The Fabrik Programming Environment

Frank Ludolph, Yu-Ying Chow, Dan Ingalls, Scott Wallace, Ken Doyle

Apple Computer Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Abstract

Fabrik is an experimental interactive graphical
programming environment designed to simplify the
programming process by integrating the user interface,
the programming language and its representation, and
the environmental languages used to construct and
debug programs. The programming language uses a
functional, bidirectional data-flow model that
trivializes syntax and eliminates the need for some
traditional programming abstractions. Program
synthesis is simplified by the use of aggregate and
application-specific operations, modifiable examples,
and the direct construction of graphical elements. The
user interface includes several features designed to
ease the construction and editing of the program
graphs. Understanding of both individual functions
and program operation are aided by immediate
execution and feedback as the program is edited.

Keywords: visual programming, data-flow, direct
manipulation, programming-with-example, user
interface

Introduction

Fabrik is designed to simplify programming, a
difficult task requiring large investments of time and
effort. Lewis and Olson [1] summarize many of the
difficulties associated with programming, among them
the concepts of control-flow and variables, the use of
multiple abstract representations, and the complexity
of program synthesis. Their analysis of the spreadsheet
programming paradigm suggests that its success is a
result of many factors including a familiar, concrete,
visible representation, suppression of the inner world
of computation, automatic consistency maintenance,
aggregate and high-level operations, and immediate
feedback. They state that the features that make
spreadsheets relatively easy to use are applications of
some of the principles of cognition, such as the use of
familiar representations and analogies to aid
understanding, and the use of immediate feedback to
aid problem-solving.

BASIC was the first widely used end-user
programming environment. It achieved this status, in
part, because it too contained features that were

THO0229-5/88/0000/0222$01.00 © 1988 IEEE

222

applications of those cognitive principles, e.g.
immediate statement execution, easy access to the
inner world of computation, a more concrete
representation of variables, a few aggregate operations,
and a simplified edit-compile-execute-debug cycle.

The developers of spreadsheet and BASIC
programming environments also recognized that
programming involves more than just the
programming language. Both integrated to some
extent the environmental languages used to construct,
debug and modify programs and spreadsheets virtually
eliminated the edit-compile-link-execute-debug cycle.

While BASIC and spreadsheets have taken
significant steps to simplify programming, more needs
be done. Generally speaking, spreadsheets have little
support for creation and use of high-level, user-
defined functions, and BASIC has only a simple
subroutine facility. Debugging is still difficult in spite
of the inner world suppression because the control-
flow, multi-assignment properties of BASIC require
the programmer to know the execution history in
order to interpret the current state of the program, and
neither spreadsheets nor BASIC provides for a broad,
visible, concrete presentation of program relationships.

Fabrik is a visual environment that attempts to
make programming more accessible to the casual and
novice programmer by supplementing and extending
the concepts that made spreadsheets and BASIC
successful. The remainder of this paper describes
elements of the Fabrik language and programming
environment that could significantly simplify the
programming task. A companion paper addresses the
topics of synthetic graphics and compilation, and
provides a more detailed discussion of the language
elements described in the next section [2].

Language Overview

Fabrik is an interactive environment based on an
augmented structural data-flow model. Programs are
represented as data-flow graphs of interconnected
function icons, called components. This Dbasic
approach, used by many other systems [3-8], was chosen
because a graphical representation presents the
programmer with a concrete view of the relationships
between data and functions. Data-flow graphs provide
good support for user-defined abstractions because they

can be hooked together and nested. On the other hand,
control-flow graphs, e.g. flow charts, usually treat the
access of data stored in variables as a side-effect, and
side-effects make the merging of graphs more difficult.
In fact, the need for variables to store temporary results
disappears altogether from data-flow graphs.

The two prevailing models of data-flow are the
token and structure models [3]. In the token model,
data is viewed as a token that is absorbed by a node,
transformed, and passed on to downstream nodes.
Iteration is accomplished by creating loops in the graph
to recycle tokens. In the structural model the data is
not absorbed but remains for the lifetime of the
execution. Nodes generate new output data based on
the inputs. Streams of data are treated as a structure,
e.g. lists or trees. Iteration is accomplished without
loops by aggregate or recursive functions that operate
on an entire structure. The maintenance of the
execution history and the elimination of loops remove
much of a program's dynamic operation and gives the
structural model and, as a result, Fabrik a
"timelessness” that makes program operation easier to
understand and simplifies debugging.

