
A Taxonomy of
Simulation Software
A work in progress

Kurt Schmucker
Apple Computer, Inc.

Simulations provide a unique environment for exploring new concepts,
for gaining an understanding of the interplay between related complex
phenomena, and for the construction of simplified working models of topics
under study. Simulation is also one area in which computing technology
is uniquely suited to be the delivery mechanism for an educational experience.
The advocates of simulation use herald it as a great advance for education.

The use of simulation in education, particularly in K–12 education, is not
a foolproof educational technique, however, nor is it without its critics:

“Experiences with simulations do not open up questions, but close them
down.” (Sherry Turkle, MIT sociology professor)

Problems can occur when simulation software is used in education. Some-
times, however inadvertently, an improper type of simulation can be used
in an attempt to achieve a given educational objective. Other times, the
inevitable differences and simplifications between reality and the simulation
of that reality are not properly understood by the student. The end result
can be frightening, as in one tenth grader’s statement of what was learned
by using SimCity in a civics class: “Raising taxes always leads to riots.”

In the hopes of avoiding some of these problems, this article presents a tax-
onomy of current simulation software, categorizing some of the educational
strengths and weaknesses of each type of simulation in a K–12 environment.
Many representative examples of Mac OS and Windows simulation packages
that typify the various simulation categories are also surveyed.

The focus of this work is simulations that could reasonably be used in a K–12
classroom or on a home computer. Multimillion-dollar immersive flight
simulators or complex simulation codes that run only on supercomputers,
while arguably extremely useful and cost effective in certain environments,
are generally beyond the scope of this work. Likewise, at the other end of the
spectrum, board games such as Monopoly could be considered low-fidelity
simulations of small economic systems, but for the purposes of this article, we
will consider only computer-based simulations whose complexity is reasonably
beyond what could be done by hand.

40

“Science-related software that lets kids
make and explore conjectures can
dramatically expand children’s
math and science thinking.”

Judah Schwartz, Co-Director
Harvard Educational Technology Center

“Computers …will be able to simulate
the world as well as explain it. Creating
or using a computer model can be a
great educational tool. …Simulation
games will get better, but even now the
best of them are fascinating and highly
educational.”

Bill Gates

“Simulation technologies offer exciting
opportunities for students to explore
information, pursue their interests,
experiment, and demonstrate what
they have learned.”

George Lucas

“Genuine computer literacy is not about
learning to use tools like a word
processor or spreadsheet, but about
learning a new language of events,
processes, and dynamic relationships
that will help make the world and its
ideas more understandable, more
communicable, and more civilized.”

Alan Kay, Disney Fellow
Walt Disney Imagineering

This is also a work in progress, and reflects the author’s observations to date.
Comments, criticisms, extensions, or simplifications of the taxonomy are most
welcome.

What’s a simulation and what’s not
The logical first step in building a taxonomy is the definition of what things
will be categorized in the taxonomy and what things fall outside of the scope
the taxonomy is attempting to cover. Unfortunately, none of the definitions
of the term “simulation” that I found seemed to be sufficiently broad or
descriptive. These two definitions were representative:

“Games that re-create or simulate in detail a real-life, first-person activity.”
(Mindscape web site)

“Simulation software: The adage that ‘experience is the best teacher’ is true.
But it is not easy to provide students with many of the experiences they need
to truly understand the material they are studying. Simulation software offers
a way to allow students to work on tasks or projects that would otherwise be
impractical, dangerous, or prohibitively expensive.” (Glossary from Learn &
Live, George Lucas Educational Foundation)

The first of these is too limiting, since it appears to cover only certain types
of simulation games (such as flight simulators) but ignores many other types
of simulations. The second is broad enough, but doesn’t give sufficient detail
to help decide whether a given program is a simulation or not. Is Doom a
simulation? What about Barbie Fashion Designer, SimCity, Myst, or Logo?

Let’s examine three different software packages that are clearly simulations
and attempt to design a definition that better suits the needs of this
taxonomy work.

GenScope (Figure 1) is an excellent example of an educational simulation
designed for middle and high school students in the area of genetics.
[Horwitz] GenScope provides the student with an interactive environment
in which the relationships between chromosomes, genes, and observable
traits can be both explored and tinkered with. The student is offered several
different views of the same information (from pop-up menu chromosomes
on idealized “popsicle stick” genes—a great view for the beginning student—
to the view of genetic information that is really used in science: family trees
of populations with observable traits for each individual labeled). By gently
moving from the idealized view to the real view, the student can gradually
grow from a simple understanding of basic concepts to the application
of those concepts in the messy and complex real world. GenScope is well
grounded in the principles of genetics and inheritance, and so as to not

41

Learning Technology Review
A Taxonomy of Simulation Software

violate this grounding, certain actions are not allowed. While the GenScope
user can manipulate the genes of an isolated individual, changing it from a
wingless dragon to a winged one, for example, the user cannot change the
genes of a dragon in a family tree, since this could make the family tree an
invalid example, violating the principles of inheritance.

Figure 1. GenScope. GenScope presents several different interfaces to genetic concepts. The Chromosome
view (shown above with the yellow and purple “popsicle sticks”) gives the user an idealized view of the
relationship between genotype (the genetic configuration) and phenotype (the observable characteristics
in the individual). The DNA view gives a biochemical view, and the several Population views show the
individuals in a population and their observable characteristics. The student can be gently led from the
idealized visualization of genetic concepts (popsicle sticks) to a view that closely mimics the way real genetic
scientists work (family trees of populations and records of the observable traits of the individuals in those
populations).

Although Figure 1 shows GenScope in use in the study of dragon genetics,
this, too, is just a bridge from a simplistic early example (in which few students
have real-world experience that might interfere with grasping new concepts)
to more detailed, more realistic examples. Other GenScope simulations exist
(admittedly still simplified) for the exploration of canine and human genetics.
Like real life, the inherited characteristics of an individual offspring in a
GenScope simulation are not predictable. Will the new baby dragon have
wings, have horns, be fire-breathing? Will the new human baby have blue eyes,
hemophilia, male pattern baldness? Also like real life, some of the inherited
characteristics do not follow a simple dominant-recessive gene model.

Learning Technology Review
A Taxonomy of Simulation Software

42

Sometimes a characteristic is gender-linked. Sometimes a seemingly simple
physical characteristic has a complex genetic model involving multiple genes
and various other dependencies. And sometimes a certain combination of
genes is fatal to the new offspring. With a well-designed curriculum and by
turning on or off various GenScope features, these complications of real
genetics can be gradually introduced to the student—something that cannot
be done so easily in real life.

