties

Editing Properties

When editing properties, no changes are made to the selected object until
you press the Apply button. The properties are then applied to the object
and the object is given the new values.

You can throw away changes made to the properties by pressing Reset.
When you have finished editing the properties press Done. Remember to
press Apply if you want to make the changes permanent. You will be
warned if you press Done without first pressing Apply.

The Script button shows the object’s script. See Chapter 7, “Scripting”.

It is possible, but not advisable, to select another object while an object’s
properties are visible. The object properties will still apply to the first
object.

The Help button edit the object’s help text and is explained in “Defining
Help” on page 5-29.

Object Name Property

The object name field (the top most field in the ObjectProps stack), lets
you change the name of an object. The name should contain only letters
and digits. This makes it easier to interface with programming languages
like C.

Object names must be unique within each stack. You cannot define two
components with the same name on the same stack. A warning is dis-
played if you have chosen a name which is already in use.

Generic Properties

Layer Property

The Layer pulldown lets you select the layer of the object. You can select
Stack, Background or Card. See “Cards and BackGrounds” on
page 5-24 on how these layers affect the object’s behavior.

Glue Property

The Glue checkboxes! let you specify the way an object behaves when
the stack is resized (see “Making a Stack Resizable” on page 5-11 on how
to make a stack resizable). You can define how the object is glued to the
edges of the stack.

Figure 127

An object glued to
the north and to
the east edge of

the stack.
before after

For example, an object which is glued to the north edge and to the east
edge of the stack will remain in the same position relative to the north
east corner of the stack.
If an object is glued to opposing edges, i.e. the west and the east edge, it
will be stretched in order to satisfy the glue constraints.

Figure 128

An object glued to

the east and to the

west side of the
_ stack.

before after

1. N = north, E = east, S = south, W = west

6-5

I

Figure 129

The coordinate
system of a stack.

6-6

Object Properties

Position and Size Properties

The Pos and Size numeric fields let you specify the exact position and
size of the object. See “Moving Objects” on page 5-16 and “Sizing Objects”
on page 5-17 on how to change these parameters interactively.

200~

position=210,45
size=100x25

X-axis

The coordinates are relative to the bottom left corner of the stack.

Visible Property

The Visible checkbox lets you select whether an object is visible or not.
It is sometimes convenient to make an object invisible. The user can not

interact with an invisible object in any way, until you make it visible
again!

Figure 130

Buttons with dif-
ferent fonts.

Figure 131

Changing the
color properties.

Generic Properties

Font Property

The Font pulldowns let you change the font, font size and font style! of
the object. See “Changing the System Fonts” on page 3-31 to see how to
change the list of fonts.

Button Button +oVVvOnm

LucidaSans Times-Roman ZapfDingbats
Bold Italic Plain

Color Properties

The Stroke color selector lets you select the stroke (line and text) color
of the object. The Fill color selector lets you select the fill (interior) color
of the object.

The stroke The stroke
color color =
selector selector

lets you fels you
select the select the

See “The Color Pallet” on page 3-20 on how to change the default set of
colors.

These are the generic object properties. They apply to all object types.
Let’s now look at specific object properties for different types of object.

1. P = plain, B = bold, I = italic, BI = bold and italic

6-7

Object Properties

Button Properties

Buttons do something when you press them and they are used a lot in
HyperLook. Lots of different types of button are provided, but you can
also draw your own with the graphics editor.

Buttons are activated by pressing them with the left mouse button. The
button’s action is executed when the mouse is released inside the perim-
eter of the button.

Figure 132

The properties ofa
Button object.

We're only interested in the specific button properties, so concentrate on
the bottom half of Figure 132.

The Type pulldown lets you select the type of button. You can choose
from Rounded Button, Square Button, Transparent Button, Check-
box, Small Checkbox, Drawing and Alternating Drawing. The button
types are discussed below.

ot

Figure 133

Examples of
rounded and
square buttons.

Figure 134

Transparent but-
tons on top of a
drawing.

~ Button Properties

Push Buttons

Rounded push buttons and square push buttons are the most common
types of button. When the mouse is clicked in the button, it highlights.
When the mouse is released, the button returns to its normal state.