Bidirectional Data-flow

Fabrik enhances the traditional data-flow model
with bidirectional data-flow. Components have
connection points or pins around their periphery.
Input and output pins are shown as triangles that
point toward or away from the component
respectively. Bidirectional components have
diamond-shaped pins which may function either as
input or output depending on the direction of the
dataflow. This extension permits the construction of
components that combine several related functions,
typically a function and its inverse, within a single
package.

The direction of the data-flow through a
bidirectional pin is established by the modality of the
pins to which it is connected. For example, if a
bidirectional pin is connected to an output-pin, it will
function as an input pin. The actual function
performed by the component is the one whose input
and output specification matches the data-flow. The
packaging of multiple functions in a single package
results in a fewer number of system components.

Bidirectional diagrams result from the use of
bidirectional components. Input entering a component
at the left of a diagram, such as through a type-in box,
may flow through the diagram left-to-right, while
input entering a component at the right may flow
right-to-left through the same diagram components
and connections. This bidirectionality provides a
simple local constraint mechanism [9] and results in
diagrams with fewer components and connections.

Syntax

The syntax of text-based languages is always
problematical for the inexperienced or casual
programmer. The syntax for graphs is very simple,
node-arc-node. Using a mouse, Fabrik components are

223

dragged from a parts bin onto the Fabrik diagram and
released. The mouse is then used to draw connections
between the pins of different components. Potential
syntax errors are limited to attempts by. the user to
connect incompatible pins, e.g. input to input, graphic
to numeric, and connections that result in loops. If the
programmer attempts such a connection, Fabrik
refuses to make the connection and informs the user
of the incompatibility. Thus every Fabrik diagram is
always syntactically correct.

Diagrams that have unconnected pins may still
execute. A component with one or more unconnected
input pins may be able to generate output value(s)
either because an unconnected input pin might have a
defined default value, or because some function of the
component can compute without using the pin's
value. If a component cannot compute, the values on
the output pins are invalid and this invalidity is
passed on to the connected input pins, overriding any
default value defined for the pin. Connections that
carry an invalid value is shown as a dashed line.

This section described techniques that Fabrik uses
to simplify the programming language. The structural
data-flow model promotes understanding of program
operation with its timelessness and simplified model
of iteration. The use of diagrams rather than linear text
simplifies the syntax and makes the program
relationships visible and concrete. And bidirectionality
reduces both system and program component counts
and the number of program connections.

Building A Simple Analog Clock

The Fabrik programming environment includes a
basic set of predefined components. The components
perform arithmetic, string and graphic manipulation,
file access, and generate common graphical elements
such as rectangles, ovals, lines, polygons and bitmaps.
Additional sets or kits of application specific
components can be added as needed. For example, a
modern application program has many idiomatic
graphic elements that make up its user interface. A
user interface kit might contain components such as
views, panels with editable text, lists of selectable
items, choice buttons, scroll bars, and menus that can
be combined in various ways when building new
applications.

Some of the components are primitive,
implementing system-defined functions. The rest are
built from primitive and possibly other built
components, and they can be altered by the user.
Primitive and built components are essentially
indistinguishable from each other in appearance and
use.

In this section, we illustrate the Fabrik programming
process and the support for browsing, constructing,
testing and packaging a complete application by
building a simple analog clock. Figure 1a shows a
Fabrik Parts Bin window (above) and a Fabrik
Construction Window (below). At the bottom of the

Fabrik components: Graphic Objec'sl

| /Type Definiton\J User L

=/ Boolean o Clock Parts & Dt

S o T O 0

/search results \= 2% yet

users of Detect

fo
Arc Line

Oval Polygon Rectangle RoundRect BitMap
{1 =
FaBits 1°%% GraphicStyle
IFabrlkClockl
—

Basic part: OvalCreator
Pins: origin, corner, details, oval

Fabrik components: Numeric]

Type Definiton\\/User Interface

— =/ [teration
E =/Graphic Objects \
_/Guphic Functions \; oG

oo Fiow o/ Tis Access (T

search resule /& Yot ified

users of Detsct

| w— — manmns J —
Value Float Value Number Value Intager Value
crr
Point

FabrikClock

oval: (Grapheme)
a QDOval

Figure 1a. An Oval Creator has been dragged from the Parts
Bin (above) to a new Construction Window (below).