The user of GenScope (either the student or the teacher) cannot extend any
of these GenScope models to include new traits, such as adding eye color to
dragons, for example. Nor can the GenScope user implement a GenScope
model for a new species (a frog, for example). These types of tasks must be
left to the GenScope implementers.

ActivChemistry (Figure 2) is another example of an educational simulation that
is a construction kit in the area of chemistry. It provides the student with a
fixed set of parts (Bunsen burners, chemicals of just about any composition,
and a wide variety of meters and gauges, among many others). The student
can combine these pieces in various ways to perform experiments; gather and
graph data; learn about new concepts in interactive and dynamic lessons; or
take interactive, dynamic exams that test not just the retention of facts, but
also the understanding of processes.

Figure 2. ActivChemistry. A virtual chemistry set construction kit that is well grounded in chemistry theory
and provides a cost-effective way to increase chemistry lab time for both high school and college students.

43

Learning Technology Review
A Taxonomy of Simulation Software

The set of parts in ActivChemistry is sufficient for most of the topics in a high
school or freshman college chemistry class. Because of its construction kit
nature, the student using ActivChemistry has a great deal of freedom in the
types of chemical reactions that are explored. Experiments that would be too
dangerous or too expensive for most high school chemistry labs can be done
in ActivChemistry. Also, the student using ActivChemistry is not under the time
pressures often found in the standard chemistry lab period—pressures that
often manifest themselves in having to replicate small, cookbook-style
experiments rather than pursue work in a more open-ended fashion.

While ActivChemistry students cannot add new parts, they can combine those
parts in many different ways. Students can interact with the simulation as they
dispense different chemicals, measure different reactions, “wire up” different
meters, and cause unique outcomes every time they conduct an experiment.
The unpredictability (to the student) of ActivChemistry includes these
measurements (pH, temperature, reactant concentration, pressure and
volume of a gas, and so on) as well as the reaction products.

Not all simulations present detailed scientific concepts in as direct a manner
as GenScope and ActivChemistry. Some simulations present a simulated
environment or phenomena for the user to explore and experience, rather
than a set of tasks designed to teach the user a new set of concepts. Virtual
reality visualization applications such as Virtus WalkThrough (Figure 3) are
the simplest examples of simulated phenomena applications. In Virtus
WalkThrough, the user can “walk” and “fly” around a three-dimensional
representation of a structure, thereby obtaining a better appreciation of how
the structure looks than can be gained by merely viewing two-dimensional
blueprints or elevation diagrams. However, the environment is unchanging
and the user choices are limited. First-person adventure games, such as
Doom, Quake, or Marathon, extend this to a fully simulated phenomena
by adding other characters for the user to “interact with,” as well as a rich
set of user choices. Flight simulators continue further by adding a detailed
computational model of flying and using this model in a tight feedback loop
driven by user input.

Learning Technology Review
A Taxonomy of Simulation Software

44

Figure 3. Virtus WalkThrough. Virtual reality visualization applications such as Virtus WalkThrough
present an environment for the user to experience. In Virtus Walkthrough, the user is able to move
around a three-dimensional structure, such as Lizzy Borden’s house, shown above. For most people,
these virtual reality visualization applications present a much easier-to-understand view than looking
at two-dimensional blueprints or elevation diagrams.

Inspired by these examples, we can synthesize a better definition of a simu-
lation: A simulation is a software package (sometimes bundled with special
hardware input devices) that re-creates or simulates, albeit in a simplified
manner, a complex phenomena, environment, or experience, providing the
user with the opportunity for some new level of understanding. It is inter-
active and usually grounded in some objective reality. A simulation is based
on some underlying computational model of the phenomena, environment,
or experience that it is simulating. In fact, some authors use “model” and
“modeling” as synonyms for “simulation.”

Also, a simulation usually has unintended consequences outside the intended
user’s level of expertise in its domain. PacMan is a excellent game, but it is
not a simulation. You know the possible outcomes and consequences ahead
of time. The game is in seeing if your reflexes and real-time planning are up
to the challenge. A simulation, on the other hand, has unpredictability.

Unpredictability, of course, is relative. What is unpredictable to a child might
be completely predictable to an adult. Similarly, SimCity might be an engaging,
thought-provoking environment to some, but to an experienced urban
planner, it might be only a simplistic game. In deciding what is a simulation

45

Learning Technology Review
A Taxonomy of Simulation Software

and what is not, we have to take into account the intended user. “Simulation”
is sometimes confused with “visualization” and “animation,” even by authors
of simulations.

So by way of contrast, a data visualization application is a software package
that portrays a fixed data set in graphically useful ways. A simulation is based
on a computational model whose parameters can be modified (by the user,
or by a random process that is built into the computational model) to generate
many data sets. In the case of a data visualization application, the goal is to
gain an understanding of the underlying data set; in a simulation, the goal
is to gain an understanding of the model. Virtus WalkThrough (Figure 3)
is an example of a visualization.

Also by way of contrast, an animation or a multimedia presentation, like a
movie, is software that presents a graphical depiction that is the same every
time it is viewed. A simulation generates a different depiction every time, since
the parameters of the underlying model are (usually) different each time the
simulation is run.

Simulation can also be viewed as one component of computational science.

“Computational science is an exciting combination of modeling and graphics
with science and mathematics. In this discipline, computers are used to ‘do’
science through simulation and visualization. Computational science has
therefore become a third way of doing science, along with experimentation
and theoretical analysis… Computational science is an effective strategy
for middle and high school math and science instruction because it:

• requires real-world strategies and problem-solving contexts
• encourages interdisciplinary and integrated instruction
• uses technology for student exploration and inquiry
• moves students to higher conceptual levels and deeper understandings

of concepts addressed
• can be done with desktop computers and modeling/visualization software

(accessible to schools).” [Envision It!]

Learning Technology Review
A Taxonomy of Simulation Software

46

So, for our purposes here, the defining characteristics of a simulation are:

Characteristic Remarks
Creates (or re-creates) a phenomena, Can be based either in fantasy or reality.
environment, or experience While many fantasy simulations are games,

some educational simulations are purposely
set in a fantasy environment so that the
student won’t confuse the simulation with
reality.

Provides an opportunity for The user should be able to learn
understanding something new.

Interactivity Interactive “steering” of the simulation; in
other words, the user’s inputs must have
some effect on the course of the
simulation.

Grounding A consistent model of a theory.

Unpredictability Randomness, or an extreme sensitivity
to user inputs.