Fill in the Label field to specify the text displayed in the button.

Transparent Buttons

Transparent buttons are used to detect mouse clicks in an area. You can
overlay them on a drawing of some sort to detect a click in a certain part
of the drawing.

shoulder) V 1/

«—hand

Transparent buttons act as normal buttons but they have no visual
appearance, so you can't see them. You can specify a label for a trans-
parent button if you want to, but you won't see it!

Figure 135

Examples of
checkboxes.

Figure 136
A drawing button.

6-10

Object Properties

Checkboxes

A checkbox button is used to indicate a Boolean state, on or off. They
come in two sizes, big or small.

[Married Happy [Visible

The value of a checkbox is 0 for false (not highlighted) and 1 for true
(highlighted). Fill in the Label field to specify the text printed next to the
text box.

Drawing Buttons

A drawing button is most frequently used to display a drawing in a stack.
Pasting a drawing from a graphics editor into a stack automatically cre-
ates a drawing button containing the drawing (see “Pasting Text and
Graphics” on page 5-22).

The graphics editor lets you create or edit the drawing for the button.
Note that you sometimes need to adjust the size of the button before you
can see the whole drawing.

Alternating Drawing Buttons

An alternating drawing button contains multiple drawings, which are
used to display different states of the button. There is one drawing for
each state of the button, and each time you press the button the drawing
changes from one to the next.

_ Button Properties

In this way it is easy to create graphically pleasing buttons like switches
and levers.

Figure 137

Examples of alter-
nating drawing

buttons.
To specify the states for the button you need to draw each state in the
graphics editor on the button properties stack. Each state should be a
single drawing object, so group objects together so that you have one
object per state. Place all the states on top of each other starting with the
initial state at the bottom of the pile.

Figure 138

Button states
drawn on top of
each other.

Now you have given HyperLook all the information it needs to create an
alternating drawing button.

Note that the button will redraw between states using the fill color of the
button as the background of the drawing. Make sure that the fill color
matches the background color of the window!

6-11

Object Properties

Field Properties
A field is a single line of text which can scroll horizontally. It is used for
labels or to let the user enter a single line of text.

You usually finish editing a text field by hitting the Return or Esc key,
then the action associated with the field is then executed.

i 13
Figure 139 Name:
Examples of field
objects. Address: | ange straat 123
W_editable field
croll left button
on editable field

See “Editing Text” on page 3-14 on how to edit text using keyboard short
cuts. You can copy and paste text to and from fields using the clipboard,
see “The System Properties” on page 3-31. See “Text Properties” on
page 6-15 if you want to use a multi line text editor.

Figure 140

The property
stack of a Field
object.

Field Properties Explained

We're only interested in the specific properties of field objects, so concen-
trate on the bottom half of Figure 140.

o12 &

Field Properties

The Value field lets you enter the text to be displayed in the field. You
can do this even if the text field itself is not editable.

The Transparent checkbox lets you choose whether the text field is
transparent or opaque. A transparent field can not be edited.

The Boxed checkbox lets you choose whether a box is drawn around the
text field. The border color of the box is the same as the text color.

The Selection, Scroll and Scroll Fill color selectors let you change
the colors of selected text and scroll buttons.

The Editable checkbox determines whether the user can type into the
field directly. If the field is not editable it is usually used for display only.

The Adjust pulldown lets you select how the field is adjusted. You can
choose Left, Center or Right.

The Max length field lets you limit the length of the text field to a max-
imum number of characters. If you don't enter a value here, then the
maximum length is 65000 characters.

Numeric Fields

The Number checkbox is used to specify whether or not a field is numeric.
A numeric field restricts the user to entering numbers. Numbers can
start with a “~" and may contain a decimal point.

Controlling the Input Focus

The object which is receiving typed characters is said to hold the input
focus. It's useful to be able to control the input focus so that user of your
application can enter text in a logical sequence.

The Focus Number field lets you specify the focus number of the field.
This number is used to establish some ordering between text objects
when more than one editable text object is visible. The order is used to
decide the sequence in which input focus is passed around between
objects.