Construction Window is a status panel that displays
information about the selected component, pin, or
vertex, and feedback about editing activity such as error
messages about attempts to connect incompatible pins.
The operation of the Parts Bin is described below under
Finding Components.

To build a Fabrik application, the user drags
components from the Parts Bin into a Construction
Window, and connects their pins together. In the first
figure, an Oval component has been copied from the
Graphic Objects category of the Parts Bin to the
Construction window to be used as the clock face. The
Oval has two pins on the left, for the locations of the
top-left and bottom-right corners of a box that would
contain the oval, and a pin on top for specifying border
width, border pattern and inside pattern. The oval
grapheme of the specified size and appearance is
output from the pin at the right.

In figure 1b, the author has dragged two Point
components from the Numeric category of the Parts
Bin and connected them to the Oval. During
connection, a pin's name and type (as shown in figure
1a) automatically pops-up when the cursor is over the
pin. In this figure the author has entered two points
for the top left corner and the bottom right corner of
the clock face, i.e. the clock face will have a radius of
100 pixels.

In figure 1c, the author has dragged both Group
and ScalableDisplay components from the Graphic
Functions category of the Parts Bin. A Group can
merge any number of graphemes. When the Group
was copied, the user specified that it should have four
input pins, although pins can be added and deleted at

224

Figure 1b. Two Points have been connected to the Oval Creator
and locations of the top-left corner and bottom-right corner
have been entered. The oval grapheme is waiting at the output
pin of the Oval Creator.

any time. As soon as the Oval output was connected to
the Group input and the Group output connected to
the ScalableDisplay input, the clock face was displayed.
The ScalableDisplay, one of several graphic viewers in
the library, automatically scales the input grapheme to
the size of the viewer.

In figure 1d, a ClockHand component has been
copied from the Clock Parts category of the Parts Bin
three times and the output of each connected to input
pins on the Group. The three ClockHand components
will produce the second, minute and hour hand
graphemes. Inputs to a ClockHand component are two

IFabrlkClock I

Built part: ScalableDisplay
Pins: h , bitMap, sc {3

Figure 1c. A Group and a ScalableDisplay have been installed
and attached to view the clock face.

L

FabrikClock [Favrixcioex
({00 Ti00 | [T00 {700]
Sec Hand
seconds| long wide |,
T %1
E [in Hand |)
minutes] p,} ! Time ol long wide
! [minutes] [80]2
1}
Hour Hand : Q VI (Hour Hand | Q
hours| ;| long wide), __4 (@*$)+(v/712) long wide
70 |3 70 |3

Built part: ClockHand
Pins: number, line

value: (Untyped)
2:31:08 pm

Figure 1d. Three ClockHand generators have been laid down
and connected to the Group to produce second, minute and hour
hands.

type-in boxes to customize the length and width of its
hand display and an input number between 0 and 59.
In the clock example, the second hand (the top one)
will display as 90 pixels long and 1 pixel wide, the
minute hand 80 long and 2 wide, and the hour hand 70
long and 3 wide. The connections between the
ClockHand outputs and the Group appear dashed at
this point in the construction because, with no hands
produced yet, the values are invalid. Fabrik tracks
invalidity so that no component executes with invalid
input data.

In figure 1le a Time component has been added and
connected to the Second ClockHand and Minute
ClockHand. Activated by the connections to their
inputs the Second and Minute ClockHands generate
their graphical clock-hand outputs and the dashed
output connection lines become solid. The clock-hands
are merged with the clock face and displayed. Our clock
is running and the clock hands are moving as the time

FabrikClock

Sl

Sec Hand
P long wids |
90 |1 T.
T b Min Hand i y
me e long wide !
= [minuws] [s0 T2 '
!
Hour Hand ! b
pilong wide -4
70 |3
3

value: (Untyped)
2:29:27 pm

Figure le. The Time component that generates the seconds,
minutes and hours has been hooked up to produce the display of
the second and minute hands.