47

Learning Technology Review
A Taxonomy of Simulation Software

The charts on the following pages show how the characteristics of some
well-known software packages qualify them as examples or non-examples
of simulations, according to the definitions on page 47.

Learning Technology Review
A Taxonomy of Simulation Software

48

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Genetics of individuals and populations

Mendelian principles, inheritance, genes, chromosomes,
genotypes, phenotypes, and so on

User can alter genes, choose mating pairs, determine the
level observations (DNA, cells, individuals, whole populations)

Firmly grounded in genetics

Inheritance in individuals, meiosis

GenScope

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Dynamics of a city (traffic, zoning, development, creation
of a stable dynamic system [harder than you might think])

City planning, dynamic systems

Design is interactive; running the sim is not too interactive

Well grounded in urban planning, but biased

Behavior of the citizens of SimCity is not easy to predict;
natural disasters (earthquakes, floods, and so on)

SimCity

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

None really; a series of interconnected puzzles
with a wonderfully rendered interface

Little

High

None

None

Myst

Not a simulation

49

Learning Technology Review
A Taxonomy of Simulation Software

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Walking around a swamp

Little

Unique interaction via a novel input device: a plush toy
shaped like the pictured chicken

Grounded in walking

None

Swamp World

Not a simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Emergent behavior (complex behavior emerging from
simple rules)

Animal behavior, emergent behavior

Parameter setting only

A simple model that explains a complex behavior

Sensitive to several parameters

Boids

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Domain-independent; has been used for chemistry, genetics,
and ecology simulations and lots of games

Building a working simulation of some phenomena
or environment

Highly interactive both in design and simulation execution

Up to the sim builder; some are well grounded in science,
and some are completely fanciful

Randomness is a basic Cocoa simulation construction
technique

Cocoa

A simulation construction tool

Learning Technology Review
A Taxonomy of Simulation Software

50

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Domain independent; has been used to build simulations
in math, chemistry, economics, history, physics, and so on

Building a working simulation of some phenomena or
environment

Highly interactive in design, and somewhat interactive
in simulation execution

Up to the sim builder; equations are used to model the
changes to the parts of the model

Interaction between the modeling equations; aggregate
measurements on the simulated quantities

Stella

A simulation construction tool

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Breeding, raising, teaching, and protecting a population
of intelligent creatures (Norns)

Animal behavior, genetics, ecology

Highly interactive

Firmly grounded in genetics and artificial life

Inheritance, random ecological events

Creatures2

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Design and construction (sewing) of clothes

Visual aesthetics

Interactive in design phase, not interactive in 3D runway
simulation

Fashion design, sewing

None

Barbie Fashion Designer

A simulation

51

Learning Technology Review
A Taxonomy of Simulation Software

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Aquarium design and maintainence

Raising fish, maintainence of aquarium ecology

Interactive, but only through dialogs for adding fish food,
adjusting tank pH, and so on

Grounded in aquarium ecology

Fish move, eat, breed, and so on randomly

Aqua Zone

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Operating a submarine during wartime

Wartime naval strategy

Highly interactive

Grounded in submarine operations

Behavior of enemy; weather

Silent Hunter

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Cell metabolism; internal cell metabolic systems

Cell biology and internal systems

Interactive “steering” of the simulation; interactive tutorials
on cell metabolism

Well grounded in cell biology and biochemistry

Interaction between the modeling equations; aggregate
measurements on the simulated quantities

Fly a Cell

A simulation

Learning Technology Review
A Taxonomy of Simulation Software

52

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Pioneers on the Oregon Trail

Deeper and more thorough knowledge of American history

Very interactive

Grounded in history and the technology of the day

Accidents along the trail, illness, fording of rivers,
as well as choices of routes, companions, rest stops,
and trading of supplies

Oregon Trail

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Design, staffing, and operation of a Star Trek starship

Cost/benefit trade-offs

Highly interactive

Firmly grounded in the history, science, and personalities
of the Star Trek universe

Many variables in starship design; randomness in mission
execution

Starship Creator

A simulation construction kit

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

None

None

Highly interactive

None

Little

PacMan

Not a simulation

53

Learning Technology Review
A Taxonomy of Simulation Software

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Electronic circuit design

Building a working simulation of a circuit

Highly interactive in design and simulation execution

Well grounded in physics and electronics

Student-designed circuits don’t always function as intended

B2 Spice

A simulation construction tool

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Dynamics of a high-rise hotel, apartment building, or mall

Large system behavior, social systems, politics,
urban planning

Highly interactive

Grounded in urban planning

Behaviors of residents, natural disasters

Yoot Tower

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Flying an aircraft

Flight dynamics, flight planning

Highly interactive

Well grounded in avionics

Weather; highly sensitive to user input

Flight Unlimited

A simulation

Learning Technology Review
A Taxonomy of Simulation Software

54

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Experience different hairstyles, make-up, fashion accessories

Little

Highly interactive

Little

Very little

Cosmopolitan Virtual Makeover

Not a simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Multi-player, first-person, three-dimensional combat

Little (some strategy, but mostly fun and gore)

Highly interactive

Some grounding in motion and mechanics

Actions of computer-based characters, number of characters,
effectiveness of weapons, actions of human-based players

Marathon

A simulation

Phenomena,
Environment, or

Experience

Opportunity for
Understanding

Interactivity

Grounding

Unpredictability

Medieval combat between groups

Strategy, placement of forces

Interactive

Some grounding in motion and mechanics

Actions of both armies

Myth

A simulation

Taxonomy methodology
The taxonomy described in this article was built from the “bottom up” by
examining, using, and watching the use of many Mac OS– and Windows-based
simulation packages, and attempting to organize and categorize them in a way
that might be useful to others. This taxonomy is techno-centric in that it is
organized around the features of the various simulation programs (for example,
immersive simulations such as a flight simulator versus an observational simu-
lation such as SimCity; a fixed functionality simulation such as The Incredible
Machine versus a programmable environment such as Stella or Extend). Other
ways of organizing a simulation taxonomy are both possible and useful. Bruce,
for example, presents a taxonomy of educational technology applications
organized around the pedagogical principles embodied in the application
[Bruce], and Taylor presents a different taxonomy with main categories that
differentiate the roles of the computer: as a tutor, as a tool, and as a tutee
[Taylor]. Still others have used other organizing principles: instructional
methodologies [Alessi and Trollip] and evaluation criteria [Persichitte].