6-13

Figure 141

The focus number
affects the order.
The order is: Title,
Name, Address,
Country.

6-14

Object Properties

When editing text in a stack, typing Control-T forwards the input focus
to next editable text object in the stack. You can also force the input
focus to go to a particular text object by clicking on it. This applies to any
object which can accept typed characters.

Name: Marcel =~ |<€«——__ 100 (second)
Address: [ange straat 123 |<€¢— 100 (third)
101 (last)
. e
Country: Holland (50 (first)

el

Title: Research Assist o

The object with the smallest focus number gets the initial focus, that is
when the stack or card is opened. After that, the focus is forwarded to
the text object with the next higher focus number.

If there is more than one text object with the same focus number, then
the front to back ordering is used.

The default input focus number is 100. This number is chosen so that
there are plenty of lower and higher input focus numbers. Leaving the
input focus number field empty means that the object does not compete
for the input focus. It means that you have to click on it to give it the
input focus.

Text Properties

Text Properties

Text objects are used for multi-line text editing. They provide editing
facilities that allow editing of text up to 65000 characters long.

igure 142 . T

o brown fox The quick The quick b |2

Some examples of |jumps over brown fox rown fox ju

text objects. the lazy jumps over |mps over th
dog. the lazy dog. e lazy dog. o
In this section we're concerned with text properties, not text editing. See
“Editing Text” on page 3-14 to see how to edit text using keyboard short
cuts. See “The Clipboard” on page 3-18 to see how to copy and paste text.

Figure 143

The properties ofa

Text object.

Text Properties Explained

We're only interested in the specific properties of text objects, so concen-
trate on the bottom half of Figure 143.

6-15

Figure 144

Different text
adjustments.

6-16

Object Properties

The Value field lets you enter the text for the text object. You can do this
even if the text object is not editable.

The Adjust field lets you select the way the text is formatted. You can
choose from:

* None. No formatting, lines are broken only where you type a newline.
®* Wrap. Lines are broken at the last character that fits.

* Left. Lines are broken at word boundaries. The text is left justified.
®* Center. Lines are broken at word boundaries. The text is centered.

®* Right. Lines are broken at word boundaries. The text is right justi-
fied.

The quick br| The quick br{ | The quick The quick The quick
own fox jum | | brown fox brown fox brown fox
ps over the || |jumps over || jumps over || jumps over
azydog. | thelazy the lazy the lazy

. |idog. . dog. dog.
none wrap left center right

The Selection, Scroll Act and Scroll Fill color selectors let you
change the colors of the selection and the scroll bar.

The Editable checkbox controls whether the user can edit the text. If
the text is not editable it is usually used for display only.

The Scrollbar checkbox lets you choose whether the text has a scroll-
bar. The text cannot be transparent and scrollable at the same time.

The Transparent checkbox lets you choose whether the text is transpar-
ent or opaque. A transparent text object cannot be editable.

The Boxed checkbox lets you choose whether a box is drawn around the
text. The border color of the box is the same as the text color.

The AutoIndent checkbox lets you select whether the text is in auto
indent mode. If the text is in auto indent mode, typing a newline will
indent the new line the same as the previous line. This feature is useful
for entering program text.

Text Properties

See “Controlling the Input Focus” on page 6-13 for how to use the Focus
Number field to control the input focus.

6-17

Object Properties

List Properties

List objects are used to select items from a list. List items are useful if
you want to present a long list of items, for example, fonts.

rowre 199 Times r—
Some examples of | U NN vier
List objects. Courier
Symbol
AvantGarde zeven
List objects are either exclusive or nonexclusive. An exclusive list object
can only have one item selected at any time. A nonexclusive list object
can have many items selected. See “Scrolling Lists” on page 3-16 on how
to use List objects with keyboard short cuts.
Figure 146
The properties of a

List object.

618 i

List Properties

List Properties Explained

We're only interested in the specific properties of list objects, so concen-
trate on the bottom half of Figure 146.

Section “Generic Properties” on page 6-3 explains how to change the
generic properties of a List object.

The value field lets you specify the items in the list. You can specify any
number of items separated by newlines.