225

Figure 1f. To show the hour hand in proper position a Formula
has been attached that converts the hours in between 0 and 11 to
between 0 and 59 depending the minutes value.

changes. Only the hour hand remains to be added.

Figure 1f shows a Formula component added to
convert the hours from the Time component, an
number between 0 and 11, to a number between 0 and
59 for the Hour ClockHand. It also adds in an offset for
the number of elapsed minutes. The Formula
component evaluates an expression (currently in
Smalltalk-80 syntax) typed-in by the user. Here the first
argument pin (a' in the expression) is connected to
the hour output pin from the Time component and
the second argument pin ('b') is connected to the
minutes pin. The hour-hand grapheme propagates and
is displayed.

The desired application has been programmed and
is now fully functional. However, the clock display is
surrounded by the computational components and
their connections. Fabrik allows a subregion of a
diagram to be designated as the user frame. This has
been done with the ScalableDisplay in figure 1f, and
the user frame is shown as a heavy border around its
periphery. Once the user frame has been designated, a
menu command is used to enter the frame. This
command instructs Fabrik to restrict the view to only

FabrikClock

Figure 1g The connection diagram has been hidden and the clock
can be launched and its window can be resized just like a normal
application.

the designated components, and to make the result
visible in a standard application window. Figure 1g
shows our clock after entering the user frame and
being enlarged for better viewing.

An application such as this can easily be assembled
in a short amount of time. Moreover all of the original
scaffolding can later be retrieved for documentation or
as the basis for a revision. This ease of "opening the
hood" adds to the potential reusability of Fabrik
software and provides the end user with the ability to
tailor an application to his specific needs.

The Fabrik Environment

The Fabrik environment has many elements: a
component library, library management functions, file
system interface, a graphical language-based editor, an
interactive run-time system with change-triggered
recomputation, and a set of debugging tools. Each
element has some user interface aspects.

User Interface Guidelines

The intended Fabrik user interface was to be
generally Macintosh-like though the experimental
nature of the Fabrik project, implementation in
Smalltalk-80, and the requirements specific to the
programming task encouraged us to try new
alternatives. The interface was to be single-handed,
mouse-based, visible, concrete, and direct. Many
alternatives were tried. Often competing approaches
were implemented and made switchable by a flag
setting in order to understand each alternative better
and discover personal preferences. Although the
experience is anecdotal, we feel it has value and some
of the more interesting alternatives are described
below.

One-Handed and Two-Handed Input

Since the early days of the mouse, there has been a
continuous debate between those that prefer to use
keyboard-based interfaces and those that prefer mouse-
based interfaces. But there is also a more muted
discussion on the mouse side about one- and two-
handed input. The most common forms of two-
handed input are the use of command-keys as an
alternative to menus and the use of modifier keys to
alter the function of the mouse button. In addition,
Buxton [11] and others suggest the use of additional
devices, such as the touch pad, to be controlled by the
alternate, "non-mouse" hand. The reasoning behind
two-handed input is that it can increase the bandwidth
from person to machine, alleviating a common
performance bottleneck caused by today's faster
machines and user-event driven applications.

Fabrik was initially designed to be run single-
handed and, to that end, techniques not common to
the Macintosh, e.g. the gesture menus described below,
have been used. The occasional new operation that
seemed to require the use of a second-hand was always
augmented with single-handed alternatives soon
afterward.

226

More than one user, shown only the single-
handed methods, complained of having to "sit on
their left hand." An apparently conflicting experience
of the implementation group, who were all quite
familiar with the two-handed alternatives, was that
even those that pressed most for two-handed input
tended toward single-handed use. Subsequent
observation showed that there was only limited
opportunity during editing to use the second hand and
that it tended to move away from the keyboard to
more relaxed positions when not used for a period of
time.

As a result of this experience, the user interface
goals have been modified to provide a two-pronged
approach to mouse use: design a single-handed
interface which is complete, visible, and as efficient as
possible, and augment it with two-handed alternatives
that focus on improved performance and continuous
use. Where modifier keys are used in conjunction
with the mouse button, there has been an attempt to
define a consistent set of modifier operations that can
be applied to all objects. For example, the shift key is
used for multiple selection and to constrain drawing
operations, the command key is used with alpha keys
to issue commands and with the mouse button to pop-
up a menu appropriate to the object under the cursor,
and two other keys are used for moving and drawing.