While the taxonomy in this article is meant to be a complete categorization
of software simulation packages, the examples listed here are meant merely
to be a representative, not an exhaustive, listing of Mac OS– and Windows-
based simulation packages currently available. If, for example, 10 software
packages examined were all examples of the same type of simulation category,
only one or two of the packages might be listed in the figures and tables of
this article.

In addition, many of the examples shown in the taxonomy could be considered
as examples in several different categories. Yet, with one exception, each
exemplar has been used only once, with the “main intent” of the application
used to determine in which category it should be placed. The category
boundaries are also somewhat fuzzy [Schmucker, 1983]. For example, the
difference between a complete and full-featured simulation and a single-
concept simulation is often just a matter of perspective.

55

Learning Technology Review
A Taxonomy of Simulation Software

Learning Technology Review
A Taxonomy of Simulation Software

56

W
id

ge
t

W
or

ks
ho

p

A
 T

a
xo

n
o
m

y
o
f

S
im

u
la

ti
o
n
 S

o
ft

w
a
re

P
re

p
ro

gr
am

m
ed

S
in

g
le

 C
o

nc
ep

t
C

o
m

p
le

te
 a

nd
F

ul
l F

ea
tu

re
d

Im
m

er
si

ve
O

b
se

rv
at

io
na

l

R
ea

lit
y

Fa
nt

as
y

F
ix

ed
F

un
ct

io
na

lit
y

C
o

ns
tr

uc
tio

n
K

its

Ed
uc

at
io

n-
En

te
rt

ai
nm

en
t

P
ro

gr
am

m
ab

le

D
o

m
ai

n
S

p
ec

ifi
c

D
o

m
ai

n
In

d
ep

en
d

en
t

Ed
uc

at
io

n-
En

te
rt

ai
nm

en
t S

im
ul

at
io

n
S

p
ec

ifi
c

G
en

er
al

 P
ur

p
o

se

M
at

he
m

at
ic

s-
b

as
ed

P
ro

ce
d

ur
e-

b
as

ed
R

ul
e-

b
as

ed

A
p

p
lic

at
io

n
D

ev
el

o
p

m
en

t
E

nv
ir

o
nm

en
t

Ed
uc

at
io

n
 E

nt
er

ta
in

m
en

t
Ed

uc
at

io
n

 E
nt

er
ta

in
m

en
t

Ed
uc

at
io

n
 E

nt
er

ta
in

m
en

t
Ed

uc
at

io
n

 E
nt

er
ta

in
m

en
t

Ed
uc

at
io

n
 E

nt
er

ta
in

m
en

t
Ed

uc
at

io
n

 E
nt

er
ta

in
m

en
t

Ed
uc

at
io

n
 E

nt
er

ta
in

m
en

t

Ed
uc

at
io

n
 E

nt
er

ta
in

m
en

t
Ed

uc
at

io
n

 E
nt

er
ta

in
m

en
t

Fl
ig

ht

Si
m

ul
at

or
s

Fl
ig

ht
Si

m
ul

at
or

s

Si
le

nt
 H

un
te

r:
A

Su
bm

ar
in

e
Si

m
ul

at
or

To
on

Ta
lk

Ge
nS

co
pe

Gr
ap

hi
ng

Ca
lc

ul
at

or

Cr
ea

tu
re

s2

Ga
la

xS
ee

Si
m

Ca
lc

Fl
y

a
Ce

ll

Do
om

M
ar

at
ho

n

Sp
ac

es
hi

p
Ti

ta
ni

c

Vi
rt

us
W

al
kt

hr
ou

gh

YP
 C

ol
lis

io
ns

Bo
id

s—
On

e
or

th
ou

sa
nd

s
of

 s
uc

h
ap

pl
et

s

Th
in

ki
ng

 T
hi

ng
s

In
te

ra
ct

iv
e

Ph
ys

ic
s

Ta
m

ag
ac

hi

Do
gz

, C
at

z

M
yt

h

Ex
te

nd

St
el

la

M
od

el
-It

Si
m

Ci
ty

Si
m

Li
fe

Si
m

An
t

Yo
ot

 T
ow

er

Or
eg

on
 T

ra
il

Ro
bo

La
b

Ac
tiv

Ch
em

is
tr

y

Ge
om

et
er

’s
Sk

et
ch

pa
d

B2 S
PI

CE

In
cr

ed
ib

le
M

ac
hi

ne

St
ar

sh
ip

Cr
ea

to
r

Ba
rb

ie
 F

as
hi

on
De

si
gn

er

Dr
oi

dW
or

ks

Le
go

M
in

ds
to

rm
s

Th
e

Gu
ng

an
Fr

on
tie

r

St
ar

 L
og

o To
on

Ta
lk

Ag
en

tS
he

et
s

Cr
ea

to
r

Ex
ce

l

M
at

he
m

at
ic

a

Ja
va

Vi
su

al
 B

as
ic

Co
co

a

S
im

ul
at

io
n

S
o

ft
w

ar
e

Kl
ik

 &
 P

la
y

Pi
nb

al
l

Co
ns

tr
uc

tio
n

Ki
t

Figure 4. A techno-centric taxonomy of Mac OS– and Windows-based simulation software, with examples of every category.

57

Learning Technology Review
A Taxonomy of Simulation Software

As a first step in assisting educators with simulations, the chart in Figure 4 presents
a taxonomy of current simulation software, categorizing some of the features of
each type of simulation that might be used in a K–12 environment. Many repre-
sentative examples of Mac OS– and Windows-based simulation packages that
typify the various simulation categories are also listed. While the taxonomy is meant
to be a complete categorization of simulation packages, the examples listed here
are meant merely to be a representative, not an exhaustive, listing of all Macintosh
and Windows simulation packages currently available.

The Taxonomy
In categorizing this information about simulation software packages, several
interesting observations were made. Some distinctions became clearer and
underlying trends emerged, while some issues seemed to require a closer
look. Here are some of the most important points about the taxonomy:

Education-Entertainment

The education-entertainment spectrum occurred for almost every category
in the taxonomy. ActivChemistry (Figure 2) is an example of an educational
simulation that is a complete and full-featured, observational, construction kit;
The Incredible Machine (Figure 5) is another example of this same type of
simulation, but it is purely for entertainment; and Star Wars DroidWorks
(Figure 6) is another example of this same type of simulation, but one that
is delicately balanced to lie in the middle of the education-entertainment
spectrum.

The taxonomy takes this spectrum into account by having a continuous
education-entertainment dimension as a property of every final node
in the taxonomy tree.

Figure 5. The Incredible Machine. A simulation construction kit that while not always firmly grounded in
correct physics principles, is nevertheless a compelling problem-solving environment that is extremely
entertaining.