The Selection, Scroll Act and Scroll Fill color selectors let you
change the colors of the selection and the scroll bar.

The Editable checkbox determines whether the user can change the
selection by clicking on items.

The Required checkbox indicates whether at least one item must be
selected or not.

The Exclusive checkbox lets you choose whether the list is exclusive or
nonexclusive. An exclusive list can have at most one item selected.

The Boxed checkbox lets you choose whether a box is drawn around the
list. The border color of the box is the same color as the items.

See “Controlling the Input Focus” on page 6-13 on how to use the Focus
Number field to control the input focus.

6-19

Object P#amkzies

PullDown Properties

Pulldown objects are buttons with a pulldown menu. Pulldowns are dis-
played as a square button, usually with a shadow.

PullDown objects are used to select from a menu. A good example of a
pulldown object is the font selector pulldown in the object properties

e 147 . .
Figun Helvetica I =English
Some examples of
Pulldown objects. Dutch

)
German
English
French
stack.

Figure 148

The properties ofa

PullDown object.

6-20

~ PuliDown Properties

PullDown Properties Explained

We're only interested in the specific properties of PullDown objects, so
concentrate on the bottom half of Figure 148.

The Value field lets you specify the items in the pulldown menu. You can
specify any number of items (one line per item). A single “~” item will put
a horizontal line in the menu. See also “Pull Right Menus in PullDown
Objects” later in this section.

The Label field lets you enter the text displayed in the pulldown button.
The Set Label checkbox indicates whether the label of the pulldown
button should change when a selection is made from the menu. If Set
Label is true, the label will display the most recent selection.

The Shadow, and Menu Fill color selectors let you change the colors of
the shadow and the menu.

The Menu Font pulldowns let you select the font which is used in the
menu.

The Shadow checkbox determines whether the pulldown button has a
shadow to distinguish it from ordinary square buttons.

Pull Right Menus in PullDown Objects

You can specify pull right menus for PullDown objects by indenting the
items in the Value field accordingly. Items which are indented by equal
amounts are assumed to be part of the same menu. For example:

Dutch
een
twee
drie

English
one
two
three

6-21

Figure 149

An example of a
pull right menu in
a PullDown object.

6-22

Ohject Properties

This results in three menus. The top level pulldown menu contains two
items, Dutch and English. Each item has a pull right menu with three
items.

Language
Dutch »
one
three

 Slider Properties

Slider Properties

Slider objects let you select a numeric value. Sliders come in two flavors:
bar and scrollbar. Bar sliders are usually used to select a value from a
range. Scrollbars are used to scroll data such as text or graphics.

Figure 150 active scrollbar

Some examples of | inactive scrollbar
Slider objects. [&] D] A/bar

Figure 151

The properties ofa

Slider object.

Slider Properties Explained

We're only interested in the specific properties of slider objects, so con-
centrate on the bottom half of Figure 151.

The Min, Max, and Value numeric fields let you specify the minimum,
maximum and current value of the slider itself. If the minimum value is
greater or equal to the maximum, or if the current value is outside the
legal range, the slider is made inactive.

The Value color selector lets you change the color of the bar or scrollbar.

6-23

6-24

Obiect Properties

The Type pulldown lets you select the type of slider, either Bar or
ScrollBar.

The Editable checkbox determines whether the user can change the
value of the slider.

The Vertical checkbox indicates whether the slider moves vertically or
horizontally.

The Show Value checkbox lets you choose whether a Bar slider shows
its current value.

The Boxed checkbox lets you choose whether a box is drawn around the
Slider.

ColorSelect Properties

ColorSelect Properties

Figure 152

Some examples of
ColorSelect
objects.

Figure 153

The properties ofa
ColorSelect object.

ColorSelect objects let you select a color from a popup color pallet. The
currently selected color is displayed in the color rectangle. See “The Color
Pallet” on page 3-20 on how to change the colors on the popup color pal-
let.

Line Color: . Fill Color:

An example of how to use a popup color pallet is described in “Color
Selectors” on page 3-17.

ColorSelect Properties Explained

We're only interested in the specific properties of ColorSelect objects, so
concentrate on the bottom half of Figure 153.