Building Programs

Program synthesis, the process of constructing a
program from component parts, is difficult. The
programmer must have full knowledge of what each
of the parts does, how the parts interact, and plans for
combining parts to perform common functions such as
counting, traversing data structures, etc. Most
languages also require the programmer to translate
from "what" is to be done to "how" to do it. In spite of
the difficulties, synthesis is used to write programs
because decades of use have demonstrated its
extraordinary flexibility.

Fabrik provides support to ease many of the
inherent difficulties. Structural data-flow reduces the
"how" by relieving the programmer of the need to
specify much of the arbitrary sequencing associated
with control-flow. Built-in high-level and aggregate
components reduce the need for the programmer to
learn and remember plans. Immediate execution gives
rapid feedback about the in-diagram operation of
components. And on-line support for locating,
documenting, and examining in-diagram use of
components aid in component selection.

Fabrik also supports alternatives to synthesis:
modification and programming-with-example. Given
a large library of working components, it might often
be easier to find and modify a similar component
rather than build a new one from scratch. Important to
this approach is support for rapidly locating the
potential base component. When a suitable, modifiable
example cannot be easily located, the user might
construct a (portion of a) new program by giving

examples as when defining the programs graphic
elements and their behavior [12]. In Fabrik the
programmer draws graphical elements within a Draw
component which automatically generates the
corresponding Fabrik diagram as the elements are
drawn. (See "The Draw Component" below.)

Finding Components

The Parts Bin is divided into sections indicated by
folder tabs. Fabrik maintains two permanent folders,
"search results” and "as yet unclassified.” The user can
add, delete, and rename other folders at will. All
components are kept in the Parts Bin and appears in at
least one folder. The user can put copies of a
component in additional folders or delete a
component from a folder.

Fabrik currently supports three kinds of searches:
partial-name, keyword, and content. Each places copies
of the selected components in the "search results"
folder. The results remain in the folder until the next
search is performed. The partial-name search is a
simple form that all components that contain the
given string anywhere in their names. The keyword
search selects all components that include any of the
given keywords anywhere in component's on-line text
description or within comment blocks in the built
component's diagram.

The content search selects built components that
use a specified component, either primitive or built.
(This is similar to opening a browser on a method's
"senders" in Smalltalk-80 [15].) The content search is
an important form of on-line documentation about a
component. The user can open the diagrams of
components found by a content search to see how the
component of interest is used and, since Fabrik is
interactive, what the component actually does within
the diagram.

The Parts Bin provides an adequate organizing
scheme for about 100 components. The current search
facilities work reasonably well for this quantity, but for
larger quantities additional facilities such as
alphabetical and chronological listings, multiple parts
bins, and a pin-type based topological search will be
necessary.

Editing

A complete set of efficient techniques for editing
diagrams does not yet exist, but it is useful to
remember that editing text programs has not always
been easy. Over the years sequence numbers have
disappeared, simplifying statement insertion, and tools
like group select, indent, and move have made it
easier to coordinate logical organization and visual
layout. As program interfaces become more complex,
new tools are being developed that serve as learning
and memory aids because, ultimately, the program text
still must be accurately typed-in.

Drawing and CAD systems will likely be a rich
source of new techniques during the next few years.
There is some expectation that automatic aids, e.g. the
routing of connections, will be important. They may

227

& &

Figure 2. Gesture Menus. The lower three show alternatives
menus for the same function.

well be, but it is interesting to note that the widely used
editing aids for text-based languages today are the ones
that provide efficient and precise manual control with
minimal automated support.

The individual techniques used in Fabrik are not
generally unique. Two not in common use, relocatable
pins and directional gestures, are described below.

Pin Positioning

Fabrik components have pins that are used as
connection points around their periphery. In many
other diagram-based systems the connection points are
invisible, fixed, or position dependent [4-8}. In Fabrik,
the user can reposition a component's pins. This
freedom of pin placement allows components to be
placed directly adjacent to each other, as when creating
a user frame, and enables the user to simplify a
diagram's wiring by moving pins to reduce the
number of twists and turns a connection must take.
Although a pin that has been moved cannot be
recognized by its location, identification by this
means is only marginally useful given a large number
of components. Moving the cursor over the pin gives
immediate positive identification.

