HOAME
"ROGRAMMING

e

—
—
-

=
=
—
=
-1
(o]
o
S
5

1.14

Natural Selection: The
Evolution of Pie Menus

Don Hopkins
don@DonHopkins.com

Pie menus are a naturally efficient user-interface technique—directional selection
of pie slice-shaped targets. The cursor starts out in the inactive center region of a
pie, and all target slices are large, nearby, and in different directions. Pie menus are
quite easy for new users. You simply follow the pop-up directions to use them. They
are also extremely efficient for experienced users. Once you know the directions, you
can quickly and reliably ‘mouse ahead’ without looking. Fitts’ Law [Fitts54] explains
the pie menu advantage—their fast selection speed and low error rate is due to their
large target size and the small distance between each item.

The evolution of user interface design is driven not only by theory, but also by
practice. We'll examine the successes and failures of a few real-world examples, not
only to avoid re-inventing the square wheel, but also to encourage further creativity.
The examples presented here are intended to inspire you to think outside the box and
design new kinds of fun, efficient, and reliable user interfaces.

The Feng GUI of Pie Menus

User interface design is not just a process of raw artistic creation nor a legalistic appli-
cation of interface guidelines and theories. It’s the exploration and discovery of natu-
rally efficient ways of solving problems, given competing sets of constraints. The
outcome is always different, because the trade-offs and constraints always vary, but
many of the underlying principles are universal.

‘Feng GUI’ seeks to understand the dynamic flow of mental and physical energy.
It orchestrates the flow of attention and gesture throughout the interface as a whole.
Fitts’ Law is useful for scientifically analyzing performance speed and error rate, but it
doesn’t capture the human side of the equation. Feng GUI tries to prevent unfortu-
nate accidents (like the 2000 Florida presidential election ‘Butterfly Ballot’) before
they happen.

When designing a pie menu, think of Martha Stewart arranging a bunch of flow-
ers into a beautiful bouquet. You must work with what you're given, try to play off the

117

118

Section 1 General Programming

visual and semantic symmetries and relationships, and arrive at a pleasing pattern
that’s both enjoyable and easy to remember.

To construct a memorable pie menu tree of submenus, you should emulate
Alexander Calder’s creating a hanging mobile sculpture. The task not only requires a
sound understanding of scientific engineering principles, but also aesthetic judgment
calls and acrobatic balancing acts.

Doug Engelbart, who invented the mouse and pioneered interactive user inter-
faces, strongly believes that the human-tool co-evolution should be based on rigorous
exploratory use in a wide variety of real-world applications. So don’t just talk about
pie menus—use them, evaluate their performance, and improve upon them!

Researching and Evaluating Pie Menus

The essential idea of directional menu selection has been around for a long time in
various forms and with different names. Many examples of implementations exist,
and a detailed history can be found at [PieMenu02].

Many studies have also been done on their effectiveness compared to other Ul
approaches. Gordon Kurtenbach and Bill Buxton (University of Toronto) have
demonstrated many interesting results with their empirical research and controlled
experiments with marking menus and various input devices. At Alias|Wavefront, they
have successfully applied them to Maya, a high-end 3D animation environment, so
users can design their own marking menus to customize their environment. In their
research, they studied the learning curve from novice to expert user. They found that
there are three stages of behavior along the learning curve:

1. Novice users click up the menu, wait for it to display, look for the desired
label, move the mouse, and click to select the highlighted item.

2. Intermediate users remember the direction, click up the menu, move in a
desired direction, wait for the menu to pop up and highlight the desired
item, and release the button to confirm the selection.

3. Expert users simply press down the button, move in a desired direction, and
release the button without hesitating.

Because the physical motions of novice, intermediate, and expert users are the
same, pie menus transparently train you to become an expert. Each time you make a
selection, you're rehearsing the expert mouse-ahead gesture. The intermediate stage is
like an escalator along the learning curve. It helps novice users become experts by
exercising their skills and increasing their confidence to mouse-ahead. Your muscles
quickly and unconsciously learn to mouse-ahead without looking.