Learning Technology Review
A Taxonomy of Simulation Software

58

59

Learning Technology Review
A Taxonomy of Simulation Software

Figure 6. Star Wars DroidWorks. A simulation construction kit that successfully achieves the difficult balance
between entertainment and education. Students build droids to accomplish various missions, but to do so
they must apply a variety of principles in math, physics, and biology. The application is self-contained with an
integrated “Information & Data Expert” that explains the necessary principles and often provides interactive
animations to assist the student in understanding a new concept. A fine example of “just in time” learning as
well as situated learning in a project environment. And yet it still remains entertaining.

Learning Technology Review
A Taxonomy of Simulation Software

60

Programmable or preprogrammed

The first division in the taxonomy splits actual simulations from software
packages that enable users to build their own simulations. Some simulations
are well designed and highly functional preprogrammed packages—the user
cannot add any new functionality to the simulation, nor even examine its inner
workings. GenScope, a genetics simulation (Figure 1), is a excellent example of
a preprogrammed simulation. Other applications are simulation construction
kits that enable the user to build a new simulation. The famous Pinball
Construction Set is one of the first examples of such a kit. Another example,
and one designed specifically for middle school students, is Cocoa [Smith,
Cypher, and Spohrer; Smith, Cypher, and Schmucker] (Figure 7). Cocoa has
been used to author simulations as diverse as:

• An interactive simulation of the plant life cycle, complete with falling rain,
germinating seeds, pollinating bees, blossoming flowers, and pesky weeds.
Clicking the ground plants more seeds, and clicking a weed removes it.

• A simulation of the spontaneous emission of light in a laser. [Schmucker 98a]
• A simulation of how rumors spread through a population.
• A simulation of the generation of Chinese characters.
• A simulation of pressure and volume of a gas at the molecular level.
• Lots of games, especially adventure games, mazes, and the re-implementation

of some classics (Breakout, PacMan, and so on) (Figure 8) [Schmucker,
October 1998].

Figure 7. Cocoa. A simulation construction kit designed specifically for middle school students. The Cocoa
user does not program in textual programming language, but rather constructs graphical rewrite rules by
demonstration. The Cocoa program fragment shown in the right window states that when rain falls on
a flower bud, the rain should be absorbed and the bud should change to a full blossom. The full collection
of such fragments for the flower character is shown in the left window. The simulation itself plays out in the
center window. Cocoa has been used successfully by tens of thousands of students around the world.

61

Learning Technology Review
A Taxonomy of Simulation Software

Figure 8. Examples of some of the best simulations written with Cocoa:

This factor of programmable versus preprogrammed is primarily one of focus
and intent. All simulations take input, but for some simulations the input is
program “code” or other nonnumerical input that will somehow be evaluated
or executed as part of the computational model underlying the simulation.
The input of preprogrammed simulations is usually numerical parameters
that are used in the model but that don’t alter the model’s code.

1. Ant foraging

2. Evaporation models

3. Ecology of the
swamp

4. Catalysts

5. Generation of
Chinese characters

6. Inner workings
of a laser

7. The coral reef

8. Elevator queuing

9. The extinction
of the dinosaurs

10. Butterfly life cycle

11. Nematodes
(a potato parasite)

12. How a rumor
spreads

13. Pressure and
volume of a gas

14. Why does it snow?

15. Nuclear reactor

16. Ant foraging

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Learning Technology Review
A Taxonomy of Simulation Software

62

Many consider the construction of a new simulation (or the modification of
the inner workings of an existing one) to be an admirable educational goal in
itself. However, even these constructivist proponents would agree that the
amount of effort to produce a complete and full-featured, domain-specific
observational simulation such as GenScope or Creatures2 is too large an effort
for even a team of high school students. Programming a simulation would
seem to be a more useful K–12 activity for single-topic simulations of limited
depth, and in fact, this activity would probably prepare the student for a better,
more critical use of a large, preprogrammed simulation.

Programmable simulation generators can be further divided into those that
are designed specifically to construct simulations and those that provide
general programmability. Microsoft Excel, for example, is being used as a
simulation engine in both high school and university courses. Programmable
simulation generators that are specific to the generation of simulations can be
classified on the basis of the type of programming that the student uses. In
Cocoa and AgentSheets (Figure 9) [Repenning and Ambach], for example, the
student constructs individual rules for the objects that make up the simulation.
In a procedurally based system, the student constructs subroutines that form
the basis of the underlying computational model. Here is one example of such
a subroutine from Star Logo, a procedurally based simulation generator
that can be used to build simulations with hundreds or thousands of objects,
all operating in parallel. This example is from an ant-foraging simulation,
complete with pheromones marking the trail to diminishing food supplies:

to return-to-nest

if nest?

[setcarrying-food? false

rt 180 fd 1 stop]

tsetchemical chemical + drop-size

setdrop-size (drop-size - 1.5)

if drop-size < 1 [setdrop-size 1]

uphill-nest-scent

wiggle

grid-step

end

63

Learning Technology Review
A Taxonomy of Simulation Software

In mathematically based generators, the student describes the behavior of the
simulation by constructing difference equations that relate the value of some
aggregate quantity at time t from that at time t–1 (Figures 10 and 11).

Figure 9. AgentSheets. In AgentSheets, as in Cocoa, the user constructs rules for each of the objects in the
simulation being programmed. Unlike Cocoa, the rules are constructed by dragging conditions and actions
from palettes (shown above on the right) into the rule set for the object. The simulation shown above is a
simple pollution model diffusing pollution over time and space. Cars and factories are pollution sources
contributing to pollution of the city of Sustainopolis. Forests decrease pollution. The rule set for the clouds
of exhaust from the train is shown on the left. An English version of the exhaust cloud rules would be: "If I
have the large appearance, then 40% of the time, change to the medium appearance. If I have the medium
appearance, then 40% of the time, change to the small appearance. If I have the small appearance, then
20% of the time, disappear." The speed at which AgentSheets executes is truly astounding, and thus larger,
more complex simulations are possible with AgentSheets than with Cocoa.

Figure 10. Stella. A simulation construction environment in which equations such as
US_Unemployment_Along_Border = Percentage ((US_Labor_Force – US_Border_Jobs) / US_Border_Jobs)
are used as difference equations to relate the values of aggregate measurements from one time increment
to the next.