Directional Gestures

Fabrik uses simple directional gestures to increase
the number of commands associated with the mouse
button. The user initiates a gesture-based operation by
positioning the cursor over an object, pressing the
button and moving in a specific direction. Once the
initial direction, hence operation, is established, the
mouse may then be moved in any direction to
complete the operation. If no significant cursor
movement occurs within a half-second after the
mouse button is pressed, a pop-up "gesture menu,"
such as those shown in figure 2, appears under the
cursor. The short delay prevents flashing during
normal editing but provides prompting for less
commonly used operations.

For example, a gesture menu is used to both move
and connect pins and vertices because their small,

eight-pixel-square size is not large enough to allow
separate areas to be designated for each operation. A
connection is initiated by clicking on the pin/vertex
and moving in one direction, while relocation is
initiated by clicking and moving is a different
direction. An additional set of gestures is defined for
the editing window background and includes
operations such as group select and delete.

The intent was to create a very fast form of
command invocation using just one hand and is
somewhat different from both pie menus [13] and full
gestures [14]. Gestures require more complex
movements that are difficult to perform with a mouse
and are slow compared to a directional gesture. Pie and
other forms of pop-up menus require the mouse
button to be released over specific area to invoke the
command, an action inappropriate for certain actions
such as moving and drawing. There is also a visual
feedback loop from eye to hand that slows command
invocation.

Although no formal user-testing has been
performed, experience suggests that the design of
gesture menus is fairly critical. Four unique directions
seems the maximum for fast error-free operation using
a mouse, though wedges as small as 45 degrees may
have acceptably low error-rates. The near-reflex
response of learned movements to pre-conscious
intent requires that common operations appearing on
more than one menu must use the same direction
regardless of context or high error rates will occur. And
the asymmetric movement of the human wrist means
that left-hand/right-hand differences should be
considered.

User reception to gestures used in this way has
been mixed. While established Fabrik users have few
complaints, new users split about 50-50 initially until
they learn to first establish the operation, then the
direction. Even among some experienced users the
feeling persists that other approaches might be more
appropriate for operations that inherently include
arbitrary direction, e.g. moving and drawing.

Running and Debugging

A Fabrik diagram is always active, that is, every
time a connection or value is changed, the related
subgraph recomputes its values. This immediate
feedback after each action promotes understanding of
both the function of individual components as they
are added to the diagram and the operation of the
diagram as a whole. The edit-compile-execute-debug
cycle is greatly simplified since the process of editing
automatically includes "compiling” and execution.
(Fabrik is interpretive at diagram level, but built
components are compiled when placed in the parts
bin.)

Fabrik's structural data-flow model and graphical
representation do much to simplify debugging. As
mentioned above, the input and output values of each
component persist following execution. Connections
that have no value are shown as dashed lines (see

228

figure 1d), immediately indicating to the the user
inactive portions of the diagram. The user can click on
any pin or vertex and see its value in the status panel
at the bottom of the construction window. In addition,
small value display boxes can be attached to pins and
vertices to monitor values continuously at several
points simultaneously.

Should the monitored values cause the user to
suspect a faulty user-built subcomponent, it can be
opened into an active edit view of its own to permit
both monitoring values during operation and direct
editing of the subcomponent. Edits are immediately
reflected in the execution of the program. The changes
may be saved, either as an updated version of the
component or as a different component.

Encapsulation and the User Frame

When a Fabrik diagram has been completed the
user places a user frame around the part of the diagram
that is to be visible in its component/application form,
as described in the Clock example above, and saves the
diagram thus encapsulating its function as a reusable
component that is available in the parts bin. If the user
frame includes components that accept keyboard input
or display components, they will be active in the
component form, that is, the user can type in to them
or they will display the results of their internal
computation as appropriate.

An alternative to the user frame adopted by other
systems [7] is the use of a second window that displays
only the user visible elements of the diagram while
the first window holds the entire diagram. This
approach allows components to be arranged for display
in an arbitrary fashion without impacting the diagram
layout but at the cost of additional windows and a
mechanism to relate visible components in the display
view to the corresponding component in the diagram.
We felt that these costs added too much complexity
and so chose the simpler user frame, an approach we
are comfortable with but do not yet have sufficient
experience to validate.