ColorSelect objects are really very simple. All you can change is the
Label. The size of the color rectangle is controlled by changing the size
of the object.

To change the colors appearing in the popup menu, use the ColorPallet
stack and modify the specific entries as described in “The Color Pallet”
on page 3-20.

6-25

Object Properties

DrawTool Properties

Figure 154

An example of a
DrawTool object.

Figure 155

The properties ofa
DrawTool object.

6-26

The DrawTool object is a complete graphics editor in the shape of a
HyperLook object. It lets you incorporate the graphics editing features in
your own application.

a.
N %
o] C\
GO

id

¥

—

|+

&

5%

aim;. | BRR&

See “Graphics Editing” on page 4-1 for detailed information on how to
use the graphics editor.

ST
%

Figure 156

An example of a
non editable
DrawTool object.

DrawTool Properties

DrawTool Properties Explained

We're only interested in the specific properties of DrawTool objects, so
concentrate on the bottom half of Figure 155.

The graphics editor on the properties stack lets you edit the drawing of
the DrawTool object. You can do this even if the object is not editable.

The Editable checkbox determines whether the user can change the
drawing in the DrawTool object. A non editable DrawTool object does not
have the tool pallet and its menu is restricted.

O
11 D1%%

The GridLines checkbox lets you choose whether the grid lines are
drawn or not.

The Scroll color selector lets you choose the color of the scrollbars.

The Paper, Grid and Border color selectors let you choose the color of
the paper, the grid lines, and the borders of the paper.

The Markers color selector determines the color of the markers used to
indicate the selected object.

6-27

”YML@& Object Properties

6-28

ARG 55550 e

HyperLook scripting

This chapter explains how to program HyperLook objects. Programming
a HyperLook object is called scripting. The language that is used is Post-
Script.

Writing scripts is useful if you want to define bits of program which are
executed when, for example, a button is pressed. But you are not
restricted to simple programs alone, you can redefine most behaviors of
an object by writing scripts. You can even create new classes of object.

Editing Scripts

To edit the script of an object, switch the stack to edit mode and select
the object. Now select Script from the Object menu. The script prop-
erty stack is shown.

Figure 157 the script

The Script proper-
ties of a button. c ton £

¥IL /GoNextCard ParentSand
L i

The script of an object can also be shown by double clicking the object
while holding down the shift key.

The scripts properties of Stacks, BackGrounds, Cards and objects are
shown by pressing the Script button on the appropriate property stack.

When you are finished editing the script, press the Apply button. This
evaluates the script and assigns it to the object. You can throw away any
changes that you have made by pressing Reset. Press Done when you
are finished.

Pressing the Props button shows the object properties of the object.
These are explained in Chapter 5, “Editing Stacks” and Chapter 6,
“Object Properties”. The Help button is explained in “Defining Help” on
page 5-29.

HyperLogk scipting

Figure 158

Editing the script
of a button.

7-4

An Example of a Script

Now try writing your own script. Create a new button and get its script
properties. Enter the following script (see “Editing Text” on page 3-14 for
some useful editing hints):

/Action {
(Hello World!) ShowMessage
} def

Press Apply and switch out of edit mode. If you now press the button it
will pop up a “Hello World” message.

Acrian

A script should contain only PostScript variable and function definitions.
It should not contain code which gets executed when the script is
applied. See “The OnOpen and OnClose Methods” on page 7-25 on how
to perform initializations.

This is because when a stack is loaded from disk for the first time, its
script evaluated in a strange environment. Not all operations are guar-
anteed to work in that state. Please read on, later on in this chapter more
information about writing scripts is given. And there are lots of examples
too!

; The PostScript Language

The PostScript Language

The programming language used in scripts is called PostScript. If you
want to learn more about PostScript, read the Adobe PostScript manuals
and the NeWS® manuals (see the end of this section for details)'.

It is beyond the scope of this manual to give a comprehensive introduc-
tion to the PostScript language. It assumes that you are familiar with
PostScript.

But don't panic if you don't know PostScript. Just read on and copy the
examples that are given. First, a little bit of background on the language
itself.