Learning Technology Review
A Taxonomy of Simulation Software

64

Figure 11. Model-It. Model-It presents a more approachable, user-friendly interface for a mathematically
based simulation generator. As can be seen in the Relationship Maker window above, the equations can
easily be entered with pop-up menus that have an English-like syntax. In this window, the student is entering
the following “equation:” “As stream phosphate increases, stream quality decreases by less and less.” The
various objects and factors in the model are represented with unique icons, and the model can execute on
a picture backdrop suggestive of the study being performed.

Domain-specific or domain-independent

The most important difference between software packages that enable users
to build their own simulations is whether the package restricts users to
building simulations only in certain domains. The factor of domain specificity
is primarily one of scope. (Note that all preprogrammed simulations are
necessarily domain-specific, so this factor applies only to programmable
simulations.) Domain-specific packages such as the Pinball Construction Set
or Interactive Physics have deliberately limited their scope (to the construction
of pinball games or certain types of physics simulations, in the case of the
these two examples) in order to gain performance, memory utilization, ease of
learning, or ease of use. Domain-independent packages such as Cocoa, Model-
It, and Star Logo (or even very general-purpose packages such as Microsoft
Excel or Visual Basic) attempt to cover a wider range of possible simulations,
with their own trade-offs in ease of use, ease of learning, and performance.

Immersive or observational

The biggest differentiating factor among complete and full-featured simulations
was the point of view given to the user. How involved is the user in the simula-
tion? Is the user an observer on the side, or is the user actually a part of the
simulation, as in a flight simulator or a first-person adventure game such as
Doom or Marathon? When the user is given the impression of actually being

65

Learning Technology Review
A Taxonomy of Simulation Software

in the simulation, the simulation is immersive. If the user is an observer (albeit
perhaps with god-like powers to control the simulation), the simulation is
observational. Most of the simulations mentioned so far are observational
(GenScope, SimCity, ActivChemistry, The Incredible Machine, and most
simulations built with Cocoa). Immersive simulations such as first-person
“shoot-’em up” games (Doom, Marathon, Quake, and so on) and flight
simulators are usually entertainment simulations. ToonTalk, a programming
environment (Figure 12) has many aspects of an immersive simulation
construction kit [Kahn].

Figure 12. ToonTalk. An immersive programming environment. In ToonTalk, the user is sometimes represented
by a hand that comes out from the bottom of the screen (left screen shot) and that is controlled by the mouse
and keyboard. The hand is used to grasp and manipulate the ToonTalk objects, which represent the elements
of a program: numbers, letters, procedures (robots), subroutines (houses), and inter-process communication
(birds that fly between the houses). At other times the user is represented by a customizable, animated
figurine (right screen shot). When the user is confused, Marty the Martian (in both screen shots) is always
available to help and Marty’s assistance is both spoken and shown in textual balloons.

Single concept or complete and full-featured

While many of the simulation packages presented so far are large applications
with dozen or hundreds of features, a simulation does not have to be so
feature-full (or occupy hundreds of megabytes on disk, or consume tens of
megabytes of RAM) to be useful. Small, single-concept simulations, with their
smaller learning curve, can be extremely useful educationally. Yves Pelletier
has created many such small, focused simulations, of which YP Collisions
(Figure 13), which models a two-dimensional collision between two particles,
is one example. In YP Collisions, the user chooses the mass, the initial velocity
(magnitude and direction), and the coefficient of restitution of the particles.
An animation shows the motions of the particles before and after the collision,
as well as computed quantities (final velocity of each particle, the initial and
final momentum, and so on). YP Collisons is a very useful simulation for
physics students, yet it uses just 1.2 megabytes of RAM and 0.23 megabytes
of hard disk space.

Learning Technology Review
A Taxonomy of Simulation Software

66

Figure 13. YP Collisions. A single-concept simulation that models two-dimensional collisions between two
particles. In YP Collisions, the user chooses the mass, the initial velocity (magnitude and direction), and the
coefficient of restitution of the particles. The application then shows the positions of the particles before and
after the collision, as well as computed quantities (final velocity of each particle, the initial and final
momentum, and so on).

Java is particularly well suited for building single-concept simulations and
delivering these over the Internet as applets. (The Boids applet shown earlier
is one of the best-known simulation applets.) There are literally thousands of
such applets; so many, in fact, that the task of organizing these applets is a
large job in itself. Fortunately, organizations such as the Educational Object
Economy (www.eoe.org) assist both teachers and students in finding the
appropriate applet for a variety of educational purposes.

Programmable or construction kit

The distinction between a programmable simulation and a simulation
construction kit is difficult and is usually an even finer distinction than
between programmable and preprogrammed simulations. By their nature,
construction kits allow their users to build new simulations from parts, and so
do programmable simulations. The difference is in the nature of the parts and
in the types of data the user is allowed to input while building the simulation.
As was done for preprogrammed versus programmable simulations, if the
input is only numerical parameters to be used by the constructed parts in the

67

Learning Technology Review
A Taxonomy of Simulation Software

simulation, then the application was classified as a construction kit. If the
input was some sort of code that would become part of the simulation under
construction, then the application was classified as a programmable simulation
generator. In Interactive Physics and the Pinball Construction Set, for example,
the user can input equations that become part of the simulation, so these are
programmable. In The Incredible Machine and ActivChemistry, only numerical
parameters or simple choices are available to the user, so these were classified
as construction kits.

One very difficult case to classify was the Widget Workshop (Figure 14).
In this application, the user constructs code in a graphical way, by wiring
together small building blocks, most of which are programming elements.
While many programming environments, such as Visual Basic or Star Logo,
use text to construct new programs, not all programming environments are
textual. In some programming environments, the programmer constructs
new programs by moving, connecting, or manipulating pictures that represent
objects, actions, or programming elements. Such graphical programming
systems are often extraordinarily productive programming environments
[Schmucker, 1993; Schmucker, 1994]. For this reason, Widget Workshop is
classified as a programmable simulation generator.

Figure 14. Widget Workshop. A programmable simulation generator in which the user programs with
a graphical, not a textual, language.

Learning Technology Review
A Taxonomy of Simulation Software

68

Physical phenomena or intellectual discipline

While many simulations present the virtual experience of some physical reality
(ActivChemisty, Flight Unlimited) or fantasy world (Quake, Marathon), others
model a body of knowledge, such as algebraic geometry (Graphing Calculator
[Figure 15]), geometry (Geometer’s Sketchpad [Figure 16]), or programming
(ToonTalk [Figure 11]). These “knowledge simulations” are full simulations in
the sense defined in this article.