The Draw Component

The Draw component is a special component that
automatically generates the program diagram for
graphical display while the user draws the graphical
objects in the Draw component. It frees the user from
having to find, place, and connect the corresponding
graphic components and operations. It allows users to
design graphical displays in a very natural way, much
as a normal drawing program. Adjustments to the
location and size of the graphic objects in the Draw
component are immediately reflected in the diagram.
Alternatively, the ability to enter specific values into
the diagram using the keyboard gives the user the
precise control that can be difficult using just the
mouse. The Fabrik diagram generated is identical in
structure to one assembled from scratch so the user can
edit it directly to add additional components and

SBackGround I

Basic part: DrawComponent
Pins: grapheme, palette, screenRect, bitMapOut

Basic part: Flipper
Pins: graph

Tn h

eQut, d

, center

Figure 3a. A Draw component has been laid down and the
polygon tool selected, and the sketch of an arrow has been
drawn in the Draw component.

connections that are not possible via the Draw
component.

We demonstrate the Draw component by creating
a scroll bar background that can later be combined with
the thumbing logic for a usable scroll bar. The
complete scroll bar diagram and the discussion of
synthetic graphics and mouse sensitivity are in a
companion paper [2].

The Draw component has a palette at the top for
selecting the graphical objects to be drawn. In the
example of figure 3a, the only component the user
actually laid down was the the one marked "Draw”. A
scroll bar contains an upward-arrow, a downward-
arrow and some rectangles. The polygon tool (the
rightmost one in the palette) was selected first and a
rough sketch of the up-arrow drawn. When the arrow
drawing was finished, the rest of the diagram was
automatically constructed by Fabrik. The selection tool
(the leftmost one in the palette) was then selected. The
control points for further adjusts are shown in the
figure.

In figure 3b the author has adjusted the up-arrow
to get the correct shape, size and location. To produce
the down-arrow, Flip and Point components were
dragged from the parts bin and connected as shown.
The Point was connected to the "center" pin (top right
one) of the Flip component, but no values were
entered. (By default a grapheme is flipped vertically
about its center.) When the output of the Flip was
connected to the second input pin of the Group, the
down-arrow appeared on top of the up-arrow. Then
the down-arrow was dragged downward to the location
shown in the figure which automatically updated the
Point value to the corresponding value for the center
of the Flip.

In figure 3c a rectangle tool (the second one from
left in the palette) is selected first to create the rectangle
(the Rectangle above "Up Arrow Rect") that surrounds
the up-arrow. Then the same logic for flipping the up-

229

Figure 3b. The arrow has been adjusted and a Flip component
has been laid down to generate the down arrow.

arrow is copied to flip this rectangle so that a second
rectangle is created to surround the down-arrow. At
this point, the order of the Group inputs is such that
the arrows are displayed under their bounding
rectangles. To reverse this ordering the author invokes
a menu command in the Group component to rotate
the connections downward twice. The corresponding
portions of the diagram were manually rearranged
using a group-move for neatness.

The the gray area (the Rectangle next to "Gray
Area") was generated by creating another rectangle in
the Draw component in between the two arrows'
bounding rectangles. Under the area marked "Style",
the color specification of this rectangle was generated
with a GraphicStyle component, selecting '1' for the
border width, 'black' for the border color and 'light
gray' for the inside color, and then connecting its
output pin to the graphic style pin (top) of the
Rectangle.

SBackGround l

37 |11

61 |28 D

[[Up _Arzow Rect |

39
49

&
[
Y

Built parv GraphicSwyle
Pins: graphicStyle

Figure 3c. The bounding rectangles have been created in the
Draw component and another Flip component was added for the
down arrow's rectangle.

SBackGround I

[372 T27]
61 97

137 J11]
L6t 28 |

P
o~
=1 b B 15405 b= 4

Built part: ScalableDisplay
Pins: grapheme, bitMap, screenRect

Figure 3d. The Draw component has been replaced by a
ScalableDisplay so that the scroll bar will be automatically
scaled to the viewer size. An output gateway has been added,
and the diagram is ready to be used to build a scroll bar.