Jaron Lanier (VPL Research) put it well: “The mind may forget, but the body
remembers.” Pie menus exploit your body’s ability to remember muscle motion
and direction, even when your mind has forgotten the names of the corresponding
items.

1.14 Natural Selection: The Evolution of Pie Menus 119

The nature of the input device used has a significant effect on the selection speed
and error rate. Mice have been found to be faster and more accurate than trackballs,
and pens are faster and more accurate than mice.

The maximum usable breadth (number of itcms) and depth (submenu nesting
level) is limited by the maximum error rate the application can tolerate. Nuclear
power-plant interfaces should stick to single level-two and four-item pie menus,
which are extremely reliable. A game like SimCity or an editor like Maya can get away
with using deeper menus with more items because it’s easier to recover from selecting
the wrong item.

Experienced users perceive single-level pie menus with two, four, and six items to
be error-free, and eight items to be very reliable. Kurtenbach and Buxton measured
the error rate at less than 10% with four items four levels deep as well as with eight
items two levels deep.

Increasing the number of items in a pie menu has an obvious detrimental effect
on the selection speed and error rate, but the relationship is not simply linear. Even
numbers of items are easier to use and remember because more of the items are on-
axis and symmetrical. On-axis items are easier to select than off-axis items, so it’s good
to put commonly used items to the North, South, East, and West, and less-common
items along the diagonals.

This even/odd effect is most pronounced when comparing 7 versus 8 items, and
11 versus 12 items. Eight and 12 items are especially easy to use, because the directions
are mentally more familiar and physically more on-axis. As the number of items
increases, the negative effect of adding another item decreases. So, it’s often helpful to
add an extra item to 11-, 7-, and even 3-item menus, just to make them nice and even.

When designing nested pie menus, the depth versus breadth trade-off seems to be
about even. So, it’s best to let the semantics of the items determine how they should
be arranged: shallow menus with many items, or deep menus with few items.

It's worth noting that some menus still work better as linear menus. Most linear
menus and submenus aren't arranged to take advantage of the pie menu directions,
and pie menus with too many items are huge and unwieldy. To solve those problems,
modifiable pie menus have been developed that the user could customize, and
scrolling and paging pie menus can handle any numbers of items.

Component technologies, like ActiveX and Dynamic HTML behaviors, make it pos-
sible to implement general-purpose, easily reusable plug-in user-interface compo-
nents. Pie menus can provide configuration languages, property sheets, and
special-purpose editors, which enable designers and users to create and customize
their own menus without programming.

ActiveX (also known as COM and OLE) is a component technology developed

by Microsoft. We developed an open-source ActiveX pie menu component that can

120 Section 1 General Programming

be plugged into any OLE control container, including those used by Internet
Explorer, Visual BASIC, Visual C++, and many other tools and applications. They’re
easily created and customized through scripting languages like Visual BASIC or
JavaScript, and they have property sheets to configure their many options, for editing,
and to preview the pie menus (see Figure 1.14.1).

Pieu Cool Pt . g

c D
FIGURE 1.14,1 (A-D) Editing control properties using an example program.

ActiveX pie menus support many properties and methods to control their appear-
ance and behavior. You can customize pie menus by writing scripts that manipulate
their properties, call methods, and handle callback events signaled during tracking.
However, their graphical abilities are quite limited when compared to Dynamic
HTML (see Figure 1.14.2).

The open-source JavaScript pie menus for Internet Explorer solve this problem
nicely [JavaScript02]. They’re tightly integrated with the Web browser and can take
advantage of all of its features. They're easily and completely configured in XML as
well as being extremely flexible, because you define their appearance with Dynamic

121

1.14 Natural Selection: The Evolution of Pie Menus

ing Dynamic HTML

implemented us:

1) Pie menus

2 (A-

FIGURE 1.14

122 Section 1 General Programming

HTML. These menus a easy for Web page designers to use for static pages and for
Web server programmers to use for dynamic online services because they’re imple-
mented as modular ‘Dynamic HTML Behavior Components.’