Postfix Notation

The most striking aspect of the PostScript language is its notation. Post-
Script uses postfix notation. That means that the arguments of an
operator come before the operator name. For example, C uses infix nota-
tion:

1+ 2

In PostScript this is written differently:
1 2 add

Postfix notation is not hard to learn. You have to get used to it, but once
you understand the principles behind it, it's very easy.

Stack Operations

Most PostScript functions use the operand stack. This is a stack of things
like temporary values and arguments to function. Take the following
expression:

6 - (2 + 3)

1. NeWS is a registered trademark of Sun Microsystems Incorporated.

7-5

Figure 159

The PostScript
operand stack.

Seripting

The PostScript equivalent of this expression is as follows:
6 2 3 add sub

To understand this you could imagine the numbers being pushed on the
stack as shown in Figure 159.

6 2 3 add sub

You never need to use parenthesis to group sub expressions in Post-
Script. All PostScript expressions are unambiguous (even without
parenthesis).

PostScript provides lots of operators which let you manipulate the items
on the stack. For example, pop discards the top item of the stack, dup
duplicates the top item of the stack, and exch swaps the top two items
of the stack.

Notation

A brief note on the notation of variables and functions is useful because
you will see it used a lot in examples that follow.

A PostScript function is defined as follows (note that the '$’ sign starts a
comment):

/functionname { % arguments —— results
. Postscript Code ...
} def

. The ?05&5;:‘%;}; Language

In the case of multiple arguments or results, they are specified in bottom
to top order as they occur on the operand stack. A PostScript variable is
defined as follows:

/variablename initialvalue def

More Information on PostScript

There are four sources of information (apart from this manual) that you
may find useful when writing HyperLook scripts.

The PostScript Language Reference Manual'. It explains the Post-
Script language and all the PostScript operators. The PostScript
interpreter used by OpenWindows is almost 100% compatible with
Adobe PostScript (level 1).

The NeWS programmer’s manual. This manual lists the differences
between Adobe PostScript and the PostScript used by OpenWindows.
It also describes the many enhancements and utilities included in to
support interactive programming.

The Hyperlook documentation browser. This on-line tool lets you
access the documentation on all the PostScript functions that
HyperLook provides (see “The Documentation Browser” on
page 7-10).

1. ISBN: 0-201-10174-2

C®

7-7

Figure 160

Part of the
HyperLook class
tree.

7-8

Scripting

A class defines the behavior of an object. All objects in the HyperLook
system are implemented using classes. HyperLook is an object oriented
system.

A class contains variables and methods. Methods are functions which
are defined in the context of the class. A method can always access other
methods and variables of the class.

An instance is an actual object created from the class. Take for example
the system stack, which contains multiple instances of the Button class.
A script defines methods and variables that apply only to a single
instance.

Each class is part of the class hierarchy. Figure 160 shows part of the
HyperLook class hierarchy. The class hierarchy defines how methods
and variables are inherited.

ClassObject
:

HyperLook
2

RootObject

v
GraphObject

N

CardObject BackGround

7N\ /N

Button Slider Card StackFrame

'

Stack

A button, for example, inherits its variables and methods from the
classes ClassObject, HyperLook, RootObject, GraphObject,
CardObject and Button.

 Classes

Super Classes and Sub Classes

The parent of a class is called a super class. For example, class
CardObiject is a super class of class Button.

The child of a class is called a sub class. For example, class BackGround
has two sub classes: class Card and class StackFrame.

A super class’s methods are inherited by its sub classes. This means that
if class CardObject has a method called Draw, it will be inherited by all
of its sub classes. Therefore class Button and class Slider therefore
both have a Draw method

The methods defined by a super class can be redefined. For example,
class Button can redefine methods which are defined in class
CardObject. This doesn't change the methods in class CardObject, it
just overrides it for instances of class Button. Scripts often redefine class
methods in a particular instance.

Seripting

The Documentation Browser

Figure 161

The documenta-
tion browser.