To complete the scroll bar for use with the
thumbing logic, the author replaced the Draw
component with a ScalableDisplay as shown in the
figure 3d. An output gateway was added to the right
side of the window and connected to provide the scroll
bar grapheme to the user of this component. Now
with a user frame around the ScalableDisplay, this
component is ready to be stored into the parts bin for
use with other components.

History and Experience

Fabrik began with an attempt to mix arbitrary
layout and cell types in an object-oriented spreadsheet.
The spreadsheet approach broke down with the
complex expressions needed for synthetic graphics and
other generative structures. Graphical layout, as
described above, addressed this problem and also
opened the way for bidirectional dependence.

The initial Fabrik prototype was developed in
Smalltalk within the Advanced Technology Group of
Apple in 1985, and was demonstrated widely within
Apple in Spring of 1986. Two more feature-laden and
library-rich versions were made available to a limited
audience by Spring of 1987. The type system was added
during the Winter of 1987 and compilation was
completed in the Spring of 1988.

Rapid system evolution and poor performance
have limited experience with the programming
environment to the implementation of demonstration
programs, e.g. the clock, configurable analog gauges,
and simple animated simulations, simple parsers, bar
charts, and the full set of relational database operators.
Now that the system is more stable and compilation
has improved the performance, it is possible to attack
more interesting problems.

230

An important next step in this investigation is to

assemble a library of components sufficient to
accommodate a large class of applications, and to
support networking of this library so that many people
can borrow from, and experiment with, each other's
work. This broader group of users and programs will
help to test the ideas expressed above, investigate
solutions to the problems of diagram complexity, and
evolve the user interface more rapidly.

(1]

{21

[3]
4

[5]

(6]

(71

[8]

[9]

[10]

[11]

(12]

[13]

[14]

(15]

References

C. Lewis and G.M. Olson, "Can Principles of Cognition Lower
the Barriers to Programming?" in Empirical Studies of
Programmers (Vol 2), Ablex, 1987.

D. Ingalls, S. Wallace, Y-Y. Chow, F. Ludolph, K. Doyle,
"Fabrik: A Visual Programming Environment,” to appear in
1988 OOPSLA Conference Proceedings.

AL. Davis and R.MKeller, "Data flow Program Graphs,"
IEEE Computer, Feb. 1982, pp 26-41.

P. McLain and T.D Kimura, Show and Tell™ User’s Manual.
Tech. Report WUCS-86-4, Dept. of Computer Science,
Washington University, St. Louis, March, 1986.

1. Yoshimoto, N. Monden, M. Hirakawa, M. Tanaka, T.
Ichikawa, "Interactive Iconic Programming Facility in Hi-
Visual," 1986 IEEE Workshop on Visual Languages, pp 34-41.

ProGraph™, on-line documentation, 1988.

LabVIEW™ Demonstration Manual, National Instruments,
Corp. Austin, Texas, 1987.

D.N. Smith, "InterCONS: Interface CONstruction Set," Tech.
Report RC 13108, IBM T.J.Watson Research Center,
September 1987.

A H. Borning, "ThingLab -- A Constraint-Oriented Simula-
tion Laboratory,” Tech. Report SSL-79-3, Xerox Palo Alto
Research Center, July, 1979.

D.C. Smith, Pygmalion, ISR 40, Birkhauser Verlag Basel,
1977.

W. Buxton and B.A. Myers, "A Study in Two-Handed Input,”
Proc. CHI'86 Human Factors in Computer Systems, pp 321-326.
B.A. Myers, "The State of the Art in Visual Programming and
Program Visualization," Tech. Report CMU-CS-88-114,
Computer Science Department, Carnegie Mellon University,
Pittsburg, PA. 1988.

J. Callahan, D. Hopkins, M. Weiser, B. Shneiderman, "An
Empirical Comparison of Pie vs. Linear Menus," Proc. CHI ‘88
Human Factors in Computer Systems, pp. 95-100.

M. Lamb and V. Buckley, "New Techniques for Gesture-Based
Dialog," Human-Computer Interaction - INTERACT ‘84,
North-Holland, Amsterdam, 1984, pp. 135-138.

A. Goldberg, Smalltalk-80, The Interactive Programming
Environment, pp 178-179, Addison-Wesley, 1984