Figure 15. Graphing Calculator. A simulation for algebra and geometry with a delightfully elegant user
interface. In the top window, the convergence of the Taylor Series is being interactively simulated; in the
middle window, a family of equations in polar coordinates is being explored; and in the bottom window,
a complex trigonometric equation in three dimensions is being visualized.

69

Learning Technology Review
A Taxonomy of Simulation Software

Figure 16. Geometer’s Sketchpad. A construction kit for “simulations” of geometric theorems. The true power
of Geometer’s Sketchpad is that the drawings can be manipulated by the user and yet still maintain their
geometric “knowledge.” The above figure demonstrates Napoleon’s Theorem, “The centroids of equilateral
triangles constructed on the sides on an arbitrary triangle form an equilateral triangle.” (That is, triangle
GHI remains an equilateral triangle regardless of how the vertices of triangle ABC are moved.) A “proof”
of Napoleon’s Theorem in Geometer’s Sketchpad is an interactive drawing in which points A, B, and C
can be moved around the plane, and regardless of the new positions of A, B, and C, triangle GHI remains
equilateral. A rich simulation of geometry such as Geometer’s Sketchpad enables students to explore and
discover mathematics, and several high school students have published original mathematical results
derived from Geometer’s Sketchpad work. [Key Curriculum Press]

Why bother?
There is anecdotal and experimental evidence that simulation use and
simulation construction are valuable educational experiences. Anecdotally:

• “Modeling can often help students see relationships that are masked by the
complexities of the real world. For example, models can ignore friction and air
resistance. They can slow down or speed up time and back up or repeat an
event. Models can expand the scale of investigation to include molecular level
or a star system. Modeling can explore areas where equipment is too expensive
and experiments are dangerous.

• Mathematics, science, and technical skills are taught in an applied and
integrated manner. A limited number of topics are explored at depth.

• Modeling supports inquiry learning and promotes student collaboration.
Students work with new methods of problem solving.

• Modeling provides skills for emerging career areas. Modeling is used
extensively in science and industries.” [Envision It!]

Learning Technology Review
A Taxonomy of Simulation Software

70

As another example, middle school students who used Cocoa for a semester
noticeably improved the quality and the quantity of their hypothesis formation
in science class [Lewis].

By studying National Assessment of Educational Progress (NAEP) scores for
U.S. students, Wenglinsky found that classroom simulation use was associated
with academic achievement in math and also with social improvements in
areas such as student motivation, tardiness, absenteeism, vandalism of school
property, and so on [Wenglinsky; Milken Exchange]. In drawing these con-
clusions about simulation use, Wenglinsky’s study took into account factors
such as gender, socio-economic status, region (Northeast, West, Central, and
Southeast), community status (urban, suburban, and rural), and governance
of the school (public or private), among other variables.

I hope this simulation taxonomy will be of some assistance to educators who
want to begin or continue simulation use in the classroom, or for developers
of educational software who want to see where the “holes” are in the product
landscape.

References
Alessi, S. M., and Trollip, S. R. Computer-based Instruction: Methods and
Development. Englewood Cliffs, NJ: Prentice-Hall, 1991.

Bruce, Bertram C. “Educational Technology: Tools for Inquiry, Communication,
Construction, and Expression,” College of Education, University of Illinois at
Urbana-Champaign (http://www.ed.uiuc.edu/ courses/edpsy-387/Taxonomy-
Graph/Ed-Tech-Taxonomy.html).

Envision It! project description, an NSF-funded project to train secondary
school teachers in the Minneapolis-St. Paul area to use the methods and
tools of computational science to enrich math and science teaching
(http://www.ties.k12.mn.us/envision/97/project_description.html).

Horwitz, Paul. “Designing Computer Models that Teach” in Models that Teach,
Wally Feurzeig and Nancy Roberts (eds.), in preparation.

Kahn, Ken. “ToonTalk—An animated programming environment for children.”
Journal of Visual Languages and Computing, Volume 7, June 1995,
pp. 197–217.

Key Curriculum Press. http://www.keypress.com/product_info/sketch30.html

71

Learning Technology Review
A Taxonomy of Simulation Software

Krauss, Lawrence M. The Physics of Star Trek. New York: Basic Books/
HarperCollins, 1995.

Lewis, Clayton, University of Colorado at Boulder, personal communication.

Milken Exchange. http://www.milkenexchange.org/

Oppenheimer, Todd. “The Computer Delusion,” Atlantic Monthly, July 1997.

Persichitte, Kay. “Basic Criteria for Selecting and Evaluating Instructional
Software,” University of Northern Colorado (http://www.coe.uh.edu/
insite/elec_pub/html1995/1011.htm).

Repenning, Alex, and Ambach, James. “Tactile Programming: A Unified
Manipulation Paradigm Supporting Program Comprehension, Composition,
and Sharing,” Proceedings of Visual Languages 1996, Boulder, CO: IEEE
Computer Society, 1996.

Schmucker, Kurt. Fuzzy Sets, Natural Language Computations, and Risk
Analysis. Computer Science Press, 1983.

Schmucker, Kurt. “Serius—Re-implementing the MacApp Samples without
Programming,” FrameWorks—The Journal for Software Developers Using
Object Technology, Volume 7, Number 4, July/August 1993, pp. 28–35.

Schmucker, Kurt. “Prograph CPX—A Tutorial,” MacTech Magazine, Volume 10,
Number 11, November 1994, pp. 69–82. (Reprinted in Object Oriented
Application Frameworks, Ted Lewis [editor], Manning Press and Prentice Hall,
1995, pp. 291–331.)

Schmucker, Kurt. “The Cocoa ‘Worlds of Science’ Contest,” Learning
Technology Review, Spring 1998 (http://www.apple.com/education/LTReview/
spring98/contest.html).

Schmucker, Kurt. “The Cocoa Collection,” Version 3.0, Apple Computer, Inc.,
October 1, 1998.

Smith, David Cantfield, Cypher, Allen, and Schmucker, Kurt. “Making
Programming Easier for Children,” ACM Interactions, Volume 3, Number 5,
Sept./Oct. 1996, pp. 58–67.

Learning Technology Review
A Taxonomy of Simulation Software

72

Smith, David Cantfield; Cypher, Allen; and Spohrer, Jim. “KidSim: Programming
Agents without a Programming Language,” Communications of the ACM,
Volume 37, Number 7, July 1994, pp. 54–67.

Smith, Thomas. A review of simulated and microworld environments
(http://coyote.ultralab.anglia.ac.uk/simulation/report.htm).

Taylor, R. P. The Computer in the School: Tutor, Tool, Tutee. New York: Teachers
College Press, 1980.