7-10

HyperLook provides a tool which lets you examine the class hierarchy
and the methods and variables of the HyperLook classes. It is called the
documentation browser. Select DocBrowser from the Tools menu in the
system stack to show the documentation browser.

class name

his is the button class, impiementin,
rsh BustonRs, Buttos Wi single it documentation

The documentation browser lets you examine the documentation of
methods and variables of HyperLook classes. Every HyperLook class
method and variable has some documentation describing briefly what it
does.

Using the Documentation Browser

To view the documentation on a class you must enter the name of the
class in the Class field and type return. The methods and variables of
the class are then displayed in the Variables and Methods lists.

Figure 162

An example of
some documenta-
tion for the
method BestSize
of class Button.

The Documentation Browser

The Inherited checkbox determines which methods and variables are
shown. If the checkbox is checked, all methods and variables that are
inherited from the super classes are displayed. If it is not checked, only
those methods and variables which are defined by the class itself are dis-
played.

You can also select classes from the SuperClasses and SubClasses
pulldown items. The SuperClasses pulldown contains all the super
classes of the current class. The SubClasses pulldown contains all the
sub classes.

Printing Class Documentation

You can print the class documentation by pressing Print Class (“Spec-
ifying a Printer” on page 3-32). This prints an alphabetic listing of the
variables and methods of the current class. There are many pages of
source documentation associated with each class, the printouts can take
up a lot of paper!

input/output arguments

class name
method name

documentation

== /Butﬁl /Bes’tz;e — /.

Change the size of the button to fit the
drawing. This only applies to drawing-type
buttons. See also: GetBestSize.

The header sometimes contains the words persistent or instance, these
indicate the type of methods or variable. Don't worry about them, they
are only significant for advanced programmers.

Pressing Print SubClasses prints documentation for the current class
and all its subclasses. The Inherited checkbox is turned off to save
trees. ’

To print the class documentation of all HyperLook classes, select the
HyperLook class and press Print SubClasses.

7-11

Seripting

Messages
HyperLook uses message passing to communicate between objects and
between objects and clients. Figure 163 shows the flow of messages
when a button is pressed to open a file.

Figure 163 W

Communication

between a Button,

a stack and a cli-
ent.

.

/%//////?
%

i,

client program

The HyperLook system sends a message to the Open File button when
it is pressed. The button responds by asking the OpenFile stack to open
a file, and the resulting file name is send back to the button. The button
then passes the message onto its parent.

Messages and Methods

Every message has a name. For example, the HyperLook system sends a
Draw message to a button when it needs updating. The button has a
method called Draw which draws the stack.

The methods of an object are defined in its class or in its script. You can
define new methods by editing the script of the object.

7-12

Figure 164

The HyperLook
message hierar-
chy.

Most programming languages let you write functions which can be
accessed from anywhere, they are defined globally. Object oriented sys-
tems let you define functions which are known only in the scope of an
object.

This not only means that objects can have different methods with the
same names, but also that a message can mean different things to dif-
ferent objects. For example, the Draw method of a button draws a button
while the Draw method of a slider draws a slider.

Sending a message to an object really means calling a function in the
context of the object. The context of an object is defined by its class!.

The Message Hierarchy

What happens when a message is sent to an object and the object does
not define the method? In some systems this would cause an error! Not
in HyperLook.

When a message is not defined by an object, it is passed on to the parent
of the object. If the parent of the object does not define the message, it is
sent on to its parent, and so on. Eventually the end of the chain is
reached and the message is either send to a client program or it is lost.

1. The class of an object and the type of an object really mean the same thing.

D

7-13

Figure 165

A message is send
by the Sender, it
is aimed at the
Target and it is
handled by the

Receiver.

7-14

Scripting

This path is traversed to find the receiver of a message:

Component (Button, Slider, etc.)
Card

Background

Stack

Client (only when connected)

The message is delivered to the first object in the chain that understands
the message. If the message is not delivered, it is discarded, or it is sent
to the client. You can also send messages directly to a card, background,
stack or client.

gk Wb

A message is sent from the Sender to the Target. The Target is the
object which was identified by the sender as the initial target of the mes-
sage. If the target can’'t handle the message, it is passed on to its parent
until it’s handled by the Receiver.