JavaScript pie menus are specified in XML, so it’s possible for people to manually
write them with a text editor. It is also possible for programs to dynamically generate
them from a database. The JavaScript pie-menu component code is cleanly distinct
from the Web page and XML pie-menu specification. You can customize their be-
havior by writing event handlers on the Web page in JavaScript, VBScript, or other
languages. They can provide rich, dynamic graphical feedback, because scripts can
reach into the pie menus and Web pages, and actually modify the Dynamic HTML
on the fly.

Using XML to specify pie menus has many advantages. The format is indepen-
dent of the implementation, so the same pie menus can be used across many different
platforms. Web servers and browsers can automatically transform application-specific
XML formats into pie menus by using standard XML-processing tools, like XSTL
and distributed XML databases. For example, an XSLT style sheet can dynamically
generate a Web page with ‘Punkemon’ pie menus, based on an XML database of trad-
ing-card attributes and links to animations [Punkemon02] (see Figure 1.14.3).

Punkemon Pie Menus!

ity acd ang it
- berpetinl drucken hatd of Wl othey Ponkzzon, Piakarhus ar¢
e Y i

‘o ihe cacelation of Mack and Mindy.

A B H
FIGURE 1.14.3 (A-C) The ‘Punkemon’ example.

The XML pie menu schema enables editors to automatically validate, construct,
~— " and edit pie menus. The pie menu schema is on the CD-ROM as well as
[PieSchema02]. An example editor can be seen in Figure 1.14.4, which is available
online [PieEditor02].

Fasteroids [Fasteroids01] is both a real-time video game and an empirical user
interface experiment; it enables you to compare linear menus and pie menus. The
JavaScript pie menus also support the old-fashioned linear menu style, and they can
be instrumented to record the selection time for experimental purposes. Fasteroids
alternates between pie menus and linear menus (as shown in Figure 1.14.5), and
prompts you to select a certain item to blow up the asteroids. It records and displays

ON THE CD

1.14 Natural Selection: The Evolution of Pie Menus

123

Sium Aama S HESGhEY/S

</ piEmenus-
Lc/aten
£ citen
{7 name=?SouChERRL ">
<piemenu
e gui NS
<Atem nema~rOn®/>
e nemen"OLL"/>
</pimmenu>

</ 1vem,

1 civen
nawes"Snuch®>

<piemene
£1xedradius-ra0%>

<ngaiy
<IXG ‘mEo="blob. 3bg"/>
</htii>

X7xml versfon=®1,077>

<schems

22/ 3

ik it

ir7
eiementformdetasic="qualizied”
| versioes?uly @:2001%

§ <pmietgans

<documentetinn>

</tocuminceriony

Schesa for Pie Benus: ~ by Don Bopking

<documancation spurces TAtT:/ /WY, plemeny. com™>.

-D.x5av
0. xsd”

FIGURE 1.14.4 (A-B) Pie menu schema and editor.

Fasteroids

Copyright (C) 2001 By fo

7]

.
{Colar Ve fighasaimon W ighmaimen - i)

S it
Edit Pieklesn Breprrty View |
VW i
B Mo Broperty. Ceater Backgiound Color e
Descrmptian: Pie Mena Center Backaround Colos

Flanting Peiot Vaine.

Bt P hoam Propecey. Fired Rackus e
*Dosrvption: Fised Radus Bor P Teen Layoot (0 fo Disable) Overcides calolbed rais

0

i Normal B0 grond Cgiot
r={tsm Sslecisd Beckgrouro Coio:
QO -

iomrat Volus

i Meno Been 1 cnpty, o 5o Nacoe i howo kwtemd

B3The BIob1
<img, L0~ BIch.1pY"

Fasteroids

Copyright (C) 2001 By

Round

Pre Meoms

Constant Ireax

Romnd 8
Lmesr Mems
Coustant Items

Ria

st!