Wenglinsky, Harold. Does It Compute? The Relationship between Educational
Technology and Student Achievement in Mathematics. Educational Testing
Service, September 1998.

URLs
Listed below are URLs for most of the simulations studied in building the
taxonomy described in this article.

ActivChemistry http://www.salamanderinteractive.com/ACgetAC.html
http://heg-school.awl.com/bc/companion/actchem/ac.htm

AgentSheets http://www.agentsheets.com/

AquaZone http://www.aquazone.com/home.html

AutoSim http://www.interpretive.com

Barbie Fashion Designer http://www.mattelmedia.com/barbie/
fashiondesigner/shopping/index.htm

B2 Logic http://www.beigebag.com
B2 Spice

BioLab Fly http://www.pierian.com
BioLab Frog
BioLab Pig

BioSIGHT http://biosight.usc.edu

Boids http://hmt.com/cwr/boids.html

BuildSim http://www.tritera.com/products/
web_buildsim/bs_page1.html

Catz http://www.petz.com/central/default.asp

Cocoa http://www.crim.ca/~hayne/Cocoa
http://www.kidsdomain.com/games/cocoa.html

Creator http://www.stagecast.com

Creatures2 http://www.creatures2.com
http://www.creatures.co.uk
http://www.creatures-lab.com

Data Desk http://www.datadesk.com/main.htm

Dogz http://www.petz.com/central/default.asp

Doom http://www.idsoftware.com

Excel http://www.microsoft.com/excel/?RLD=41

Extend http://www.imaginethatinc.com/home.html

73

Learning Technology Review
A Taxonomy of Simulation Software

Fatal Abyss http://www.fatalabyss.com

Flight Unlimited http://www.lglass.com

Fly a Cell! http://www.hps-inc.com/products/le/education.html

GalaxSee http://www.shodor.org/master

Galapagos: Mendel’s Revenge: http://www.anark.com/Galapagos/index.shtml

Gazillionaire http://www.lavamind.com
http://www.gazillionaire.com/gaz.html

GenScope http://genscope.concord.org

Geometer’s Sketchpad http://www.keypress.com

Graphing Calculator http://www.nucalc.com

Gravity Simulator http://groovysoft.com

Incredible Machine http://www.presage.com/pTEMIM.html
http://www.sierra.com

Interactive Physics http://www.knowledgerevolution.com

Java http://www.javasoft.com

Klik & Play http://www.maxis.com/games/index.html

Klingon Honor Guard http://www.wizworks.com/macsoft

LabView http://www.natinst.com/labview

LEGO MINDSTORMS http://www.legomindstorms.com
http://www.pitsco-legodacta.com/html/mindstorms.html

Lode Runner http://www.wizworks.com/macsoft/ode_r2/lode_r2.html

Marathon http://www.bungie.com

Mathematica http://www.wolfram.com

Milky Way Cafe http://www.illawarra.net.au/rush

Model-It http://www.cogitomedia.com

Myst http://www.cyan.com/

OpRat http://www.thecraft.com

PharmSim http://www.interpretive.com

PolyLife http://members.home.net/facticsmax/polylife.html

Profitania http://www.lavamind.com/edu.html
http://www.profitania.com

Quake http://www.idsoftware.com/

RoboLab http://www.ceeo.tufts.edu/graphics/robolab.html
http://www.lego.com/dacta/robolab/defaultjava.htm
http://www.pitsco-legodacta.com/html/robolab.html
http://www.natinst.com/robolab/

Salmon Odyssey http://ingenuity.com

ServiceSim http://www.interpretive.com

Silent Hunter http://www.learningco.com/products/default.htm

SimCalc http://www.simcalc.umassd.edu/simcalc/

SimAnt http://www.maxis.com/games/index.html
SimCity
SimIsle
SimLife
SimMars
SimTown

Simulink http://mathworks.com

Learning Technology Review
A Taxonomy of Simulation Software

74

Sniffy, the Virtual Rat http://ic-unix.ic.utoronto.ca/inst_tech/itp/
html_files/file_52.html
http://icubed.com/users/mfichten/rats/cnn04.html
http://www.thomson.com/brookscole/technology/
products/sniffy/4.5/mtsnf.html

Star Logo http://www.media.mit.edu/~starlogo

Star Wars DroidWorks http://www.droidworks.com

Starship Creator http://www.simonsays.com/startrek/library/creator

Stella http://www.hps-inc.com

StratSim http://www.interpretive.com

Tamagachi http://www.bandai.com

Thinking Things http://www.edmark.com/prod/tt

ToonTalk http://www.toontalk.com

Virtual Frog Dissection Kit http://www.mirrors.org.sg/vfrog

http://www-itg.lbl.gov/vfrog

Virtual Lizzy Borden House http://www.halfmoon.org/borden

Virtus WalkThrough http://www.VIRTUS.com

Visual Basic http://msdn.microsoft.com/vbasic

Widget Workshop http://www.maxis.com/games/index.html

YP Collisions http://www.kagi.com/pelletier

Yoot Tower http://www.yoot.com
http://www.yootmacfirst.com

Zapitalism http://www.zapitalism.com
http://www.lavamind.com/edu.html

7th Guest http://www.vie.com/

Acknowledgments
The author gratefully acknowledges the assistance of many colleagues who
commented on earlier drafts of this article. Among these, Kristina Hooper
Woolsey, Peter Jensen, Bard Williams, and Nora Roa were especially helpful
both for their comments and for the many spirited discussions about
simulations and their use.

About the author
Kurt Schmucker has worked at Apple Computer (kurts@apple.com) for
more than 11 years in a variety of capacities, including research manager
and engineering manager for Cocoa, Apple’s simulation authoring toolkit
for kids. Currently he is the senior manager for leadership initiatives in
Apple’s K–12 Education Marketing group, as well as the editor of the
Learning Technology Review.

Kurt is the author of Object-Oriented Programming for the Macintosh
(Hayden, 1986), The Complete Book of Lisa (Harper & Row, 1984), and
Fuzzy Sets, Natural Language Computations, and Risk Analysis (Computer
Science Press, 1983), as well as many articles in technical and government
journals.

Kurt has master’s degrees in both mathematics (Michigan State University)
and computer science (The Johns Hopkins University). He has also
completed all requirements for his Ph.D. in computer science at George
Washington University, with the exception of his dissertation (ABD). While
he has no education credentials, Kurt teaches fourth and fifth graders a
style of Japanese fencing one afternoon each week at an elementary
school in San Jose, California.

75

Learning Technology Review
A Taxonomy of Simulation Software