Selection Time and Frrox Rate Statistics

Mem: M Correct| Total | {Exror B
Type ; Items | Comnt Count :Timae | - Time C

Pie Random 32 .. 30 . 1365001216667 = &%
{Linear Random 67 61 9562011567541 6. - 9%
Die Constant 84 B0 42170527125 4
Lincar Constant 34

e Statistics

iSelection ‘Correct . Total ‘Average Frres Frror
Comnt ;i Time | Tmme Comnt Rate

3 36500 12166672 6%

9562015675416 %

48340 525435 4

FIGURE 1.14.5 (A-B)

A

The Fasteroids game and experiment.

124 Section 1 General Programming

the average selection time and error rate, so you can compare pie menus and linear
menus for yourself.

Future Directions

Pie menus work well with touchscreens on handheld devices like the Palm Pilot and
the Pocket PC. ‘Finger Pies’ are easy enough to use with your finger, so no pen is
required. A product we have developed called ConnectedTV makes your handheld
into a customizable entertainment guide and remote control thats designed to be
held in one hand and operated with the thumb and finger. ConnectedTV lets you use
finger pies to make your own personalized television schedule, filter, and program-
search guide; you can flip back and forth through show descriptions and movie
reviews, and send infrared remote-control commands to change the TV channel and
operate other equipment.

Fast, inexpensive motion detectors that are sensitive enough to detect the direc-
tion of gravity will soon be built into consumer electronic equipment like cell phones,
handheld computers, remote controls, and games. Motion detectors will enable con-
venient one-handed scrolling, dialing, panning maps, tilting pie menus, continuous
gesture recognition, and many other exciting interaction techniques.

Going to Town with SimCity

In 1991, we first ported Sim City to Unix. It featured pie menus (see Figure 1.14.6) for
quickly selecting SimCity editing tools, which was a useful shortcut for the original
SimCity command palette.

Static pie menus whose items don’t change can be carefully designed for ease of
use and nicely illustrated for aesthetic appeal. We translated the SimCity tool palette
into a convenient set of static pie menus. Icons in the pie menus are arranged in the
same pattern as the palette, so they’re easy to learn and quick to use.

Pop-up pie menus let you quickly switch tools without moving back and forth
between the map and the tool palette. You soon learn to mouse-ahead through the pie
menus and submenus just by flicking in the appropriate directions. Thanks to
Moore’s Law, you can now run Sim City so fast, it’s a strategy twitch game, running at
decades per second. Thanks to Fitts' Law, pie menus help you keep up with acceler-
ated SimCity time by mousing-ahead without looking, and without wasting centuries
dragging though linear menus.

The icons of the SimCity tool palette and pie menus are different sizes and shapes
than the original, square SimCity tool icons. Their sizes and shapes are related to the
prices and functions of the tools. Small icons stand for inexpensive tools, like patks or
bulldozers. Large icons stand for expensive tools, like power plants or airports. Long
icons suggest linear tools, like roads or railroads. And square icons are for square
buildings, like residential zones or fire stations. The purpose behind this oddball icon
design is to make remembering and differentiating between them easier (see Figure

1.14.6).

125

1.14 Natural Selection: The Evolution of Pie Menus

snusu a1d sy (9-v) 9°91°) 3UN9H

126 Section1 General Programming

Living at Home with The Sims

The pie menus in The Sims use a combination of desaturation, darkening, and alpha
blending to feather the edges of the menu (see Figure 1.14.7 and Color Plate 1). This
was done because we didnt want the pie menus to obscure too much of the scene
behind them. You can see through the pie menu as the animation continues on in
real-time behind it. The head of the currently selected person is drawn in the center of
the pie menu and follows the cursor by looking at the currently selected item.

It was necessary to somehow separate the head from the rest of the scene. Other-
wise, it looked like a giant head was floating in a room of the house, which was some-
what disconcerting and violated the ‘Principle of Least Astonishment.” Simply
drawing a solid menu background would obscure too much of the scene behind the
menu. Using a partially transparent menu background still did not visually separate
the head from the background scene enough. It looked muddy and cluttered, instead
of crisp and bright.

Instead of simply alpha-blending the menu background, we actually lowered the
contrast, which datkens the image and desaturates the background. The effect was to
cast a colorless shadow with soft, feathered edges over the animated background,
against which you can easily see the head and menu item labels.

Tickle
4 :
Call Over
:ééw: Gift Entertain
Give Back Qub: o

FIGURE 1.14.7 Pie menus in The Sims.

1.14 Natural Selection: The Evolution of Pie Menus 127

Instead of drawing a circular edge around the pie menu, the gray shadow gradu-
ally tapers off, suggesting that the active pie menu target area is not confined to a
small circle. The labels are drawn around the pie menu center with high-contrast drop
shadows, so they're easy to read.

The animated head in the center needed to look sharp and bright against the pie
menu background. So, the shadow effect looks at the Z buffer to clip around the head
in the menu center, keeping it crisp and bright. That gives it visual ‘pop,” which
clearly separates the user interface from the world, without drawing dividing lines or
unnecessary visual clutter.

Conclusion

Pie menus benefit from the natural consequences of Fitts’ Law. They’re neither the
only nor the best user interface technique to take advantage of this effect. However,
they’re a great improvement over today’s standard linear menus and a stepping stone
to developing even better user-interface techniques.

The proven advantages that pie menus have over linear menus are their higher
speed and lower error rate. They also have the potential to be carefully designed and
conveniently automated in many different ways, which increases their usefulness for
many applications.

Computer games and handheld consumer electronic devices are reshaping the
way user interfaces are designed because of their new and unusual demands. Real-
time games require quick, responsive, engaging user interfaces. Handheld computers
and phones must be useful for a wide range of people in real-world conditions, so they
demand high reliability and ease-of-use.

Designing a good user interface requires balancing many competing demands
and guidelines. It’s extremely important not to squander the user’s time or atten-
tion—consider it your most rare and precious resource. Don't get tripped up on
metaphors—take a step back and look at what’s really going on. Think in terms of the
user’s goals, mental models, and physical actions.

Be prepared to throw away your first design. Use your own system on an everyday
basis. Continuously iterate the design, based on feedback from empirical testing and
the users themselves. Every application and user has different requirements that
demand different trade-offs at different times.

Designing good pie menus takes thought and effort, like writing Haiku. Limit
the number of items in each menu, and group them together into memorable, bal-
anced submenus. Arrange the items in natural directions to exploit their semantic
relationships and physical associations. Don't exclusively use pie menus when other
techniques are more appropriate, like sliders, scrolling lists, keyboards, or handwriting
recognition. It’s a good idea to provide multiple ways of accomplishing the same task
when it makes the application easier to use.

Feng GUI seeks to integrate the lessons of real life, empirical research, and theo-
retical principles, and apply them to the enlightened design of efficient, reliable user

128 Section 1 General Programming
interfaces. The “Butterfly Ballot” debacle demonstrated how badly designed user
interfaces can have enormously consequential effects on the real world. By striving to
design user interfaces with good Feng GUI, you can improve people’s lives and affect
the world in many positive ways.

References

[Fasteroids01] Hopkins, Don, Fasteroids, available online at http://www.PieMenu
.com/fasteroids.html, March 2002.

[Fineman01] Fineman, Howard, “Unsettled Scores,” Newsweek, September 17, 2001.

[Fitts54) Fitts, P M., “The Information Capacity of the Human Motor System in
Controlling the Amplitude of Movement,” Journal of Experimental Psychology,
1954: Vol. 47, pp. 381-391.

[JavaScript02] Hopkins, Don, “Open Source JavaScript Pie Menus,” available online
at huep://www.PieMenu.com/JavaScriptPieMenus.html, March 2002.

[PieEditor02] Hopkins, Don, “Pie Menu Schema Editor,” available online at
htep:/fwww.PieMenu.com/ Picmenuschemacditor.html, March 2002.

[PieMenu02] Hopkins, Don, “Pie Menu Central,” available online at heep://www
.piemenus.com/, March 2002.

[PieSchema02] Hopkins, Don, “Pie Menu XML Schema,” available online at
htep://www.PieMenu.com/piemenuxmlschema-1.0.xsd, March 2002.

[Punkemon02] Hopkins, Don, “Punkemon Pie Menus,” available online at http://
www.PieMenu.com/punkemon.xml, March 2002.

	Contents
	Section 1: General Programming
	1.1 Scheduling Game Events
	1.2 An Object-Composition Game Framework
	1.3 Finding Redeeming Values in C-Style Macros
	1.4 Platform-Independent, Function Binding Code Generator
	1.5 Handle-Based Smart Pointers
	1.6 Custom STL Allocators
	1.7 Save Me Now!
	1.8 Autolists Design Pattern
	1.9 Floating-Point Exception Handling
	1.10 Programming a Game-Design Compliant Engine Using UML
	1.11 Using Lex and Yacc To Parse Custom Data Files
	1.12 Developing Games for a World Market
	1.13 Real-Time Input and UI in 3D Games
	1.14 Natural Selection: The Evolution of Pie Menus
	1.15 Lightweight, Policy-Based Logging
	1.16 Journaling Services
	1.17 Real-Time Hierarchical Profiling

	Section 2: Mathematics
	2.1 Fast Base-2 Functions for Logarithms and Random Number Generation
	2.2 Using Vector Fractions for Exact Geometry
	2.3 More Approximations to Trigonometric Functions
	2.4 Quaternion Compression
	2.5 Constrained Inverse Kinematics
	2.6 Cellular Automata for Physical Modelling
	2.7 Coping with Friction in Dynamic Simulations

	Section 3: Artificial Intelligence
	3.1 Optimized Machine Learning with GoCap
	3.2 Area Navigation: Expanding the Path-Finding Paradigm
	3.3 Funciton Pointer-Based Embedded Finite-State Machines
	3.4 Terraing Analysis in an RTS - The Hidden Giant
	3.5 An Extensible Trigger System for AI Agents, Objects and Quests
	3.6 Tactical Path-Finding with A*
	3.7 A Fast Approach to Navigation Meshes
	3.8 Choosing a Relationship Between Path-Finding and Collision

	Section 4: Graphics
	4.1 T-Junction Elimination and Retriangulation
	4.2 Fast Heightfield Normal Calculation
	4.3 Fast Patch Normals
	4.4 Fast and Simple Occlusion Culling
	4.5 TriangleStrip Creation, Optimizations, and Rendering
	4.6 Computing Optimized Shadow Volumes for Complex Data Sets
	4.7 Subdivision Surfaces for Character Animation
	4.8 Improved Deformation of Bones
	4.9 A Framework for Realistic Character Locomotion
	4.10 A Programmable Vertex Shader Compiler
	4.11 Billboard Beams
	4.12 3D Tricks for Isometric Engines
	4.13 Curvature Simulation Using Normal Maps
	4.14 Methods for Dynamic, Photorealistic Terrain Lighting
	4.15 Cube Map Lighting Techniques
	4.16 Procedural Texturing
	4.17 Unique Textures
	4.18 Textures as Lookup Tables for Per-Pixel Lighting Computations
	4.19 Rendering with Handcrafted Shading Models

	Section 5: Network and Multiplayer
	5.1 Minimazing Latency in Real-Time Strategy Games
	5.2 Real-Time Strategy Network Protocol
	5.3 A Flexible Simulation Architecture for Massively Multiplayer Games
	5.4 Scaling Multiplayer Servers
	5.5 Template-Based Object Serialization
	5.6 Secure Sockets
	5.7 A Network Monitoring and Simulation Tool
	5.8 Creating Multiplayer Games with DirectPlay 8.1
	5.9 Wireless Gaming Using the Java Micro Edition

	Section 6: Audio
	6.1 Audio Compression with Ogg Vorbis
	6.2 Creating a Compelling 3D Audio Environment
	6.3 Obstruction Using Axis-Alligned Bounding Boxes
	6.4 Using the Biquad Resonant Filter
	6.5 Linear Predictive Coding for Voice Compression and Effects
	6.6 The Stochastic Synthesis of Complex Sounds
	6.7 Real-Time Modular Audio Processing for Games

